| /* |
| * pSeries NUMA support |
| * |
| * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/threads.h> |
| #include <linux/bootmem.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/module.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/lmb.h> |
| #include <linux/of.h> |
| #include <asm/sparsemem.h> |
| #include <asm/prom.h> |
| #include <asm/system.h> |
| #include <asm/smp.h> |
| |
| static int numa_enabled = 1; |
| |
| static char *cmdline __initdata; |
| |
| static int numa_debug; |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } |
| |
| int numa_cpu_lookup_table[NR_CPUS]; |
| cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; |
| struct pglist_data *node_data[MAX_NUMNODES]; |
| |
| EXPORT_SYMBOL(numa_cpu_lookup_table); |
| EXPORT_SYMBOL(numa_cpumask_lookup_table); |
| EXPORT_SYMBOL(node_data); |
| |
| static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; |
| static int min_common_depth; |
| static int n_mem_addr_cells, n_mem_size_cells; |
| |
| static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, |
| unsigned int *nid) |
| { |
| unsigned long long mem; |
| char *p = cmdline; |
| static unsigned int fake_nid; |
| static unsigned long long curr_boundary; |
| |
| /* |
| * Modify node id, iff we started creating NUMA nodes |
| * We want to continue from where we left of the last time |
| */ |
| if (fake_nid) |
| *nid = fake_nid; |
| /* |
| * In case there are no more arguments to parse, the |
| * node_id should be the same as the last fake node id |
| * (we've handled this above). |
| */ |
| if (!p) |
| return 0; |
| |
| mem = memparse(p, &p); |
| if (!mem) |
| return 0; |
| |
| if (mem < curr_boundary) |
| return 0; |
| |
| curr_boundary = mem; |
| |
| if ((end_pfn << PAGE_SHIFT) > mem) { |
| /* |
| * Skip commas and spaces |
| */ |
| while (*p == ',' || *p == ' ' || *p == '\t') |
| p++; |
| |
| cmdline = p; |
| fake_nid++; |
| *nid = fake_nid; |
| dbg("created new fake_node with id %d\n", fake_nid); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void __cpuinit map_cpu_to_node(int cpu, int node) |
| { |
| numa_cpu_lookup_table[cpu] = node; |
| |
| dbg("adding cpu %d to node %d\n", cpu, node); |
| |
| if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) |
| cpu_set(cpu, numa_cpumask_lookup_table[node]); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void unmap_cpu_from_node(unsigned long cpu) |
| { |
| int node = numa_cpu_lookup_table[cpu]; |
| |
| dbg("removing cpu %lu from node %d\n", cpu, node); |
| |
| if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { |
| cpu_clear(cpu, numa_cpumask_lookup_table[node]); |
| } else { |
| printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", |
| cpu, node); |
| } |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| |
| static struct device_node * __cpuinit find_cpu_node(unsigned int cpu) |
| { |
| unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); |
| struct device_node *cpu_node = NULL; |
| const unsigned int *interrupt_server, *reg; |
| int len; |
| |
| while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { |
| /* Try interrupt server first */ |
| interrupt_server = of_get_property(cpu_node, |
| "ibm,ppc-interrupt-server#s", &len); |
| |
| len = len / sizeof(u32); |
| |
| if (interrupt_server && (len > 0)) { |
| while (len--) { |
| if (interrupt_server[len] == hw_cpuid) |
| return cpu_node; |
| } |
| } else { |
| reg = of_get_property(cpu_node, "reg", &len); |
| if (reg && (len > 0) && (reg[0] == hw_cpuid)) |
| return cpu_node; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* must hold reference to node during call */ |
| static const int *of_get_associativity(struct device_node *dev) |
| { |
| return of_get_property(dev, "ibm,associativity", NULL); |
| } |
| |
| /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa |
| * info is found. |
| */ |
| static int of_node_to_nid_single(struct device_node *device) |
| { |
| int nid = -1; |
| const unsigned int *tmp; |
| |
| if (min_common_depth == -1) |
| goto out; |
| |
| tmp = of_get_associativity(device); |
| if (!tmp) |
| goto out; |
| |
| if (tmp[0] >= min_common_depth) |
| nid = tmp[min_common_depth]; |
| |
| /* POWER4 LPAR uses 0xffff as invalid node */ |
| if (nid == 0xffff || nid >= MAX_NUMNODES) |
| nid = -1; |
| out: |
| return nid; |
| } |
| |
| /* Walk the device tree upwards, looking for an associativity id */ |
| int of_node_to_nid(struct device_node *device) |
| { |
| struct device_node *tmp; |
| int nid = -1; |
| |
| of_node_get(device); |
| while (device) { |
| nid = of_node_to_nid_single(device); |
| if (nid != -1) |
| break; |
| |
| tmp = device; |
| device = of_get_parent(tmp); |
| of_node_put(tmp); |
| } |
| of_node_put(device); |
| |
| return nid; |
| } |
| EXPORT_SYMBOL_GPL(of_node_to_nid); |
| |
| /* |
| * In theory, the "ibm,associativity" property may contain multiple |
| * associativity lists because a resource may be multiply connected |
| * into the machine. This resource then has different associativity |
| * characteristics relative to its multiple connections. We ignore |
| * this for now. We also assume that all cpu and memory sets have |
| * their distances represented at a common level. This won't be |
| * true for hierarchical NUMA. |
| * |
| * In any case the ibm,associativity-reference-points should give |
| * the correct depth for a normal NUMA system. |
| * |
| * - Dave Hansen <haveblue@us.ibm.com> |
| */ |
| static int __init find_min_common_depth(void) |
| { |
| int depth; |
| const unsigned int *ref_points; |
| struct device_node *rtas_root; |
| unsigned int len; |
| |
| rtas_root = of_find_node_by_path("/rtas"); |
| |
| if (!rtas_root) |
| return -1; |
| |
| /* |
| * this property is 2 32-bit integers, each representing a level of |
| * depth in the associativity nodes. The first is for an SMP |
| * configuration (should be all 0's) and the second is for a normal |
| * NUMA configuration. |
| */ |
| ref_points = of_get_property(rtas_root, |
| "ibm,associativity-reference-points", &len); |
| |
| if ((len >= 1) && ref_points) { |
| depth = ref_points[1]; |
| } else { |
| dbg("NUMA: ibm,associativity-reference-points not found.\n"); |
| depth = -1; |
| } |
| of_node_put(rtas_root); |
| |
| return depth; |
| } |
| |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) |
| { |
| struct device_node *memory = NULL; |
| |
| memory = of_find_node_by_type(memory, "memory"); |
| if (!memory) |
| panic("numa.c: No memory nodes found!"); |
| |
| *n_addr_cells = of_n_addr_cells(memory); |
| *n_size_cells = of_n_size_cells(memory); |
| of_node_put(memory); |
| } |
| |
| static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) |
| { |
| unsigned long result = 0; |
| |
| while (n--) { |
| result = (result << 32) | **buf; |
| (*buf)++; |
| } |
| return result; |
| } |
| |
| struct of_drconf_cell { |
| u64 base_addr; |
| u32 drc_index; |
| u32 reserved; |
| u32 aa_index; |
| u32 flags; |
| }; |
| |
| #define DRCONF_MEM_ASSIGNED 0x00000008 |
| #define DRCONF_MEM_AI_INVALID 0x00000040 |
| #define DRCONF_MEM_RESERVED 0x00000080 |
| |
| /* |
| * Read the next lmb list entry from the ibm,dynamic-memory property |
| * and return the information in the provided of_drconf_cell structure. |
| */ |
| static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) |
| { |
| const u32 *cp; |
| |
| drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); |
| |
| cp = *cellp; |
| drmem->drc_index = cp[0]; |
| drmem->reserved = cp[1]; |
| drmem->aa_index = cp[2]; |
| drmem->flags = cp[3]; |
| |
| *cellp = cp + 4; |
| } |
| |
| /* |
| * Retreive and validate the ibm,dynamic-memory property of the device tree. |
| * |
| * The layout of the ibm,dynamic-memory property is a number N of lmb |
| * list entries followed by N lmb list entries. Each lmb list entry |
| * contains information as layed out in the of_drconf_cell struct above. |
| */ |
| static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) |
| { |
| const u32 *prop; |
| u32 len, entries; |
| |
| prop = of_get_property(memory, "ibm,dynamic-memory", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| |
| entries = *prop++; |
| |
| /* Now that we know the number of entries, revalidate the size |
| * of the property read in to ensure we have everything |
| */ |
| if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) |
| return 0; |
| |
| *dm = prop; |
| return entries; |
| } |
| |
| /* |
| * Retreive and validate the ibm,lmb-size property for drconf memory |
| * from the device tree. |
| */ |
| static u64 of_get_lmb_size(struct device_node *memory) |
| { |
| const u32 *prop; |
| u32 len; |
| |
| prop = of_get_property(memory, "ibm,lmb-size", &len); |
| if (!prop || len < sizeof(unsigned int)) |
| return 0; |
| |
| return read_n_cells(n_mem_size_cells, &prop); |
| } |
| |
| struct assoc_arrays { |
| u32 n_arrays; |
| u32 array_sz; |
| const u32 *arrays; |
| }; |
| |
| /* |
| * Retreive and validate the list of associativity arrays for drconf |
| * memory from the ibm,associativity-lookup-arrays property of the |
| * device tree.. |
| * |
| * The layout of the ibm,associativity-lookup-arrays property is a number N |
| * indicating the number of associativity arrays, followed by a number M |
| * indicating the size of each associativity array, followed by a list |
| * of N associativity arrays. |
| */ |
| static int of_get_assoc_arrays(struct device_node *memory, |
| struct assoc_arrays *aa) |
| { |
| const u32 *prop; |
| u32 len; |
| |
| prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); |
| if (!prop || len < 2 * sizeof(unsigned int)) |
| return -1; |
| |
| aa->n_arrays = *prop++; |
| aa->array_sz = *prop++; |
| |
| /* Now that we know the number of arrrays and size of each array, |
| * revalidate the size of the property read in. |
| */ |
| if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) |
| return -1; |
| |
| aa->arrays = prop; |
| return 0; |
| } |
| |
| /* |
| * This is like of_node_to_nid_single() for memory represented in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, |
| struct assoc_arrays *aa) |
| { |
| int default_nid = 0; |
| int nid = default_nid; |
| int index; |
| |
| if (min_common_depth > 0 && min_common_depth <= aa->array_sz && |
| !(drmem->flags & DRCONF_MEM_AI_INVALID) && |
| drmem->aa_index < aa->n_arrays) { |
| index = drmem->aa_index * aa->array_sz + min_common_depth - 1; |
| nid = aa->arrays[index]; |
| |
| if (nid == 0xffff || nid >= MAX_NUMNODES) |
| nid = default_nid; |
| } |
| |
| return nid; |
| } |
| |
| /* |
| * Figure out to which domain a cpu belongs and stick it there. |
| * Return the id of the domain used. |
| */ |
| static int __cpuinit numa_setup_cpu(unsigned long lcpu) |
| { |
| int nid = 0; |
| struct device_node *cpu = find_cpu_node(lcpu); |
| |
| if (!cpu) { |
| WARN_ON(1); |
| goto out; |
| } |
| |
| nid = of_node_to_nid_single(cpu); |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = any_online_node(NODE_MASK_ALL); |
| out: |
| map_cpu_to_node(lcpu, nid); |
| |
| of_node_put(cpu); |
| |
| return nid; |
| } |
| |
| static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| unsigned long lcpu = (unsigned long)hcpu; |
| int ret = NOTIFY_DONE; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| numa_setup_cpu(lcpu); |
| ret = NOTIFY_OK; |
| break; |
| #ifdef CONFIG_HOTPLUG_CPU |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| unmap_cpu_from_node(lcpu); |
| break; |
| ret = NOTIFY_OK; |
| #endif |
| } |
| return ret; |
| } |
| |
| /* |
| * Check and possibly modify a memory region to enforce the memory limit. |
| * |
| * Returns the size the region should have to enforce the memory limit. |
| * This will either be the original value of size, a truncated value, |
| * or zero. If the returned value of size is 0 the region should be |
| * discarded as it lies wholy above the memory limit. |
| */ |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start, |
| unsigned long size) |
| { |
| /* |
| * We use lmb_end_of_DRAM() in here instead of memory_limit because |
| * we've already adjusted it for the limit and it takes care of |
| * having memory holes below the limit. |
| */ |
| |
| if (! memory_limit) |
| return size; |
| |
| if (start + size <= lmb_end_of_DRAM()) |
| return size; |
| |
| if (start >= lmb_end_of_DRAM()) |
| return 0; |
| |
| return lmb_end_of_DRAM() - start; |
| } |
| |
| /* |
| * Extract NUMA information from the ibm,dynamic-reconfiguration-memory |
| * node. This assumes n_mem_{addr,size}_cells have been set. |
| */ |
| static void __init parse_drconf_memory(struct device_node *memory) |
| { |
| const u32 *dm; |
| unsigned int n, rc; |
| unsigned long lmb_size, size; |
| int nid; |
| struct assoc_arrays aa; |
| |
| n = of_get_drconf_memory(memory, &dm); |
| if (!n) |
| return; |
| |
| lmb_size = of_get_lmb_size(memory); |
| if (!lmb_size) |
| return; |
| |
| rc = of_get_assoc_arrays(memory, &aa); |
| if (rc) |
| return; |
| |
| for (; n != 0; --n) { |
| struct of_drconf_cell drmem; |
| |
| read_drconf_cell(&drmem, &dm); |
| |
| /* skip this block if the reserved bit is set in flags (0x80) |
| or if the block is not assigned to this partition (0x8) */ |
| if ((drmem.flags & DRCONF_MEM_RESERVED) |
| || !(drmem.flags & DRCONF_MEM_ASSIGNED)) |
| continue; |
| |
| nid = of_drconf_to_nid_single(&drmem, &aa); |
| |
| fake_numa_create_new_node( |
| ((drmem.base_addr + lmb_size) >> PAGE_SHIFT), |
| &nid); |
| |
| node_set_online(nid); |
| |
| size = numa_enforce_memory_limit(drmem.base_addr, lmb_size); |
| if (!size) |
| continue; |
| |
| add_active_range(nid, drmem.base_addr >> PAGE_SHIFT, |
| (drmem.base_addr >> PAGE_SHIFT) |
| + (size >> PAGE_SHIFT)); |
| } |
| } |
| |
| static int __init parse_numa_properties(void) |
| { |
| struct device_node *cpu = NULL; |
| struct device_node *memory = NULL; |
| int default_nid = 0; |
| unsigned long i; |
| |
| if (numa_enabled == 0) { |
| printk(KERN_WARNING "NUMA disabled by user\n"); |
| return -1; |
| } |
| |
| min_common_depth = find_min_common_depth(); |
| |
| if (min_common_depth < 0) |
| return min_common_depth; |
| |
| dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); |
| |
| /* |
| * Even though we connect cpus to numa domains later in SMP |
| * init, we need to know the node ids now. This is because |
| * each node to be onlined must have NODE_DATA etc backing it. |
| */ |
| for_each_present_cpu(i) { |
| int nid; |
| |
| cpu = find_cpu_node(i); |
| BUG_ON(!cpu); |
| nid = of_node_to_nid_single(cpu); |
| of_node_put(cpu); |
| |
| /* |
| * Don't fall back to default_nid yet -- we will plug |
| * cpus into nodes once the memory scan has discovered |
| * the topology. |
| */ |
| if (nid < 0) |
| continue; |
| node_set_online(nid); |
| } |
| |
| get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); |
| memory = NULL; |
| while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { |
| unsigned long start; |
| unsigned long size; |
| int nid; |
| int ranges; |
| const unsigned int *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, |
| "linux,usable-memory", &len); |
| if (!memcell_buf || len <= 0) |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| new_range: |
| /* these are order-sensitive, and modify the buffer pointer */ |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| /* |
| * Assumption: either all memory nodes or none will |
| * have associativity properties. If none, then |
| * everything goes to default_nid. |
| */ |
| nid = of_node_to_nid_single(memory); |
| if (nid < 0) |
| nid = default_nid; |
| |
| fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); |
| node_set_online(nid); |
| |
| if (!(size = numa_enforce_memory_limit(start, size))) { |
| if (--ranges) |
| goto new_range; |
| else |
| continue; |
| } |
| |
| add_active_range(nid, start >> PAGE_SHIFT, |
| (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT)); |
| |
| if (--ranges) |
| goto new_range; |
| } |
| |
| /* |
| * Now do the same thing for each LMB listed in the ibm,dynamic-memory |
| * property in the ibm,dynamic-reconfiguration-memory node. |
| */ |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) |
| parse_drconf_memory(memory); |
| |
| return 0; |
| } |
| |
| static void __init setup_nonnuma(void) |
| { |
| unsigned long top_of_ram = lmb_end_of_DRAM(); |
| unsigned long total_ram = lmb_phys_mem_size(); |
| unsigned long start_pfn, end_pfn; |
| unsigned int i, nid = 0; |
| |
| printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_DEBUG "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| |
| for (i = 0; i < lmb.memory.cnt; ++i) { |
| start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; |
| end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); |
| |
| fake_numa_create_new_node(end_pfn, &nid); |
| add_active_range(nid, start_pfn, end_pfn); |
| node_set_online(nid); |
| } |
| } |
| |
| void __init dump_numa_cpu_topology(void) |
| { |
| unsigned int node; |
| unsigned int cpu, count; |
| |
| if (min_common_depth == -1 || !numa_enabled) |
| return; |
| |
| for_each_online_node(node) { |
| printk(KERN_DEBUG "Node %d CPUs:", node); |
| |
| count = 0; |
| /* |
| * If we used a CPU iterator here we would miss printing |
| * the holes in the cpumap. |
| */ |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { |
| if (count == 0) |
| printk(" %u", cpu); |
| ++count; |
| } else { |
| if (count > 1) |
| printk("-%u", cpu - 1); |
| count = 0; |
| } |
| } |
| |
| if (count > 1) |
| printk("-%u", NR_CPUS - 1); |
| printk("\n"); |
| } |
| } |
| |
| static void __init dump_numa_memory_topology(void) |
| { |
| unsigned int node; |
| unsigned int count; |
| |
| if (min_common_depth == -1 || !numa_enabled) |
| return; |
| |
| for_each_online_node(node) { |
| unsigned long i; |
| |
| printk(KERN_DEBUG "Node %d Memory:", node); |
| |
| count = 0; |
| |
| for (i = 0; i < lmb_end_of_DRAM(); |
| i += (1 << SECTION_SIZE_BITS)) { |
| if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { |
| if (count == 0) |
| printk(" 0x%lx", i); |
| ++count; |
| } else { |
| if (count > 0) |
| printk("-0x%lx", i); |
| count = 0; |
| } |
| } |
| |
| if (count > 0) |
| printk("-0x%lx", i); |
| printk("\n"); |
| } |
| } |
| |
| /* |
| * Allocate some memory, satisfying the lmb or bootmem allocator where |
| * required. nid is the preferred node and end is the physical address of |
| * the highest address in the node. |
| * |
| * Returns the physical address of the memory. |
| */ |
| static void __init *careful_allocation(int nid, unsigned long size, |
| unsigned long align, |
| unsigned long end_pfn) |
| { |
| int new_nid; |
| unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT); |
| |
| /* retry over all memory */ |
| if (!ret) |
| ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM()); |
| |
| if (!ret) |
| panic("numa.c: cannot allocate %lu bytes on node %d", |
| size, nid); |
| |
| /* |
| * If the memory came from a previously allocated node, we must |
| * retry with the bootmem allocator. |
| */ |
| new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT); |
| if (new_nid < nid) { |
| ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid), |
| size, align, 0); |
| |
| if (!ret) |
| panic("numa.c: cannot allocate %lu bytes on node %d", |
| size, new_nid); |
| |
| ret = __pa(ret); |
| |
| dbg("alloc_bootmem %lx %lx\n", ret, size); |
| } |
| |
| return (void *)ret; |
| } |
| |
| static struct notifier_block __cpuinitdata ppc64_numa_nb = { |
| .notifier_call = cpu_numa_callback, |
| .priority = 1 /* Must run before sched domains notifier. */ |
| }; |
| |
| void __init do_init_bootmem(void) |
| { |
| int nid; |
| unsigned int i; |
| |
| min_low_pfn = 0; |
| max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| max_pfn = max_low_pfn; |
| |
| if (parse_numa_properties()) |
| setup_nonnuma(); |
| else |
| dump_numa_memory_topology(); |
| |
| register_cpu_notifier(&ppc64_numa_nb); |
| cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, |
| (void *)(unsigned long)boot_cpuid); |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| unsigned long bootmem_paddr; |
| unsigned long bootmap_pages; |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| |
| /* Allocate the node structure node local if possible */ |
| NODE_DATA(nid) = careful_allocation(nid, |
| sizeof(struct pglist_data), |
| SMP_CACHE_BYTES, end_pfn); |
| NODE_DATA(nid) = __va(NODE_DATA(nid)); |
| memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); |
| |
| dbg("node %d\n", nid); |
| dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); |
| |
| NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; |
| NODE_DATA(nid)->node_start_pfn = start_pfn; |
| NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; |
| |
| if (NODE_DATA(nid)->node_spanned_pages == 0) |
| continue; |
| |
| dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); |
| dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); |
| |
| bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); |
| bootmem_paddr = (unsigned long)careful_allocation(nid, |
| bootmap_pages << PAGE_SHIFT, |
| PAGE_SIZE, end_pfn); |
| memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT); |
| |
| dbg("bootmap_paddr = %lx\n", bootmem_paddr); |
| |
| init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, |
| start_pfn, end_pfn); |
| |
| free_bootmem_with_active_regions(nid, end_pfn); |
| |
| /* Mark reserved regions on this node */ |
| for (i = 0; i < lmb.reserved.cnt; i++) { |
| unsigned long physbase = lmb.reserved.region[i].base; |
| unsigned long size = lmb.reserved.region[i].size; |
| unsigned long start_paddr = start_pfn << PAGE_SHIFT; |
| unsigned long end_paddr = end_pfn << PAGE_SHIFT; |
| |
| if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid && |
| early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid) |
| continue; |
| |
| if (physbase < end_paddr && |
| (physbase+size) > start_paddr) { |
| /* overlaps */ |
| if (physbase < start_paddr) { |
| size -= start_paddr - physbase; |
| physbase = start_paddr; |
| } |
| |
| if (size > end_paddr - physbase) |
| size = end_paddr - physbase; |
| |
| dbg("reserve_bootmem %lx %lx\n", physbase, |
| size); |
| reserve_bootmem_node(NODE_DATA(nid), physbase, |
| size, BOOTMEM_DEFAULT); |
| } |
| } |
| |
| sparse_memory_present_with_active_regions(nid); |
| } |
| } |
| |
| void __init paging_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| static int __init early_numa(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (strstr(p, "off")) |
| numa_enabled = 0; |
| |
| if (strstr(p, "debug")) |
| numa_debug = 1; |
| |
| p = strstr(p, "fake="); |
| if (p) |
| cmdline = p + strlen("fake="); |
| |
| return 0; |
| } |
| early_param("numa", early_numa); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Find the node associated with a hot added memory section. Section |
| * corresponds to a SPARSEMEM section, not an LMB. It is assumed that |
| * sections are fully contained within a single LMB. |
| */ |
| int hot_add_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory = NULL; |
| nodemask_t nodes; |
| int default_nid = any_online_node(NODE_MASK_ALL); |
| int nid; |
| |
| if (!numa_enabled || (min_common_depth < 0)) |
| return default_nid; |
| |
| while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { |
| unsigned long start, size; |
| int ranges; |
| const unsigned int *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| ha_new_range: |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| nid = of_node_to_nid_single(memory); |
| |
| /* Domains not present at boot default to 0 */ |
| if (nid < 0 || !node_online(nid)) |
| nid = default_nid; |
| |
| if ((scn_addr >= start) && (scn_addr < (start + size))) { |
| of_node_put(memory); |
| goto got_nid; |
| } |
| |
| if (--ranges) /* process all ranges in cell */ |
| goto ha_new_range; |
| } |
| BUG(); /* section address should be found above */ |
| return 0; |
| |
| /* Temporary code to ensure that returned node is not empty */ |
| got_nid: |
| nodes_setall(nodes); |
| while (NODE_DATA(nid)->node_spanned_pages == 0) { |
| node_clear(nid, nodes); |
| nid = any_online_node(nodes); |
| } |
| return nid; |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |