| #ifndef _X86_SPINLOCK_H_ |
| #define _X86_SPINLOCK_H_ |
| |
| #include <asm/atomic.h> |
| #include <asm/rwlock.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <linux/compiler.h> |
| |
| /* |
| * Your basic SMP spinlocks, allowing only a single CPU anywhere |
| * |
| * Simple spin lock operations. There are two variants, one clears IRQ's |
| * on the local processor, one does not. |
| * |
| * These are fair FIFO ticket locks, which are currently limited to 256 |
| * CPUs. |
| * |
| * (the type definitions are in asm/spinlock_types.h) |
| */ |
| |
| #ifdef CONFIG_X86_32 |
| typedef char _slock_t; |
| # define LOCK_INS_DEC "decb" |
| # define LOCK_INS_XCH "xchgb" |
| # define LOCK_INS_MOV "movb" |
| # define LOCK_INS_CMP "cmpb" |
| # define LOCK_PTR_REG "a" |
| #else |
| typedef int _slock_t; |
| # define LOCK_INS_DEC "decl" |
| # define LOCK_INS_XCH "xchgl" |
| # define LOCK_INS_MOV "movl" |
| # define LOCK_INS_CMP "cmpl" |
| # define LOCK_PTR_REG "D" |
| #endif |
| |
| #if defined(CONFIG_X86_32) && \ |
| (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE)) |
| /* |
| * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock |
| * (PPro errata 66, 92) |
| */ |
| # define UNLOCK_LOCK_PREFIX LOCK_PREFIX |
| #else |
| # define UNLOCK_LOCK_PREFIX |
| #endif |
| |
| /* |
| * Ticket locks are conceptually two parts, one indicating the current head of |
| * the queue, and the other indicating the current tail. The lock is acquired |
| * by atomically noting the tail and incrementing it by one (thus adding |
| * ourself to the queue and noting our position), then waiting until the head |
| * becomes equal to the the initial value of the tail. |
| * |
| * We use an xadd covering *both* parts of the lock, to increment the tail and |
| * also load the position of the head, which takes care of memory ordering |
| * issues and should be optimal for the uncontended case. Note the tail must be |
| * in the high part, because a wide xadd increment of the low part would carry |
| * up and contaminate the high part. |
| * |
| * With fewer than 2^8 possible CPUs, we can use x86's partial registers to |
| * save some instructions and make the code more elegant. There really isn't |
| * much between them in performance though, especially as locks are out of line. |
| */ |
| #if (NR_CPUS < 256) |
| static inline int __raw_spin_is_locked(raw_spinlock_t *lock) |
| { |
| int tmp = *(volatile signed int *)(&(lock)->slock); |
| |
| return (((tmp >> 8) & 0xff) != (tmp & 0xff)); |
| } |
| |
| static inline int __raw_spin_is_contended(raw_spinlock_t *lock) |
| { |
| int tmp = *(volatile signed int *)(&(lock)->slock); |
| |
| return (((tmp >> 8) & 0xff) - (tmp & 0xff)) > 1; |
| } |
| |
| static inline void __raw_spin_lock(raw_spinlock_t *lock) |
| { |
| short inc = 0x0100; |
| |
| __asm__ __volatile__ ( |
| LOCK_PREFIX "xaddw %w0, %1\n" |
| "1:\t" |
| "cmpb %h0, %b0\n\t" |
| "je 2f\n\t" |
| "rep ; nop\n\t" |
| "movb %1, %b0\n\t" |
| /* don't need lfence here, because loads are in-order */ |
| "jmp 1b\n" |
| "2:" |
| :"+Q" (inc), "+m" (lock->slock) |
| : |
| :"memory", "cc"); |
| } |
| |
| #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock) |
| |
| static inline int __raw_spin_trylock(raw_spinlock_t *lock) |
| { |
| int tmp; |
| short new; |
| |
| asm volatile( |
| "movw %2,%w0\n\t" |
| "cmpb %h0,%b0\n\t" |
| "jne 1f\n\t" |
| "movw %w0,%w1\n\t" |
| "incb %h1\n\t" |
| "lock ; cmpxchgw %w1,%2\n\t" |
| "1:" |
| "sete %b1\n\t" |
| "movzbl %b1,%0\n\t" |
| :"=&a" (tmp), "=Q" (new), "+m" (lock->slock) |
| : |
| : "memory", "cc"); |
| |
| return tmp; |
| } |
| |
| static inline void __raw_spin_unlock(raw_spinlock_t *lock) |
| { |
| __asm__ __volatile__( |
| UNLOCK_LOCK_PREFIX "incb %0" |
| :"+m" (lock->slock) |
| : |
| :"memory", "cc"); |
| } |
| #else |
| static inline int __raw_spin_is_locked(raw_spinlock_t *lock) |
| { |
| int tmp = *(volatile signed int *)(&(lock)->slock); |
| |
| return (((tmp >> 16) & 0xffff) != (tmp & 0xffff)); |
| } |
| |
| static inline int __raw_spin_is_contended(raw_spinlock_t *lock) |
| { |
| int tmp = *(volatile signed int *)(&(lock)->slock); |
| |
| return (((tmp >> 16) & 0xffff) - (tmp & 0xffff)) > 1; |
| } |
| |
| static inline void __raw_spin_lock(raw_spinlock_t *lock) |
| { |
| int inc = 0x00010000; |
| int tmp; |
| |
| __asm__ __volatile__ ( |
| "lock ; xaddl %0, %1\n" |
| "movzwl %w0, %2\n\t" |
| "shrl $16, %0\n\t" |
| "1:\t" |
| "cmpl %0, %2\n\t" |
| "je 2f\n\t" |
| "rep ; nop\n\t" |
| "movzwl %1, %2\n\t" |
| /* don't need lfence here, because loads are in-order */ |
| "jmp 1b\n" |
| "2:" |
| :"+Q" (inc), "+m" (lock->slock), "=r" (tmp) |
| : |
| :"memory", "cc"); |
| } |
| |
| #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock) |
| |
| static inline int __raw_spin_trylock(raw_spinlock_t *lock) |
| { |
| int tmp; |
| int new; |
| |
| asm volatile( |
| "movl %2,%0\n\t" |
| "movl %0,%1\n\t" |
| "roll $16, %0\n\t" |
| "cmpl %0,%1\n\t" |
| "jne 1f\n\t" |
| "addl $0x00010000, %1\n\t" |
| "lock ; cmpxchgl %1,%2\n\t" |
| "1:" |
| "sete %b1\n\t" |
| "movzbl %b1,%0\n\t" |
| :"=&a" (tmp), "=r" (new), "+m" (lock->slock) |
| : |
| : "memory", "cc"); |
| |
| return tmp; |
| } |
| |
| static inline void __raw_spin_unlock(raw_spinlock_t *lock) |
| { |
| __asm__ __volatile__( |
| UNLOCK_LOCK_PREFIX "incw %0" |
| :"+m" (lock->slock) |
| : |
| :"memory", "cc"); |
| } |
| #endif |
| |
| static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock) |
| { |
| while (__raw_spin_is_locked(lock)) |
| cpu_relax(); |
| } |
| |
| /* |
| * Read-write spinlocks, allowing multiple readers |
| * but only one writer. |
| * |
| * NOTE! it is quite common to have readers in interrupts |
| * but no interrupt writers. For those circumstances we |
| * can "mix" irq-safe locks - any writer needs to get a |
| * irq-safe write-lock, but readers can get non-irqsafe |
| * read-locks. |
| * |
| * On x86, we implement read-write locks as a 32-bit counter |
| * with the high bit (sign) being the "contended" bit. |
| */ |
| |
| /** |
| * read_can_lock - would read_trylock() succeed? |
| * @lock: the rwlock in question. |
| */ |
| static inline int __raw_read_can_lock(raw_rwlock_t *lock) |
| { |
| return (int)(lock)->lock > 0; |
| } |
| |
| /** |
| * write_can_lock - would write_trylock() succeed? |
| * @lock: the rwlock in question. |
| */ |
| static inline int __raw_write_can_lock(raw_rwlock_t *lock) |
| { |
| return (lock)->lock == RW_LOCK_BIAS; |
| } |
| |
| static inline void __raw_read_lock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t" |
| "jns 1f\n" |
| "call __read_lock_failed\n\t" |
| "1:\n" |
| ::LOCK_PTR_REG (rw) : "memory"); |
| } |
| |
| static inline void __raw_write_lock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t" |
| "jz 1f\n" |
| "call __write_lock_failed\n\t" |
| "1:\n" |
| ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory"); |
| } |
| |
| static inline int __raw_read_trylock(raw_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)lock; |
| |
| atomic_dec(count); |
| if (atomic_read(count) >= 0) |
| return 1; |
| atomic_inc(count); |
| return 0; |
| } |
| |
| static inline int __raw_write_trylock(raw_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)lock; |
| |
| if (atomic_sub_and_test(RW_LOCK_BIAS, count)) |
| return 1; |
| atomic_add(RW_LOCK_BIAS, count); |
| return 0; |
| } |
| |
| static inline void __raw_read_unlock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory"); |
| } |
| |
| static inline void __raw_write_unlock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX "addl %1, %0" |
| : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory"); |
| } |
| |
| #define _raw_spin_relax(lock) cpu_relax() |
| #define _raw_read_relax(lock) cpu_relax() |
| #define _raw_write_relax(lock) cpu_relax() |
| |
| #endif |