| /* |
| Copyright (C) 2004 - 2008 rt2x00 SourceForge Project |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2x00lib |
| Abstract: rt2x00 generic device routines. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00lib.h" |
| #include "rt2x00dump.h" |
| |
| /* |
| * Link tuning handlers |
| */ |
| void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Reset link information. |
| * Both the currently active vgc level as well as |
| * the link tuner counter should be reset. Resetting |
| * the counter is important for devices where the |
| * device should only perform link tuning during the |
| * first minute after being enabled. |
| */ |
| rt2x00dev->link.count = 0; |
| rt2x00dev->link.vgc_level = 0; |
| |
| /* |
| * Reset the link tuner. |
| */ |
| rt2x00dev->ops->lib->reset_tuner(rt2x00dev); |
| } |
| |
| static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Clear all (possibly) pre-existing quality statistics. |
| */ |
| memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual)); |
| |
| /* |
| * The RX and TX percentage should start at 50% |
| * this will assure we will get at least get some |
| * decent value when the link tuner starts. |
| * The value will be dropped and overwritten with |
| * the correct (measured )value anyway during the |
| * first run of the link tuner. |
| */ |
| rt2x00dev->link.qual.rx_percentage = 50; |
| rt2x00dev->link.qual.tx_percentage = 50; |
| |
| rt2x00lib_reset_link_tuner(rt2x00dev); |
| |
| queue_delayed_work(rt2x00dev->hw->workqueue, |
| &rt2x00dev->link.work, LINK_TUNE_INTERVAL); |
| } |
| |
| static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev) |
| { |
| cancel_delayed_work_sync(&rt2x00dev->link.work); |
| } |
| |
| /* |
| * Radio control handlers. |
| */ |
| int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| int status; |
| |
| /* |
| * Don't enable the radio twice. |
| * And check if the hardware button has been disabled. |
| */ |
| if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || |
| test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Initialize all data queues. |
| */ |
| rt2x00queue_init_rx(rt2x00dev); |
| rt2x00queue_init_tx(rt2x00dev); |
| |
| /* |
| * Enable radio. |
| */ |
| status = rt2x00dev->ops->lib->set_device_state(rt2x00dev, |
| STATE_RADIO_ON); |
| if (status) |
| return status; |
| |
| __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags); |
| |
| /* |
| * Enable RX. |
| */ |
| rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); |
| |
| /* |
| * Start the TX queues. |
| */ |
| ieee80211_start_queues(rt2x00dev->hw); |
| |
| return 0; |
| } |
| |
| void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Stop all scheduled work. |
| */ |
| if (work_pending(&rt2x00dev->intf_work)) |
| cancel_work_sync(&rt2x00dev->intf_work); |
| if (work_pending(&rt2x00dev->filter_work)) |
| cancel_work_sync(&rt2x00dev->filter_work); |
| |
| /* |
| * Stop the TX queues. |
| */ |
| ieee80211_stop_queues(rt2x00dev->hw); |
| |
| /* |
| * Disable RX. |
| */ |
| rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); |
| |
| /* |
| * Disable radio. |
| */ |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); |
| } |
| |
| void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) |
| { |
| /* |
| * When we are disabling the RX, we should also stop the link tuner. |
| */ |
| if (state == STATE_RADIO_RX_OFF) |
| rt2x00lib_stop_link_tuner(rt2x00dev); |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| |
| /* |
| * When we are enabling the RX, we should also start the link tuner. |
| */ |
| if (state == STATE_RADIO_RX_ON && |
| (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count)) |
| rt2x00lib_start_link_tuner(rt2x00dev); |
| } |
| |
| static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev) |
| { |
| enum antenna rx = rt2x00dev->link.ant.active.rx; |
| enum antenna tx = rt2x00dev->link.ant.active.tx; |
| int sample_a = |
| rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A); |
| int sample_b = |
| rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B); |
| |
| /* |
| * We are done sampling. Now we should evaluate the results. |
| */ |
| rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE; |
| |
| /* |
| * During the last period we have sampled the RSSI |
| * from both antenna's. It now is time to determine |
| * which antenna demonstrated the best performance. |
| * When we are already on the antenna with the best |
| * performance, then there really is nothing for us |
| * left to do. |
| */ |
| if (sample_a == sample_b) |
| return; |
| |
| if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) |
| rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B; |
| |
| if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) |
| tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B; |
| |
| rt2x00lib_config_antenna(rt2x00dev, rx, tx); |
| } |
| |
| static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev) |
| { |
| enum antenna rx = rt2x00dev->link.ant.active.rx; |
| enum antenna tx = rt2x00dev->link.ant.active.tx; |
| int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link); |
| int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr); |
| |
| /* |
| * Legacy driver indicates that we should swap antenna's |
| * when the difference in RSSI is greater that 5. This |
| * also should be done when the RSSI was actually better |
| * then the previous sample. |
| * When the difference exceeds the threshold we should |
| * sample the rssi from the other antenna to make a valid |
| * comparison between the 2 antennas. |
| */ |
| if (abs(rssi_curr - rssi_old) < 5) |
| return; |
| |
| rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE; |
| |
| if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) |
| rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; |
| |
| if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) |
| tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; |
| |
| rt2x00lib_config_antenna(rt2x00dev, rx, tx); |
| } |
| |
| static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev) |
| { |
| /* |
| * Determine if software diversity is enabled for |
| * either the TX or RX antenna (or both). |
| * Always perform this check since within the link |
| * tuner interval the configuration might have changed. |
| */ |
| rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY; |
| rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY; |
| |
| if (rt2x00dev->hw->conf.antenna_sel_rx == 0 && |
| rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) |
| rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY; |
| if (rt2x00dev->hw->conf.antenna_sel_tx == 0 && |
| rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) |
| rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY; |
| |
| if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) && |
| !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) { |
| rt2x00dev->link.ant.flags = 0; |
| return; |
| } |
| |
| /* |
| * If we have only sampled the data over the last period |
| * we should now harvest the data. Otherwise just evaluate |
| * the data. The latter should only be performed once |
| * every 2 seconds. |
| */ |
| if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE) |
| rt2x00lib_evaluate_antenna_sample(rt2x00dev); |
| else if (rt2x00dev->link.count & 1) |
| rt2x00lib_evaluate_antenna_eval(rt2x00dev); |
| } |
| |
| static void rt2x00lib_update_link_stats(struct link *link, int rssi) |
| { |
| int avg_rssi = rssi; |
| |
| /* |
| * Update global RSSI |
| */ |
| if (link->qual.avg_rssi) |
| avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8); |
| link->qual.avg_rssi = avg_rssi; |
| |
| /* |
| * Update antenna RSSI |
| */ |
| if (link->ant.rssi_ant) |
| rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8); |
| link->ant.rssi_ant = rssi; |
| } |
| |
| static void rt2x00lib_precalculate_link_signal(struct link_qual *qual) |
| { |
| if (qual->rx_failed || qual->rx_success) |
| qual->rx_percentage = |
| (qual->rx_success * 100) / |
| (qual->rx_failed + qual->rx_success); |
| else |
| qual->rx_percentage = 50; |
| |
| if (qual->tx_failed || qual->tx_success) |
| qual->tx_percentage = |
| (qual->tx_success * 100) / |
| (qual->tx_failed + qual->tx_success); |
| else |
| qual->tx_percentage = 50; |
| |
| qual->rx_success = 0; |
| qual->rx_failed = 0; |
| qual->tx_success = 0; |
| qual->tx_failed = 0; |
| } |
| |
| static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev, |
| int rssi) |
| { |
| int rssi_percentage = 0; |
| int signal; |
| |
| /* |
| * We need a positive value for the RSSI. |
| */ |
| if (rssi < 0) |
| rssi += rt2x00dev->rssi_offset; |
| |
| /* |
| * Calculate the different percentages, |
| * which will be used for the signal. |
| */ |
| if (rt2x00dev->rssi_offset) |
| rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset; |
| |
| /* |
| * Add the individual percentages and use the WEIGHT |
| * defines to calculate the current link signal. |
| */ |
| signal = ((WEIGHT_RSSI * rssi_percentage) + |
| (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) + |
| (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100; |
| |
| return (signal > 100) ? 100 : signal; |
| } |
| |
| static void rt2x00lib_link_tuner(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, link.work.work); |
| |
| /* |
| * When the radio is shutting down we should |
| * immediately cease all link tuning. |
| */ |
| if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Update statistics. |
| */ |
| rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual); |
| rt2x00dev->low_level_stats.dot11FCSErrorCount += |
| rt2x00dev->link.qual.rx_failed; |
| |
| /* |
| * Only perform the link tuning when Link tuning |
| * has been enabled (This could have been disabled from the EEPROM). |
| */ |
| if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags)) |
| rt2x00dev->ops->lib->link_tuner(rt2x00dev); |
| |
| /* |
| * Precalculate a portion of the link signal which is |
| * in based on the tx/rx success/failure counters. |
| */ |
| rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual); |
| |
| /* |
| * Evaluate antenna setup, make this the last step since this could |
| * possibly reset some statistics. |
| */ |
| rt2x00lib_evaluate_antenna(rt2x00dev); |
| |
| /* |
| * Increase tuner counter, and reschedule the next link tuner run. |
| */ |
| rt2x00dev->link.count++; |
| queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, |
| LINK_TUNE_INTERVAL); |
| } |
| |
| static void rt2x00lib_packetfilter_scheduled(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, filter_work); |
| unsigned int filter = rt2x00dev->packet_filter; |
| |
| /* |
| * Since we had stored the filter inside rt2x00dev->packet_filter, |
| * we should now clear that field. Otherwise the driver will |
| * assume nothing has changed (*total_flags will be compared |
| * to rt2x00dev->packet_filter to determine if any action is required). |
| */ |
| rt2x00dev->packet_filter = 0; |
| |
| rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw, |
| filter, &filter, 0, NULL); |
| } |
| |
| static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| struct sk_buff *skb; |
| struct ieee80211_tx_control control; |
| struct ieee80211_bss_conf conf; |
| int delayed_flags; |
| |
| /* |
| * Copy all data we need during this action under the protection |
| * of a spinlock. Otherwise race conditions might occur which results |
| * into an invalid configuration. |
| */ |
| spin_lock(&intf->lock); |
| |
| memcpy(&conf, &intf->conf, sizeof(conf)); |
| delayed_flags = intf->delayed_flags; |
| intf->delayed_flags = 0; |
| |
| spin_unlock(&intf->lock); |
| |
| if (delayed_flags & DELAYED_UPDATE_BEACON) { |
| skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control); |
| if (skb) { |
| rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb, |
| &control); |
| dev_kfree_skb(skb); |
| } |
| } |
| |
| if (delayed_flags & DELAYED_CONFIG_PREAMBLE) |
| rt2x00lib_config_preamble(rt2x00dev, intf, |
| intf->conf.use_short_preamble); |
| } |
| |
| static void rt2x00lib_intf_scheduled(struct work_struct *work) |
| { |
| struct rt2x00_dev *rt2x00dev = |
| container_of(work, struct rt2x00_dev, intf_work); |
| |
| /* |
| * Iterate over each interface and perform the |
| * requested configurations. |
| */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_intf_scheduled_iter, |
| rt2x00dev); |
| } |
| |
| /* |
| * Interrupt context handlers. |
| */ |
| static void rt2x00lib_beacondone_iter(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| |
| if (vif->type != IEEE80211_IF_TYPE_AP && |
| vif->type != IEEE80211_IF_TYPE_IBSS) |
| return; |
| |
| spin_lock(&intf->lock); |
| intf->delayed_flags |= DELAYED_UPDATE_BEACON; |
| spin_unlock(&intf->lock); |
| } |
| |
| void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return; |
| |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_beacondone_iter, |
| rt2x00dev); |
| |
| queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); |
| |
| void rt2x00lib_txdone(struct queue_entry *entry, |
| struct txdone_entry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_tx_status tx_status; |
| int success = !!(txdesc->status == TX_SUCCESS || |
| txdesc->status == TX_SUCCESS_RETRY); |
| int fail = !!(txdesc->status == TX_FAIL_RETRY || |
| txdesc->status == TX_FAIL_INVALID || |
| txdesc->status == TX_FAIL_OTHER); |
| |
| /* |
| * Update TX statistics. |
| */ |
| rt2x00dev->link.qual.tx_success += success; |
| rt2x00dev->link.qual.tx_failed += txdesc->retry + fail; |
| |
| /* |
| * Initialize TX status |
| */ |
| tx_status.flags = 0; |
| tx_status.ack_signal = 0; |
| tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY); |
| tx_status.retry_count = txdesc->retry; |
| memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control)); |
| |
| if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) { |
| if (success) |
| tx_status.flags |= IEEE80211_TX_STATUS_ACK; |
| else |
| rt2x00dev->low_level_stats.dot11ACKFailureCount++; |
| } |
| |
| tx_status.queue_length = entry->queue->limit; |
| tx_status.queue_number = tx_status.control.queue; |
| |
| if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) { |
| if (success) |
| rt2x00dev->low_level_stats.dot11RTSSuccessCount++; |
| else |
| rt2x00dev->low_level_stats.dot11RTSFailureCount++; |
| } |
| |
| /* |
| * Send the tx_status to mac80211 & debugfs. |
| * mac80211 will clean up the skb structure. |
| */ |
| get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE; |
| rt2x00debug_dump_frame(rt2x00dev, entry->skb); |
| ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status); |
| entry->skb = NULL; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_txdone); |
| |
| void rt2x00lib_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_rate *rate; |
| struct ieee80211_hdr *hdr; |
| unsigned int i; |
| int val = 0, idx = -1; |
| u16 fc; |
| |
| /* |
| * Update RX statistics. |
| */ |
| sband = &rt2x00dev->bands[rt2x00dev->curr_band]; |
| for (i = 0; i < sband->n_bitrates; i++) { |
| rate = &sband->bitrates[i]; |
| |
| /* |
| * When frame was received with an OFDM bitrate, |
| * the signal is the PLCP value. If it was received with |
| * a CCK bitrate the signal is the rate in 0.5kbit/s. |
| */ |
| if (!rxdesc->ofdm) |
| val = DEVICE_GET_RATE_FIELD(rate->hw_value, RATE); |
| else |
| val = DEVICE_GET_RATE_FIELD(rate->hw_value, PLCP); |
| |
| if (val == rxdesc->signal) { |
| idx = i; |
| break; |
| } |
| } |
| |
| /* |
| * Only update link status if this is a beacon frame carrying our bssid. |
| */ |
| hdr = (struct ieee80211_hdr*)entry->skb->data; |
| fc = le16_to_cpu(hdr->frame_control); |
| if (is_beacon(fc) && rxdesc->my_bss) |
| rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi); |
| |
| rt2x00dev->link.qual.rx_success++; |
| |
| rx_status->rate_idx = idx; |
| rx_status->signal = |
| rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi); |
| rx_status->ssi = rxdesc->rssi; |
| rx_status->flag = rxdesc->flags; |
| rx_status->antenna = rt2x00dev->link.ant.active.rx; |
| |
| /* |
| * Send frame to mac80211 & debugfs. |
| * mac80211 will clean up the skb structure. |
| */ |
| get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE; |
| rt2x00debug_dump_frame(rt2x00dev, entry->skb); |
| ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status); |
| entry->skb = NULL; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); |
| |
| /* |
| * TX descriptor initializer |
| */ |
| void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct ieee80211_tx_control *control) |
| { |
| struct txentry_desc txdesc; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); |
| struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data; |
| int tx_rate; |
| int bitrate; |
| int length; |
| int duration; |
| int residual; |
| u16 frame_control; |
| u16 seq_ctrl; |
| |
| memset(&txdesc, 0, sizeof(txdesc)); |
| |
| txdesc.queue = skbdesc->entry->queue->qid; |
| txdesc.cw_min = skbdesc->entry->queue->cw_min; |
| txdesc.cw_max = skbdesc->entry->queue->cw_max; |
| txdesc.aifs = skbdesc->entry->queue->aifs; |
| |
| /* |
| * Read required fields from ieee80211 header. |
| */ |
| frame_control = le16_to_cpu(ieee80211hdr->frame_control); |
| seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl); |
| |
| tx_rate = control->tx_rate->hw_value; |
| |
| /* |
| * Check whether this frame is to be acked |
| */ |
| if (!(control->flags & IEEE80211_TXCTL_NO_ACK)) |
| __set_bit(ENTRY_TXD_ACK, &txdesc.flags); |
| |
| /* |
| * Check if this is a RTS/CTS frame |
| */ |
| if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) { |
| __set_bit(ENTRY_TXD_BURST, &txdesc.flags); |
| if (is_rts_frame(frame_control)) { |
| __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags); |
| __set_bit(ENTRY_TXD_ACK, &txdesc.flags); |
| } else |
| __clear_bit(ENTRY_TXD_ACK, &txdesc.flags); |
| if (control->rts_cts_rate) |
| tx_rate = control->rts_cts_rate->hw_value; |
| } |
| |
| /* |
| * Check for OFDM |
| */ |
| if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK) |
| __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags); |
| |
| /* |
| * Check if more fragments are pending |
| */ |
| if (ieee80211_get_morefrag(ieee80211hdr)) { |
| __set_bit(ENTRY_TXD_BURST, &txdesc.flags); |
| __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags); |
| } |
| |
| /* |
| * Beacons and probe responses require the tsf timestamp |
| * to be inserted into the frame. |
| */ |
| if (control->queue == RT2X00_BCN_QUEUE_BEACON || |
| is_probe_resp(frame_control)) |
| __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags); |
| |
| /* |
| * Determine with what IFS priority this frame should be send. |
| * Set ifs to IFS_SIFS when the this is not the first fragment, |
| * or this fragment came after RTS/CTS. |
| */ |
| if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 || |
| test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags)) |
| txdesc.ifs = IFS_SIFS; |
| else |
| txdesc.ifs = IFS_BACKOFF; |
| |
| /* |
| * PLCP setup |
| * Length calculation depends on OFDM/CCK rate. |
| */ |
| txdesc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP); |
| txdesc.service = 0x04; |
| |
| length = skb->len + FCS_LEN; |
| if (test_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags)) { |
| txdesc.length_high = (length >> 6) & 0x3f; |
| txdesc.length_low = length & 0x3f; |
| } else { |
| bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE); |
| |
| /* |
| * Convert length to microseconds. |
| */ |
| residual = get_duration_res(length, bitrate); |
| duration = get_duration(length, bitrate); |
| |
| if (residual != 0) { |
| duration++; |
| |
| /* |
| * Check if we need to set the Length Extension |
| */ |
| if (bitrate == 110 && residual <= 30) |
| txdesc.service |= 0x80; |
| } |
| |
| txdesc.length_high = (duration >> 8) & 0xff; |
| txdesc.length_low = duration & 0xff; |
| |
| /* |
| * When preamble is enabled we should set the |
| * preamble bit for the signal. |
| */ |
| if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE)) |
| txdesc.signal |= 0x08; |
| } |
| |
| rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control); |
| |
| /* |
| * Update queue entry. |
| */ |
| skbdesc->entry->skb = skb; |
| |
| /* |
| * The frame has been completely initialized and ready |
| * for sending to the device. The caller will push the |
| * frame to the device, but we are going to push the |
| * frame to debugfs here. |
| */ |
| skbdesc->frame_type = DUMP_FRAME_TX; |
| rt2x00debug_dump_frame(rt2x00dev, skb); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc); |
| |
| /* |
| * Driver initialization handlers. |
| */ |
| static void rt2x00lib_channel(struct ieee80211_channel *entry, |
| const int channel, const int tx_power, |
| const int value) |
| { |
| if (channel <= 14) |
| entry->center_freq = 2407 + (5 * channel); |
| else |
| entry->center_freq = 5000 + (5 * channel); |
| entry->hw_value = value; |
| entry->max_power = tx_power; |
| entry->max_antenna_gain = 0xff; |
| } |
| |
| static void rt2x00lib_rate(struct ieee80211_rate *entry, |
| const int rate, const int mask, |
| const int plcp, const int flags) |
| { |
| entry->bitrate = rate; |
| entry->hw_value = |
| DEVICE_SET_RATE_FIELD(rate, RATE) | |
| DEVICE_SET_RATE_FIELD(mask, RATEMASK) | |
| DEVICE_SET_RATE_FIELD(plcp, PLCP); |
| entry->flags = flags; |
| entry->hw_value_short = entry->hw_value; |
| if (entry->flags & IEEE80211_RATE_SHORT_PREAMBLE) |
| entry->hw_value_short |= DEVICE_SET_RATE_FIELD(1, PREAMBLE); |
| } |
| |
| static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, |
| struct hw_mode_spec *spec) |
| { |
| struct ieee80211_hw *hw = rt2x00dev->hw; |
| struct ieee80211_supported_band *sbands; |
| struct ieee80211_channel *channels; |
| struct ieee80211_rate *rates; |
| unsigned int i; |
| unsigned char tx_power; |
| |
| sbands = &rt2x00dev->bands[0]; |
| |
| channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); |
| if (!channels) |
| return -ENOMEM; |
| |
| rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL); |
| if (!rates) |
| goto exit_free_channels; |
| |
| /* |
| * Initialize Rate list. |
| */ |
| rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB, |
| 0x00, 0); |
| rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB, |
| 0x01, IEEE80211_RATE_SHORT_PREAMBLE); |
| rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB, |
| 0x02, IEEE80211_RATE_SHORT_PREAMBLE); |
| rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB, |
| 0x03, IEEE80211_RATE_SHORT_PREAMBLE); |
| |
| if (spec->num_rates > 4) { |
| rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB, |
| 0x0b, 0); |
| rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB, |
| 0x0f, 0); |
| rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB, |
| 0x0a, 0); |
| rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB, |
| 0x0e, 0); |
| rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB, |
| 0x09, 0); |
| rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB, |
| 0x0d, 0); |
| rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB, |
| 0x08, 0); |
| rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB, |
| 0x0c, 0); |
| } |
| |
| /* |
| * Initialize Channel list. |
| */ |
| for (i = 0; i < spec->num_channels; i++) { |
| if (spec->channels[i].channel <= 14) |
| tx_power = spec->tx_power_bg[i]; |
| else if (spec->tx_power_a) |
| tx_power = spec->tx_power_a[i]; |
| else |
| tx_power = spec->tx_power_default; |
| |
| rt2x00lib_channel(&channels[i], |
| spec->channels[i].channel, tx_power, i); |
| } |
| |
| /* |
| * Intitialize 802.11b |
| * Rates: CCK. |
| * Channels: 2.4 GHz |
| */ |
| if (spec->num_modes > HWMODE_B) { |
| sbands[IEEE80211_BAND_2GHZ].n_channels = 14; |
| sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4; |
| sbands[IEEE80211_BAND_2GHZ].channels = channels; |
| sbands[IEEE80211_BAND_2GHZ].bitrates = rates; |
| hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; |
| } |
| |
| /* |
| * Intitialize 802.11g |
| * Rates: CCK, OFDM. |
| * Channels: 2.4 GHz |
| */ |
| if (spec->num_modes > HWMODE_G) { |
| sbands[IEEE80211_BAND_2GHZ].n_channels = 14; |
| sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates; |
| sbands[IEEE80211_BAND_2GHZ].channels = channels; |
| sbands[IEEE80211_BAND_2GHZ].bitrates = rates; |
| hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; |
| } |
| |
| /* |
| * Intitialize 802.11a |
| * Rates: OFDM. |
| * Channels: OFDM, UNII, HiperLAN2. |
| */ |
| if (spec->num_modes > HWMODE_A) { |
| sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14; |
| sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4; |
| sbands[IEEE80211_BAND_5GHZ].channels = &channels[14]; |
| sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; |
| hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; |
| } |
| |
| return 0; |
| |
| exit_free_channels: |
| kfree(channels); |
| ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); |
| return -ENOMEM; |
| } |
| |
| static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags)) |
| ieee80211_unregister_hw(rt2x00dev->hw); |
| |
| if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { |
| kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); |
| kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); |
| rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; |
| rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; |
| } |
| } |
| |
| static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| int status; |
| |
| /* |
| * Initialize HW modes. |
| */ |
| status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); |
| if (status) |
| return status; |
| |
| /* |
| * Register HW. |
| */ |
| status = ieee80211_register_hw(rt2x00dev->hw); |
| if (status) { |
| rt2x00lib_remove_hw(rt2x00dev); |
| return status; |
| } |
| |
| __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialization/uninitialization handlers. |
| */ |
| static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Unregister rfkill. |
| */ |
| rt2x00rfkill_unregister(rt2x00dev); |
| |
| /* |
| * Allow the HW to uninitialize. |
| */ |
| rt2x00dev->ops->lib->uninitialize(rt2x00dev); |
| |
| /* |
| * Free allocated queue entries. |
| */ |
| rt2x00queue_uninitialize(rt2x00dev); |
| } |
| |
| static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) |
| { |
| int status; |
| |
| if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Allocate all queue entries. |
| */ |
| status = rt2x00queue_initialize(rt2x00dev); |
| if (status) |
| return status; |
| |
| /* |
| * Initialize the device. |
| */ |
| status = rt2x00dev->ops->lib->initialize(rt2x00dev); |
| if (status) |
| goto exit; |
| |
| __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags); |
| |
| /* |
| * Register the rfkill handler. |
| */ |
| status = rt2x00rfkill_register(rt2x00dev); |
| if (status) |
| goto exit; |
| |
| return 0; |
| |
| exit: |
| rt2x00lib_uninitialize(rt2x00dev); |
| |
| return status; |
| } |
| |
| int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| if (test_bit(DEVICE_STARTED, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * If this is the first interface which is added, |
| * we should load the firmware now. |
| */ |
| retval = rt2x00lib_load_firmware(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Initialize the device. |
| */ |
| retval = rt2x00lib_initialize(rt2x00dev); |
| if (retval) |
| return retval; |
| |
| /* |
| * Enable radio. |
| */ |
| retval = rt2x00lib_enable_radio(rt2x00dev); |
| if (retval) { |
| rt2x00lib_uninitialize(rt2x00dev); |
| return retval; |
| } |
| |
| rt2x00dev->intf_ap_count = 0; |
| rt2x00dev->intf_sta_count = 0; |
| rt2x00dev->intf_associated = 0; |
| |
| __set_bit(DEVICE_STARTED, &rt2x00dev->flags); |
| |
| return 0; |
| } |
| |
| void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) |
| { |
| if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) |
| return; |
| |
| /* |
| * Perhaps we can add something smarter here, |
| * but for now just disabling the radio should do. |
| */ |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| rt2x00dev->intf_ap_count = 0; |
| rt2x00dev->intf_sta_count = 0; |
| rt2x00dev->intf_associated = 0; |
| |
| __clear_bit(DEVICE_STARTED, &rt2x00dev->flags); |
| } |
| |
| /* |
| * driver allocation handlers. |
| */ |
| int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval = -ENOMEM; |
| |
| /* |
| * Make room for rt2x00_intf inside the per-interface |
| * structure ieee80211_vif. |
| */ |
| rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); |
| |
| /* |
| * Let the driver probe the device to detect the capabilities. |
| */ |
| retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); |
| if (retval) { |
| ERROR(rt2x00dev, "Failed to allocate device.\n"); |
| goto exit; |
| } |
| |
| /* |
| * Initialize configuration work. |
| */ |
| INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); |
| INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled); |
| INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner); |
| |
| /* |
| * Allocate queue array. |
| */ |
| retval = rt2x00queue_allocate(rt2x00dev); |
| if (retval) |
| goto exit; |
| |
| /* |
| * Initialize ieee80211 structure. |
| */ |
| retval = rt2x00lib_probe_hw(rt2x00dev); |
| if (retval) { |
| ERROR(rt2x00dev, "Failed to initialize hw.\n"); |
| goto exit; |
| } |
| |
| /* |
| * Allocatie rfkill. |
| */ |
| retval = rt2x00rfkill_allocate(rt2x00dev); |
| if (retval) |
| goto exit; |
| |
| /* |
| * Open the debugfs entry. |
| */ |
| rt2x00debug_register(rt2x00dev); |
| |
| __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); |
| |
| return 0; |
| |
| exit: |
| rt2x00lib_remove_dev(rt2x00dev); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); |
| |
| void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) |
| { |
| __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * Disable radio. |
| */ |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| /* |
| * Uninitialize device. |
| */ |
| rt2x00lib_uninitialize(rt2x00dev); |
| |
| /* |
| * Close debugfs entry. |
| */ |
| rt2x00debug_deregister(rt2x00dev); |
| |
| /* |
| * Free rfkill |
| */ |
| rt2x00rfkill_free(rt2x00dev); |
| |
| /* |
| * Free ieee80211_hw memory. |
| */ |
| rt2x00lib_remove_hw(rt2x00dev); |
| |
| /* |
| * Free firmware image. |
| */ |
| rt2x00lib_free_firmware(rt2x00dev); |
| |
| /* |
| * Free queue structures. |
| */ |
| rt2x00queue_free(rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); |
| |
| /* |
| * Device state handlers |
| */ |
| #ifdef CONFIG_PM |
| int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) |
| { |
| int retval; |
| |
| NOTICE(rt2x00dev, "Going to sleep.\n"); |
| __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * Only continue if mac80211 has open interfaces. |
| */ |
| if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) |
| goto exit; |
| __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags); |
| |
| /* |
| * Disable radio and unitialize all items |
| * that must be recreated on resume. |
| */ |
| rt2x00lib_stop(rt2x00dev); |
| rt2x00lib_uninitialize(rt2x00dev); |
| rt2x00debug_deregister(rt2x00dev); |
| |
| exit: |
| /* |
| * Set device mode to sleep for power management. |
| */ |
| retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP); |
| if (retval) |
| return retval; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_suspend); |
| |
| static void rt2x00lib_resume_intf(void *data, u8 *mac, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = data; |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| |
| spin_lock(&intf->lock); |
| |
| rt2x00lib_config_intf(rt2x00dev, intf, |
| vif->type, intf->mac, intf->bssid); |
| |
| |
| /* |
| * Master or Ad-hoc mode require a new beacon update. |
| */ |
| if (vif->type == IEEE80211_IF_TYPE_AP || |
| vif->type == IEEE80211_IF_TYPE_IBSS) |
| intf->delayed_flags |= DELAYED_UPDATE_BEACON; |
| |
| spin_unlock(&intf->lock); |
| } |
| |
| int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) |
| { |
| int retval; |
| |
| NOTICE(rt2x00dev, "Waking up.\n"); |
| |
| /* |
| * Open the debugfs entry. |
| */ |
| rt2x00debug_register(rt2x00dev); |
| |
| /* |
| * Only continue if mac80211 had open interfaces. |
| */ |
| if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags)) |
| return 0; |
| |
| /* |
| * Reinitialize device and all active interfaces. |
| */ |
| retval = rt2x00lib_start(rt2x00dev); |
| if (retval) |
| goto exit; |
| |
| /* |
| * Reconfigure device. |
| */ |
| rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1); |
| if (!rt2x00dev->hw->conf.radio_enabled) |
| rt2x00lib_disable_radio(rt2x00dev); |
| |
| /* |
| * Iterator over each active interface to |
| * reconfigure the hardware. |
| */ |
| ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| rt2x00lib_resume_intf, rt2x00dev); |
| |
| /* |
| * We are ready again to receive requests from mac80211. |
| */ |
| __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); |
| |
| /* |
| * It is possible that during that mac80211 has attempted |
| * to send frames while we were suspending or resuming. |
| * In that case we have disabled the TX queue and should |
| * now enable it again |
| */ |
| ieee80211_start_queues(rt2x00dev->hw); |
| |
| /* |
| * During interface iteration we might have changed the |
| * delayed_flags, time to handles the event by calling |
| * the work handler directly. |
| */ |
| rt2x00lib_intf_scheduled(&rt2x00dev->intf_work); |
| |
| return 0; |
| |
| exit: |
| rt2x00lib_disable_radio(rt2x00dev); |
| rt2x00lib_uninitialize(rt2x00dev); |
| rt2x00debug_deregister(rt2x00dev); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00lib_resume); |
| #endif /* CONFIG_PM */ |
| |
| /* |
| * rt2x00lib module information. |
| */ |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("rt2x00 library"); |
| MODULE_LICENSE("GPL"); |