| /* |
| * WUSB Wire Adapter |
| * Data transfer and URB enqueing |
| * |
| * Copyright (C) 2005-2006 Intel Corporation |
| * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| * |
| * |
| * How transfers work: get a buffer, break it up in segments (segment |
| * size is a multiple of the maxpacket size). For each segment issue a |
| * segment request (struct wa_xfer_*), then send the data buffer if |
| * out or nothing if in (all over the DTO endpoint). |
| * |
| * For each submitted segment request, a notification will come over |
| * the NEP endpoint and a transfer result (struct xfer_result) will |
| * arrive in the DTI URB. Read it, get the xfer ID, see if there is |
| * data coming (inbound transfer), schedule a read and handle it. |
| * |
| * Sounds simple, it is a pain to implement. |
| * |
| * |
| * ENTRY POINTS |
| * |
| * FIXME |
| * |
| * LIFE CYCLE / STATE DIAGRAM |
| * |
| * FIXME |
| * |
| * THIS CODE IS DISGUSTING |
| * |
| * Warned you are; it's my second try and still not happy with it. |
| * |
| * NOTES: |
| * |
| * - No iso |
| * |
| * - Supports DMA xfers, control, bulk and maybe interrupt |
| * |
| * - Does not recycle unused rpipes |
| * |
| * An rpipe is assigned to an endpoint the first time it is used, |
| * and then it's there, assigned, until the endpoint is disabled |
| * (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the |
| * rpipe to the endpoint is done under the wa->rpipe_sem semaphore |
| * (should be a mutex). |
| * |
| * Two methods it could be done: |
| * |
| * (a) set up a timer every time an rpipe's use count drops to 1 |
| * (which means unused) or when a transfer ends. Reset the |
| * timer when a xfer is queued. If the timer expires, release |
| * the rpipe [see rpipe_ep_disable()]. |
| * |
| * (b) when looking for free rpipes to attach [rpipe_get_by_ep()], |
| * when none are found go over the list, check their endpoint |
| * and their activity record (if no last-xfer-done-ts in the |
| * last x seconds) take it |
| * |
| * However, due to the fact that we have a set of limited |
| * resources (max-segments-at-the-same-time per xfer, |
| * xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end |
| * we are going to have to rebuild all this based on an scheduler, |
| * to where we have a list of transactions to do and based on the |
| * availability of the different required components (blocks, |
| * rpipes, segment slots, etc), we go scheduling them. Painful. |
| */ |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/hash.h> |
| |
| #include "wa-hc.h" |
| #include "wusbhc.h" |
| |
| enum { |
| WA_SEGS_MAX = 255, |
| }; |
| |
| enum wa_seg_status { |
| WA_SEG_NOTREADY, |
| WA_SEG_READY, |
| WA_SEG_DELAYED, |
| WA_SEG_SUBMITTED, |
| WA_SEG_PENDING, |
| WA_SEG_DTI_PENDING, |
| WA_SEG_DONE, |
| WA_SEG_ERROR, |
| WA_SEG_ABORTED, |
| }; |
| |
| static void wa_xfer_delayed_run(struct wa_rpipe *); |
| |
| /* |
| * Life cycle governed by 'struct urb' (the refcount of the struct is |
| * that of the 'struct urb' and usb_free_urb() would free the whole |
| * struct). |
| */ |
| struct wa_seg { |
| struct urb urb; |
| struct urb *dto_urb; /* for data output? */ |
| struct list_head list_node; /* for rpipe->req_list */ |
| struct wa_xfer *xfer; /* out xfer */ |
| u8 index; /* which segment we are */ |
| enum wa_seg_status status; |
| ssize_t result; /* bytes xfered or error */ |
| struct wa_xfer_hdr xfer_hdr; |
| u8 xfer_extra[]; /* xtra space for xfer_hdr_ctl */ |
| }; |
| |
| static void wa_seg_init(struct wa_seg *seg) |
| { |
| /* usb_init_urb() repeats a lot of work, so we do it here */ |
| kref_init(&seg->urb.kref); |
| } |
| |
| /* |
| * Protected by xfer->lock |
| * |
| */ |
| struct wa_xfer { |
| struct kref refcnt; |
| struct list_head list_node; |
| spinlock_t lock; |
| u32 id; |
| |
| struct wahc *wa; /* Wire adapter we are plugged to */ |
| struct usb_host_endpoint *ep; |
| struct urb *urb; /* URB we are transferring for */ |
| struct wa_seg **seg; /* transfer segments */ |
| u8 segs, segs_submitted, segs_done; |
| unsigned is_inbound:1; |
| unsigned is_dma:1; |
| size_t seg_size; |
| int result; |
| |
| gfp_t gfp; /* allocation mask */ |
| |
| struct wusb_dev *wusb_dev; /* for activity timestamps */ |
| }; |
| |
| static inline void wa_xfer_init(struct wa_xfer *xfer) |
| { |
| kref_init(&xfer->refcnt); |
| INIT_LIST_HEAD(&xfer->list_node); |
| spin_lock_init(&xfer->lock); |
| } |
| |
| /* |
| * Destroy a transfer structure |
| * |
| * Note that the xfer->seg[index] thingies follow the URB life cycle, |
| * so we need to put them, not free them. |
| */ |
| static void wa_xfer_destroy(struct kref *_xfer) |
| { |
| struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt); |
| if (xfer->seg) { |
| unsigned cnt; |
| for (cnt = 0; cnt < xfer->segs; cnt++) { |
| if (xfer->is_inbound) |
| usb_put_urb(xfer->seg[cnt]->dto_urb); |
| usb_put_urb(&xfer->seg[cnt]->urb); |
| } |
| } |
| kfree(xfer); |
| } |
| |
| static void wa_xfer_get(struct wa_xfer *xfer) |
| { |
| kref_get(&xfer->refcnt); |
| } |
| |
| static void wa_xfer_put(struct wa_xfer *xfer) |
| { |
| kref_put(&xfer->refcnt, wa_xfer_destroy); |
| } |
| |
| /* |
| * xfer is referenced |
| * |
| * xfer->lock has to be unlocked |
| * |
| * We take xfer->lock for setting the result; this is a barrier |
| * against drivers/usb/core/hcd.c:unlink1() being called after we call |
| * usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a |
| * reference to the transfer. |
| */ |
| static void wa_xfer_giveback(struct wa_xfer *xfer) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags); |
| list_del_init(&xfer->list_node); |
| spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags); |
| /* FIXME: segmentation broken -- kills DWA */ |
| wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result); |
| wa_put(xfer->wa); |
| wa_xfer_put(xfer); |
| } |
| |
| /* |
| * xfer is referenced |
| * |
| * xfer->lock has to be unlocked |
| */ |
| static void wa_xfer_completion(struct wa_xfer *xfer) |
| { |
| if (xfer->wusb_dev) |
| wusb_dev_put(xfer->wusb_dev); |
| rpipe_put(xfer->ep->hcpriv); |
| wa_xfer_giveback(xfer); |
| } |
| |
| /* |
| * If transfer is done, wrap it up and return true |
| * |
| * xfer->lock has to be locked |
| */ |
| static unsigned __wa_xfer_is_done(struct wa_xfer *xfer) |
| { |
| struct device *dev = &xfer->wa->usb_iface->dev; |
| unsigned result, cnt; |
| struct wa_seg *seg; |
| struct urb *urb = xfer->urb; |
| unsigned found_short = 0; |
| |
| result = xfer->segs_done == xfer->segs_submitted; |
| if (result == 0) |
| goto out; |
| urb->actual_length = 0; |
| for (cnt = 0; cnt < xfer->segs; cnt++) { |
| seg = xfer->seg[cnt]; |
| switch (seg->status) { |
| case WA_SEG_DONE: |
| if (found_short && seg->result > 0) { |
| dev_dbg(dev, "xfer %p#%u: bad short segments (%zu)\n", |
| xfer, cnt, seg->result); |
| urb->status = -EINVAL; |
| goto out; |
| } |
| urb->actual_length += seg->result; |
| if (seg->result < xfer->seg_size |
| && cnt != xfer->segs-1) |
| found_short = 1; |
| dev_dbg(dev, "xfer %p#%u: DONE short %d " |
| "result %zu urb->actual_length %d\n", |
| xfer, seg->index, found_short, seg->result, |
| urb->actual_length); |
| break; |
| case WA_SEG_ERROR: |
| xfer->result = seg->result; |
| dev_dbg(dev, "xfer %p#%u: ERROR result %zu\n", |
| xfer, seg->index, seg->result); |
| goto out; |
| case WA_SEG_ABORTED: |
| dev_dbg(dev, "xfer %p#%u ABORTED: result %d\n", |
| xfer, seg->index, urb->status); |
| xfer->result = urb->status; |
| goto out; |
| default: |
| dev_warn(dev, "xfer %p#%u: is_done bad state %d\n", |
| xfer, cnt, seg->status); |
| xfer->result = -EINVAL; |
| goto out; |
| } |
| } |
| xfer->result = 0; |
| out: |
| return result; |
| } |
| |
| /* |
| * Initialize a transfer's ID |
| * |
| * We need to use a sequential number; if we use the pointer or the |
| * hash of the pointer, it can repeat over sequential transfers and |
| * then it will confuse the HWA....wonder why in hell they put a 32 |
| * bit handle in there then. |
| */ |
| static void wa_xfer_id_init(struct wa_xfer *xfer) |
| { |
| xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count); |
| } |
| |
| /* |
| * Return the xfer's ID associated with xfer |
| * |
| * Need to generate a |
| */ |
| static u32 wa_xfer_id(struct wa_xfer *xfer) |
| { |
| return xfer->id; |
| } |
| |
| /* |
| * Search for a transfer list ID on the HCD's URB list |
| * |
| * For 32 bit architectures, we use the pointer itself; for 64 bits, a |
| * 32-bit hash of the pointer. |
| * |
| * @returns NULL if not found. |
| */ |
| static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id) |
| { |
| unsigned long flags; |
| struct wa_xfer *xfer_itr; |
| spin_lock_irqsave(&wa->xfer_list_lock, flags); |
| list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) { |
| if (id == xfer_itr->id) { |
| wa_xfer_get(xfer_itr); |
| goto out; |
| } |
| } |
| xfer_itr = NULL; |
| out: |
| spin_unlock_irqrestore(&wa->xfer_list_lock, flags); |
| return xfer_itr; |
| } |
| |
| struct wa_xfer_abort_buffer { |
| struct urb urb; |
| struct wa_xfer_abort cmd; |
| }; |
| |
| static void __wa_xfer_abort_cb(struct urb *urb) |
| { |
| struct wa_xfer_abort_buffer *b = urb->context; |
| usb_put_urb(&b->urb); |
| } |
| |
| /* |
| * Aborts an ongoing transaction |
| * |
| * Assumes the transfer is referenced and locked and in a submitted |
| * state (mainly that there is an endpoint/rpipe assigned). |
| * |
| * The callback (see above) does nothing but freeing up the data by |
| * putting the URB. Because the URB is allocated at the head of the |
| * struct, the whole space we allocated is kfreed. |
| * |
| * We'll get an 'aborted transaction' xfer result on DTI, that'll |
| * politely ignore because at this point the transaction has been |
| * marked as aborted already. |
| */ |
| static void __wa_xfer_abort(struct wa_xfer *xfer) |
| { |
| int result; |
| struct device *dev = &xfer->wa->usb_iface->dev; |
| struct wa_xfer_abort_buffer *b; |
| struct wa_rpipe *rpipe = xfer->ep->hcpriv; |
| |
| b = kmalloc(sizeof(*b), GFP_ATOMIC); |
| if (b == NULL) |
| goto error_kmalloc; |
| b->cmd.bLength = sizeof(b->cmd); |
| b->cmd.bRequestType = WA_XFER_ABORT; |
| b->cmd.wRPipe = rpipe->descr.wRPipeIndex; |
| b->cmd.dwTransferID = wa_xfer_id(xfer); |
| |
| usb_init_urb(&b->urb); |
| usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev, |
| usb_sndbulkpipe(xfer->wa->usb_dev, |
| xfer->wa->dto_epd->bEndpointAddress), |
| &b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b); |
| result = usb_submit_urb(&b->urb, GFP_ATOMIC); |
| if (result < 0) |
| goto error_submit; |
| return; /* callback frees! */ |
| |
| |
| error_submit: |
| if (printk_ratelimit()) |
| dev_err(dev, "xfer %p: Can't submit abort request: %d\n", |
| xfer, result); |
| kfree(b); |
| error_kmalloc: |
| return; |
| |
| } |
| |
| /* |
| * |
| * @returns < 0 on error, transfer segment request size if ok |
| */ |
| static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer, |
| enum wa_xfer_type *pxfer_type) |
| { |
| ssize_t result; |
| struct device *dev = &xfer->wa->usb_iface->dev; |
| size_t maxpktsize; |
| struct urb *urb = xfer->urb; |
| struct wa_rpipe *rpipe = xfer->ep->hcpriv; |
| |
| switch (rpipe->descr.bmAttribute & 0x3) { |
| case USB_ENDPOINT_XFER_CONTROL: |
| *pxfer_type = WA_XFER_TYPE_CTL; |
| result = sizeof(struct wa_xfer_ctl); |
| break; |
| case USB_ENDPOINT_XFER_INT: |
| case USB_ENDPOINT_XFER_BULK: |
| *pxfer_type = WA_XFER_TYPE_BI; |
| result = sizeof(struct wa_xfer_bi); |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| dev_err(dev, "FIXME: ISOC not implemented\n"); |
| result = -ENOSYS; |
| goto error; |
| default: |
| /* never happens */ |
| BUG(); |
| result = -EINVAL; /* shut gcc up */ |
| }; |
| xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0; |
| xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0; |
| xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks) |
| * 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1); |
| /* Compute the segment size and make sure it is a multiple of |
| * the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of |
| * a check (FIXME) */ |
| maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize); |
| if (xfer->seg_size < maxpktsize) { |
| dev_err(dev, "HW BUG? seg_size %zu smaller than maxpktsize " |
| "%zu\n", xfer->seg_size, maxpktsize); |
| result = -EINVAL; |
| goto error; |
| } |
| xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize; |
| xfer->segs = (urb->transfer_buffer_length + xfer->seg_size - 1) |
| / xfer->seg_size; |
| if (xfer->segs >= WA_SEGS_MAX) { |
| dev_err(dev, "BUG? ops, number of segments %d bigger than %d\n", |
| (int)(urb->transfer_buffer_length / xfer->seg_size), |
| WA_SEGS_MAX); |
| result = -EINVAL; |
| goto error; |
| } |
| if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL) |
| xfer->segs = 1; |
| error: |
| return result; |
| } |
| |
| /* Fill in the common request header and xfer-type specific data. */ |
| static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer, |
| struct wa_xfer_hdr *xfer_hdr0, |
| enum wa_xfer_type xfer_type, |
| size_t xfer_hdr_size) |
| { |
| struct wa_rpipe *rpipe = xfer->ep->hcpriv; |
| |
| xfer_hdr0 = &xfer->seg[0]->xfer_hdr; |
| xfer_hdr0->bLength = xfer_hdr_size; |
| xfer_hdr0->bRequestType = xfer_type; |
| xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex; |
| xfer_hdr0->dwTransferID = wa_xfer_id(xfer); |
| xfer_hdr0->bTransferSegment = 0; |
| switch (xfer_type) { |
| case WA_XFER_TYPE_CTL: { |
| struct wa_xfer_ctl *xfer_ctl = |
| container_of(xfer_hdr0, struct wa_xfer_ctl, hdr); |
| xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0; |
| memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet, |
| sizeof(xfer_ctl->baSetupData)); |
| break; |
| } |
| case WA_XFER_TYPE_BI: |
| break; |
| case WA_XFER_TYPE_ISO: |
| printk(KERN_ERR "FIXME: ISOC not implemented\n"); |
| default: |
| BUG(); |
| }; |
| } |
| |
| /* |
| * Callback for the OUT data phase of the segment request |
| * |
| * Check wa_seg_cb(); most comments also apply here because this |
| * function does almost the same thing and they work closely |
| * together. |
| * |
| * If the seg request has failed but this DTO phase has succeeded, |
| * wa_seg_cb() has already failed the segment and moved the |
| * status to WA_SEG_ERROR, so this will go through 'case 0' and |
| * effectively do nothing. |
| */ |
| static void wa_seg_dto_cb(struct urb *urb) |
| { |
| struct wa_seg *seg = urb->context; |
| struct wa_xfer *xfer = seg->xfer; |
| struct wahc *wa; |
| struct device *dev; |
| struct wa_rpipe *rpipe; |
| unsigned long flags; |
| unsigned rpipe_ready = 0; |
| u8 done = 0; |
| |
| switch (urb->status) { |
| case 0: |
| spin_lock_irqsave(&xfer->lock, flags); |
| wa = xfer->wa; |
| dev = &wa->usb_iface->dev; |
| dev_dbg(dev, "xfer %p#%u: data out done (%d bytes)\n", |
| xfer, seg->index, urb->actual_length); |
| if (seg->status < WA_SEG_PENDING) |
| seg->status = WA_SEG_PENDING; |
| seg->result = urb->actual_length; |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| break; |
| case -ECONNRESET: /* URB unlinked; no need to do anything */ |
| case -ENOENT: /* as it was done by the who unlinked us */ |
| break; |
| default: /* Other errors ... */ |
| spin_lock_irqsave(&xfer->lock, flags); |
| wa = xfer->wa; |
| dev = &wa->usb_iface->dev; |
| rpipe = xfer->ep->hcpriv; |
| dev_dbg(dev, "xfer %p#%u: data out error %d\n", |
| xfer, seg->index, urb->status); |
| if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS, |
| EDC_ERROR_TIMEFRAME)){ |
| dev_err(dev, "DTO: URB max acceptable errors " |
| "exceeded, resetting device\n"); |
| wa_reset_all(wa); |
| } |
| if (seg->status != WA_SEG_ERROR) { |
| seg->status = WA_SEG_ERROR; |
| seg->result = urb->status; |
| xfer->segs_done++; |
| __wa_xfer_abort(xfer); |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| done = __wa_xfer_is_done(xfer); |
| } |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| } |
| } |
| |
| /* |
| * Callback for the segment request |
| * |
| * If successful transition state (unless already transitioned or |
| * outbound transfer); otherwise, take a note of the error, mark this |
| * segment done and try completion. |
| * |
| * Note we don't access until we are sure that the transfer hasn't |
| * been cancelled (ECONNRESET, ENOENT), which could mean that |
| * seg->xfer could be already gone. |
| * |
| * We have to check before setting the status to WA_SEG_PENDING |
| * because sometimes the xfer result callback arrives before this |
| * callback (geeeeeeze), so it might happen that we are already in |
| * another state. As well, we don't set it if the transfer is inbound, |
| * as in that case, wa_seg_dto_cb will do it when the OUT data phase |
| * finishes. |
| */ |
| static void wa_seg_cb(struct urb *urb) |
| { |
| struct wa_seg *seg = urb->context; |
| struct wa_xfer *xfer = seg->xfer; |
| struct wahc *wa; |
| struct device *dev; |
| struct wa_rpipe *rpipe; |
| unsigned long flags; |
| unsigned rpipe_ready; |
| u8 done = 0; |
| |
| switch (urb->status) { |
| case 0: |
| spin_lock_irqsave(&xfer->lock, flags); |
| wa = xfer->wa; |
| dev = &wa->usb_iface->dev; |
| dev_dbg(dev, "xfer %p#%u: request done\n", xfer, seg->index); |
| if (xfer->is_inbound && seg->status < WA_SEG_PENDING) |
| seg->status = WA_SEG_PENDING; |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| break; |
| case -ECONNRESET: /* URB unlinked; no need to do anything */ |
| case -ENOENT: /* as it was done by the who unlinked us */ |
| break; |
| default: /* Other errors ... */ |
| spin_lock_irqsave(&xfer->lock, flags); |
| wa = xfer->wa; |
| dev = &wa->usb_iface->dev; |
| rpipe = xfer->ep->hcpriv; |
| if (printk_ratelimit()) |
| dev_err(dev, "xfer %p#%u: request error %d\n", |
| xfer, seg->index, urb->status); |
| if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS, |
| EDC_ERROR_TIMEFRAME)){ |
| dev_err(dev, "DTO: URB max acceptable errors " |
| "exceeded, resetting device\n"); |
| wa_reset_all(wa); |
| } |
| usb_unlink_urb(seg->dto_urb); |
| seg->status = WA_SEG_ERROR; |
| seg->result = urb->status; |
| xfer->segs_done++; |
| __wa_xfer_abort(xfer); |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| done = __wa_xfer_is_done(xfer); |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| } |
| } |
| |
| /* |
| * Allocate the segs array and initialize each of them |
| * |
| * The segments are freed by wa_xfer_destroy() when the xfer use count |
| * drops to zero; however, because each segment is given the same life |
| * cycle as the USB URB it contains, it is actually freed by |
| * usb_put_urb() on the contained USB URB (twisted, eh?). |
| */ |
| static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size) |
| { |
| int result, cnt; |
| size_t alloc_size = sizeof(*xfer->seg[0]) |
| - sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size; |
| struct usb_device *usb_dev = xfer->wa->usb_dev; |
| const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd; |
| struct wa_seg *seg; |
| size_t buf_itr, buf_size, buf_itr_size; |
| |
| result = -ENOMEM; |
| xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC); |
| if (xfer->seg == NULL) |
| goto error_segs_kzalloc; |
| buf_itr = 0; |
| buf_size = xfer->urb->transfer_buffer_length; |
| for (cnt = 0; cnt < xfer->segs; cnt++) { |
| seg = xfer->seg[cnt] = kzalloc(alloc_size, GFP_ATOMIC); |
| if (seg == NULL) |
| goto error_seg_kzalloc; |
| wa_seg_init(seg); |
| seg->xfer = xfer; |
| seg->index = cnt; |
| usb_fill_bulk_urb(&seg->urb, usb_dev, |
| usb_sndbulkpipe(usb_dev, |
| dto_epd->bEndpointAddress), |
| &seg->xfer_hdr, xfer_hdr_size, |
| wa_seg_cb, seg); |
| buf_itr_size = buf_size > xfer->seg_size ? |
| xfer->seg_size : buf_size; |
| if (xfer->is_inbound == 0 && buf_size > 0) { |
| seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC); |
| if (seg->dto_urb == NULL) |
| goto error_dto_alloc; |
| usb_fill_bulk_urb( |
| seg->dto_urb, usb_dev, |
| usb_sndbulkpipe(usb_dev, |
| dto_epd->bEndpointAddress), |
| NULL, 0, wa_seg_dto_cb, seg); |
| if (xfer->is_dma) { |
| seg->dto_urb->transfer_dma = |
| xfer->urb->transfer_dma + buf_itr; |
| seg->dto_urb->transfer_flags |= |
| URB_NO_TRANSFER_DMA_MAP; |
| } else |
| seg->dto_urb->transfer_buffer = |
| xfer->urb->transfer_buffer + buf_itr; |
| seg->dto_urb->transfer_buffer_length = buf_itr_size; |
| } |
| seg->status = WA_SEG_READY; |
| buf_itr += buf_itr_size; |
| buf_size -= buf_itr_size; |
| } |
| return 0; |
| |
| error_dto_alloc: |
| kfree(xfer->seg[cnt]); |
| cnt--; |
| error_seg_kzalloc: |
| /* use the fact that cnt is left at were it failed */ |
| for (; cnt > 0; cnt--) { |
| if (xfer->is_inbound == 0) |
| kfree(xfer->seg[cnt]->dto_urb); |
| kfree(xfer->seg[cnt]); |
| } |
| error_segs_kzalloc: |
| return result; |
| } |
| |
| /* |
| * Allocates all the stuff needed to submit a transfer |
| * |
| * Breaks the whole data buffer in a list of segments, each one has a |
| * structure allocated to it and linked in xfer->seg[index] |
| * |
| * FIXME: merge setup_segs() and the last part of this function, no |
| * need to do two for loops when we could run everything in a |
| * single one |
| */ |
| static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb) |
| { |
| int result; |
| struct device *dev = &xfer->wa->usb_iface->dev; |
| enum wa_xfer_type xfer_type = 0; /* shut up GCC */ |
| size_t xfer_hdr_size, cnt, transfer_size; |
| struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr; |
| |
| result = __wa_xfer_setup_sizes(xfer, &xfer_type); |
| if (result < 0) |
| goto error_setup_sizes; |
| xfer_hdr_size = result; |
| result = __wa_xfer_setup_segs(xfer, xfer_hdr_size); |
| if (result < 0) { |
| dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n", |
| xfer, xfer->segs, result); |
| goto error_setup_segs; |
| } |
| /* Fill the first header */ |
| xfer_hdr0 = &xfer->seg[0]->xfer_hdr; |
| wa_xfer_id_init(xfer); |
| __wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size); |
| |
| /* Fill remainig headers */ |
| xfer_hdr = xfer_hdr0; |
| transfer_size = urb->transfer_buffer_length; |
| xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ? |
| xfer->seg_size : transfer_size; |
| transfer_size -= xfer->seg_size; |
| for (cnt = 1; cnt < xfer->segs; cnt++) { |
| xfer_hdr = &xfer->seg[cnt]->xfer_hdr; |
| memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size); |
| xfer_hdr->bTransferSegment = cnt; |
| xfer_hdr->dwTransferLength = transfer_size > xfer->seg_size ? |
| cpu_to_le32(xfer->seg_size) |
| : cpu_to_le32(transfer_size); |
| xfer->seg[cnt]->status = WA_SEG_READY; |
| transfer_size -= xfer->seg_size; |
| } |
| xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */ |
| result = 0; |
| error_setup_segs: |
| error_setup_sizes: |
| return result; |
| } |
| |
| /* |
| * |
| * |
| * rpipe->seg_lock is held! |
| */ |
| static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer, |
| struct wa_seg *seg) |
| { |
| int result; |
| result = usb_submit_urb(&seg->urb, GFP_ATOMIC); |
| if (result < 0) { |
| printk(KERN_ERR "xfer %p#%u: REQ submit failed: %d\n", |
| xfer, seg->index, result); |
| goto error_seg_submit; |
| } |
| if (seg->dto_urb) { |
| result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC); |
| if (result < 0) { |
| printk(KERN_ERR "xfer %p#%u: DTO submit failed: %d\n", |
| xfer, seg->index, result); |
| goto error_dto_submit; |
| } |
| } |
| seg->status = WA_SEG_SUBMITTED; |
| rpipe_avail_dec(rpipe); |
| return 0; |
| |
| error_dto_submit: |
| usb_unlink_urb(&seg->urb); |
| error_seg_submit: |
| seg->status = WA_SEG_ERROR; |
| seg->result = result; |
| return result; |
| } |
| |
| /* |
| * Execute more queued request segments until the maximum concurrent allowed |
| * |
| * The ugly unlock/lock sequence on the error path is needed as the |
| * xfer->lock normally nests the seg_lock and not viceversa. |
| * |
| */ |
| static void wa_xfer_delayed_run(struct wa_rpipe *rpipe) |
| { |
| int result; |
| struct device *dev = &rpipe->wa->usb_iface->dev; |
| struct wa_seg *seg; |
| struct wa_xfer *xfer; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rpipe->seg_lock, flags); |
| while (atomic_read(&rpipe->segs_available) > 0 |
| && !list_empty(&rpipe->seg_list)) { |
| seg = list_entry(rpipe->seg_list.next, struct wa_seg, |
| list_node); |
| list_del(&seg->list_node); |
| xfer = seg->xfer; |
| result = __wa_seg_submit(rpipe, xfer, seg); |
| dev_dbg(dev, "xfer %p#%u submitted from delayed [%d segments available] %d\n", |
| xfer, seg->index, atomic_read(&rpipe->segs_available), result); |
| if (unlikely(result < 0)) { |
| spin_unlock_irqrestore(&rpipe->seg_lock, flags); |
| spin_lock_irqsave(&xfer->lock, flags); |
| __wa_xfer_abort(xfer); |
| xfer->segs_done++; |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| spin_lock_irqsave(&rpipe->seg_lock, flags); |
| } |
| } |
| spin_unlock_irqrestore(&rpipe->seg_lock, flags); |
| } |
| |
| /* |
| * |
| * xfer->lock is taken |
| * |
| * On failure submitting we just stop submitting and return error; |
| * wa_urb_enqueue_b() will execute the completion path |
| */ |
| static int __wa_xfer_submit(struct wa_xfer *xfer) |
| { |
| int result; |
| struct wahc *wa = xfer->wa; |
| struct device *dev = &wa->usb_iface->dev; |
| unsigned cnt; |
| struct wa_seg *seg; |
| unsigned long flags; |
| struct wa_rpipe *rpipe = xfer->ep->hcpriv; |
| size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests); |
| u8 available; |
| u8 empty; |
| |
| spin_lock_irqsave(&wa->xfer_list_lock, flags); |
| list_add_tail(&xfer->list_node, &wa->xfer_list); |
| spin_unlock_irqrestore(&wa->xfer_list_lock, flags); |
| |
| BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests); |
| result = 0; |
| spin_lock_irqsave(&rpipe->seg_lock, flags); |
| for (cnt = 0; cnt < xfer->segs; cnt++) { |
| available = atomic_read(&rpipe->segs_available); |
| empty = list_empty(&rpipe->seg_list); |
| seg = xfer->seg[cnt]; |
| dev_dbg(dev, "xfer %p#%u: available %u empty %u (%s)\n", |
| xfer, cnt, available, empty, |
| available == 0 || !empty ? "delayed" : "submitted"); |
| if (available == 0 || !empty) { |
| dev_dbg(dev, "xfer %p#%u: delayed\n", xfer, cnt); |
| seg->status = WA_SEG_DELAYED; |
| list_add_tail(&seg->list_node, &rpipe->seg_list); |
| } else { |
| result = __wa_seg_submit(rpipe, xfer, seg); |
| if (result < 0) { |
| __wa_xfer_abort(xfer); |
| goto error_seg_submit; |
| } |
| } |
| xfer->segs_submitted++; |
| } |
| error_seg_submit: |
| spin_unlock_irqrestore(&rpipe->seg_lock, flags); |
| return result; |
| } |
| |
| /* |
| * Second part of a URB/transfer enqueuement |
| * |
| * Assumes this comes from wa_urb_enqueue() [maybe through |
| * wa_urb_enqueue_run()]. At this point: |
| * |
| * xfer->wa filled and refcounted |
| * xfer->ep filled with rpipe refcounted if |
| * delayed == 0 |
| * xfer->urb filled and refcounted (this is the case when called |
| * from wa_urb_enqueue() as we come from usb_submit_urb() |
| * and when called by wa_urb_enqueue_run(), as we took an |
| * extra ref dropped by _run() after we return). |
| * xfer->gfp filled |
| * |
| * If we fail at __wa_xfer_submit(), then we just check if we are done |
| * and if so, we run the completion procedure. However, if we are not |
| * yet done, we do nothing and wait for the completion handlers from |
| * the submitted URBs or from the xfer-result path to kick in. If xfer |
| * result never kicks in, the xfer will timeout from the USB code and |
| * dequeue() will be called. |
| */ |
| static void wa_urb_enqueue_b(struct wa_xfer *xfer) |
| { |
| int result; |
| unsigned long flags; |
| struct urb *urb = xfer->urb; |
| struct wahc *wa = xfer->wa; |
| struct wusbhc *wusbhc = wa->wusb; |
| struct wusb_dev *wusb_dev; |
| unsigned done; |
| |
| result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp); |
| if (result < 0) |
| goto error_rpipe_get; |
| result = -ENODEV; |
| /* FIXME: segmentation broken -- kills DWA */ |
| mutex_lock(&wusbhc->mutex); /* get a WUSB dev */ |
| if (urb->dev == NULL) { |
| mutex_unlock(&wusbhc->mutex); |
| goto error_dev_gone; |
| } |
| wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev); |
| if (wusb_dev == NULL) { |
| mutex_unlock(&wusbhc->mutex); |
| goto error_dev_gone; |
| } |
| mutex_unlock(&wusbhc->mutex); |
| |
| spin_lock_irqsave(&xfer->lock, flags); |
| xfer->wusb_dev = wusb_dev; |
| result = urb->status; |
| if (urb->status != -EINPROGRESS) |
| goto error_dequeued; |
| |
| result = __wa_xfer_setup(xfer, urb); |
| if (result < 0) |
| goto error_xfer_setup; |
| result = __wa_xfer_submit(xfer); |
| if (result < 0) |
| goto error_xfer_submit; |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| return; |
| |
| /* this is basically wa_xfer_completion() broken up wa_xfer_giveback() |
| * does a wa_xfer_put() that will call wa_xfer_destroy() and clean |
| * upundo setup(). |
| */ |
| error_xfer_setup: |
| error_dequeued: |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| /* FIXME: segmentation broken, kills DWA */ |
| if (wusb_dev) |
| wusb_dev_put(wusb_dev); |
| error_dev_gone: |
| rpipe_put(xfer->ep->hcpriv); |
| error_rpipe_get: |
| xfer->result = result; |
| wa_xfer_giveback(xfer); |
| return; |
| |
| error_xfer_submit: |
| done = __wa_xfer_is_done(xfer); |
| xfer->result = result; |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| } |
| |
| /* |
| * Execute the delayed transfers in the Wire Adapter @wa |
| * |
| * We need to be careful here, as dequeue() could be called in the |
| * middle. That's why we do the whole thing under the |
| * wa->xfer_list_lock. If dequeue() jumps in, it first locks urb->lock |
| * and then checks the list -- so as we would be acquiring in inverse |
| * order, we just drop the lock once we have the xfer and reacquire it |
| * later. |
| */ |
| void wa_urb_enqueue_run(struct work_struct *ws) |
| { |
| struct wahc *wa = container_of(ws, struct wahc, xfer_work); |
| struct wa_xfer *xfer, *next; |
| struct urb *urb; |
| |
| spin_lock_irq(&wa->xfer_list_lock); |
| list_for_each_entry_safe(xfer, next, &wa->xfer_delayed_list, |
| list_node) { |
| list_del_init(&xfer->list_node); |
| spin_unlock_irq(&wa->xfer_list_lock); |
| |
| urb = xfer->urb; |
| wa_urb_enqueue_b(xfer); |
| usb_put_urb(urb); /* taken when queuing */ |
| |
| spin_lock_irq(&wa->xfer_list_lock); |
| } |
| spin_unlock_irq(&wa->xfer_list_lock); |
| } |
| EXPORT_SYMBOL_GPL(wa_urb_enqueue_run); |
| |
| /* |
| * Submit a transfer to the Wire Adapter in a delayed way |
| * |
| * The process of enqueuing involves possible sleeps() [see |
| * enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are |
| * in an atomic section, we defer the enqueue_b() call--else we call direct. |
| * |
| * @urb: We own a reference to it done by the HCI Linux USB stack that |
| * will be given up by calling usb_hcd_giveback_urb() or by |
| * returning error from this function -> ergo we don't have to |
| * refcount it. |
| */ |
| int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep, |
| struct urb *urb, gfp_t gfp) |
| { |
| int result; |
| struct device *dev = &wa->usb_iface->dev; |
| struct wa_xfer *xfer; |
| unsigned long my_flags; |
| unsigned cant_sleep = irqs_disabled() | in_atomic(); |
| |
| if (urb->transfer_buffer == NULL |
| && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) |
| && urb->transfer_buffer_length != 0) { |
| dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb); |
| dump_stack(); |
| } |
| |
| result = -ENOMEM; |
| xfer = kzalloc(sizeof(*xfer), gfp); |
| if (xfer == NULL) |
| goto error_kmalloc; |
| |
| result = -ENOENT; |
| if (urb->status != -EINPROGRESS) /* cancelled */ |
| goto error_dequeued; /* before starting? */ |
| wa_xfer_init(xfer); |
| xfer->wa = wa_get(wa); |
| xfer->urb = urb; |
| xfer->gfp = gfp; |
| xfer->ep = ep; |
| urb->hcpriv = xfer; |
| |
| dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n", |
| xfer, urb, urb->pipe, urb->transfer_buffer_length, |
| urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma", |
| urb->pipe & USB_DIR_IN ? "inbound" : "outbound", |
| cant_sleep ? "deferred" : "inline"); |
| |
| if (cant_sleep) { |
| usb_get_urb(urb); |
| spin_lock_irqsave(&wa->xfer_list_lock, my_flags); |
| list_add_tail(&xfer->list_node, &wa->xfer_delayed_list); |
| spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags); |
| queue_work(wusbd, &wa->xfer_work); |
| } else { |
| wa_urb_enqueue_b(xfer); |
| } |
| return 0; |
| |
| error_dequeued: |
| kfree(xfer); |
| error_kmalloc: |
| return result; |
| } |
| EXPORT_SYMBOL_GPL(wa_urb_enqueue); |
| |
| /* |
| * Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion |
| * handler] is called. |
| * |
| * Until a transfer goes successfully through wa_urb_enqueue() it |
| * needs to be dequeued with completion calling; when stuck in delayed |
| * or before wa_xfer_setup() is called, we need to do completion. |
| * |
| * not setup If there is no hcpriv yet, that means that that enqueue |
| * still had no time to set the xfer up. Because |
| * urb->status should be other than -EINPROGRESS, |
| * enqueue() will catch that and bail out. |
| * |
| * If the transfer has gone through setup, we just need to clean it |
| * up. If it has gone through submit(), we have to abort it [with an |
| * asynch request] and then make sure we cancel each segment. |
| * |
| */ |
| int wa_urb_dequeue(struct wahc *wa, struct urb *urb) |
| { |
| unsigned long flags, flags2; |
| struct wa_xfer *xfer; |
| struct wa_seg *seg; |
| struct wa_rpipe *rpipe; |
| unsigned cnt; |
| unsigned rpipe_ready = 0; |
| |
| xfer = urb->hcpriv; |
| if (xfer == NULL) { |
| /* NOthing setup yet enqueue will see urb->status != |
| * -EINPROGRESS (by hcd layer) and bail out with |
| * error, no need to do completion |
| */ |
| BUG_ON(urb->status == -EINPROGRESS); |
| goto out; |
| } |
| spin_lock_irqsave(&xfer->lock, flags); |
| rpipe = xfer->ep->hcpriv; |
| /* Check the delayed list -> if there, release and complete */ |
| spin_lock_irqsave(&wa->xfer_list_lock, flags2); |
| if (!list_empty(&xfer->list_node) && xfer->seg == NULL) |
| goto dequeue_delayed; |
| spin_unlock_irqrestore(&wa->xfer_list_lock, flags2); |
| if (xfer->seg == NULL) /* still hasn't reached */ |
| goto out_unlock; /* setup(), enqueue_b() completes */ |
| /* Ok, the xfer is in flight already, it's been setup and submitted.*/ |
| __wa_xfer_abort(xfer); |
| for (cnt = 0; cnt < xfer->segs; cnt++) { |
| seg = xfer->seg[cnt]; |
| switch (seg->status) { |
| case WA_SEG_NOTREADY: |
| case WA_SEG_READY: |
| printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n", |
| xfer, cnt, seg->status); |
| WARN_ON(1); |
| break; |
| case WA_SEG_DELAYED: |
| seg->status = WA_SEG_ABORTED; |
| spin_lock_irqsave(&rpipe->seg_lock, flags2); |
| list_del(&seg->list_node); |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| spin_unlock_irqrestore(&rpipe->seg_lock, flags2); |
| break; |
| case WA_SEG_SUBMITTED: |
| seg->status = WA_SEG_ABORTED; |
| usb_unlink_urb(&seg->urb); |
| if (xfer->is_inbound == 0) |
| usb_unlink_urb(seg->dto_urb); |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| break; |
| case WA_SEG_PENDING: |
| seg->status = WA_SEG_ABORTED; |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| break; |
| case WA_SEG_DTI_PENDING: |
| usb_unlink_urb(wa->dti_urb); |
| seg->status = WA_SEG_ABORTED; |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| break; |
| case WA_SEG_DONE: |
| case WA_SEG_ERROR: |
| case WA_SEG_ABORTED: |
| break; |
| } |
| } |
| xfer->result = urb->status; /* -ENOENT or -ECONNRESET */ |
| __wa_xfer_is_done(xfer); |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| return 0; |
| |
| out_unlock: |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| out: |
| return 0; |
| |
| dequeue_delayed: |
| list_del_init(&xfer->list_node); |
| spin_unlock_irqrestore(&wa->xfer_list_lock, flags2); |
| xfer->result = urb->status; |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| wa_xfer_giveback(xfer); |
| usb_put_urb(urb); /* we got a ref in enqueue() */ |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(wa_urb_dequeue); |
| |
| /* |
| * Translation from WA status codes (WUSB1.0 Table 8.15) to errno |
| * codes |
| * |
| * Positive errno values are internal inconsistencies and should be |
| * flagged louder. Negative are to be passed up to the user in the |
| * normal way. |
| * |
| * @status: USB WA status code -- high two bits are stripped. |
| */ |
| static int wa_xfer_status_to_errno(u8 status) |
| { |
| int errno; |
| u8 real_status = status; |
| static int xlat[] = { |
| [WA_XFER_STATUS_SUCCESS] = 0, |
| [WA_XFER_STATUS_HALTED] = -EPIPE, |
| [WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS, |
| [WA_XFER_STATUS_BABBLE] = -EOVERFLOW, |
| [WA_XFER_RESERVED] = EINVAL, |
| [WA_XFER_STATUS_NOT_FOUND] = 0, |
| [WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM, |
| [WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ, |
| [WA_XFER_STATUS_ABORTED] = -EINTR, |
| [WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL, |
| [WA_XFER_INVALID_FORMAT] = EINVAL, |
| [WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL, |
| [WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL, |
| }; |
| status &= 0x3f; |
| |
| if (status == 0) |
| return 0; |
| if (status >= ARRAY_SIZE(xlat)) { |
| if (printk_ratelimit()) |
| printk(KERN_ERR "%s(): BUG? " |
| "Unknown WA transfer status 0x%02x\n", |
| __func__, real_status); |
| return -EINVAL; |
| } |
| errno = xlat[status]; |
| if (unlikely(errno > 0)) { |
| if (printk_ratelimit()) |
| printk(KERN_ERR "%s(): BUG? " |
| "Inconsistent WA status: 0x%02x\n", |
| __func__, real_status); |
| errno = -errno; |
| } |
| return errno; |
| } |
| |
| /* |
| * Process a xfer result completion message |
| * |
| * inbound transfers: need to schedule a DTI read |
| * |
| * FIXME: this functio needs to be broken up in parts |
| */ |
| static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer) |
| { |
| int result; |
| struct device *dev = &wa->usb_iface->dev; |
| unsigned long flags; |
| u8 seg_idx; |
| struct wa_seg *seg; |
| struct wa_rpipe *rpipe; |
| struct wa_xfer_result *xfer_result = wa->xfer_result; |
| u8 done = 0; |
| u8 usb_status; |
| unsigned rpipe_ready = 0; |
| |
| spin_lock_irqsave(&xfer->lock, flags); |
| seg_idx = xfer_result->bTransferSegment & 0x7f; |
| if (unlikely(seg_idx >= xfer->segs)) |
| goto error_bad_seg; |
| seg = xfer->seg[seg_idx]; |
| rpipe = xfer->ep->hcpriv; |
| usb_status = xfer_result->bTransferStatus; |
| dev_dbg(dev, "xfer %p#%u: bTransferStatus 0x%02x (seg %u)\n", |
| xfer, seg_idx, usb_status, seg->status); |
| if (seg->status == WA_SEG_ABORTED |
| || seg->status == WA_SEG_ERROR) /* already handled */ |
| goto segment_aborted; |
| if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */ |
| seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */ |
| if (seg->status != WA_SEG_PENDING) { |
| if (printk_ratelimit()) |
| dev_err(dev, "xfer %p#%u: Bad segment state %u\n", |
| xfer, seg_idx, seg->status); |
| seg->status = WA_SEG_PENDING; /* workaround/"fix" it */ |
| } |
| if (usb_status & 0x80) { |
| seg->result = wa_xfer_status_to_errno(usb_status); |
| dev_err(dev, "DTI: xfer %p#%u failed (0x%02x)\n", |
| xfer, seg->index, usb_status); |
| goto error_complete; |
| } |
| /* FIXME: we ignore warnings, tally them for stats */ |
| if (usb_status & 0x40) /* Warning?... */ |
| usb_status = 0; /* ... pass */ |
| if (xfer->is_inbound) { /* IN data phase: read to buffer */ |
| seg->status = WA_SEG_DTI_PENDING; |
| BUG_ON(wa->buf_in_urb->status == -EINPROGRESS); |
| if (xfer->is_dma) { |
| wa->buf_in_urb->transfer_dma = |
| xfer->urb->transfer_dma |
| + seg_idx * xfer->seg_size; |
| wa->buf_in_urb->transfer_flags |
| |= URB_NO_TRANSFER_DMA_MAP; |
| } else { |
| wa->buf_in_urb->transfer_buffer = |
| xfer->urb->transfer_buffer |
| + seg_idx * xfer->seg_size; |
| wa->buf_in_urb->transfer_flags |
| &= ~URB_NO_TRANSFER_DMA_MAP; |
| } |
| wa->buf_in_urb->transfer_buffer_length = |
| le32_to_cpu(xfer_result->dwTransferLength); |
| wa->buf_in_urb->context = seg; |
| result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC); |
| if (result < 0) |
| goto error_submit_buf_in; |
| } else { |
| /* OUT data phase, complete it -- */ |
| seg->status = WA_SEG_DONE; |
| seg->result = le32_to_cpu(xfer_result->dwTransferLength); |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| done = __wa_xfer_is_done(xfer); |
| } |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| return; |
| |
| error_submit_buf_in: |
| if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { |
| dev_err(dev, "DTI: URB max acceptable errors " |
| "exceeded, resetting device\n"); |
| wa_reset_all(wa); |
| } |
| if (printk_ratelimit()) |
| dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n", |
| xfer, seg_idx, result); |
| seg->result = result; |
| error_complete: |
| seg->status = WA_SEG_ERROR; |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| __wa_xfer_abort(xfer); |
| done = __wa_xfer_is_done(xfer); |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| return; |
| |
| error_bad_seg: |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| wa_urb_dequeue(wa, xfer->urb); |
| if (printk_ratelimit()) |
| dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx); |
| if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) { |
| dev_err(dev, "DTI: URB max acceptable errors " |
| "exceeded, resetting device\n"); |
| wa_reset_all(wa); |
| } |
| return; |
| |
| segment_aborted: |
| /* nothing to do, as the aborter did the completion */ |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| } |
| |
| /* |
| * Callback for the IN data phase |
| * |
| * If successful transition state; otherwise, take a note of the |
| * error, mark this segment done and try completion. |
| * |
| * Note we don't access until we are sure that the transfer hasn't |
| * been cancelled (ECONNRESET, ENOENT), which could mean that |
| * seg->xfer could be already gone. |
| */ |
| static void wa_buf_in_cb(struct urb *urb) |
| { |
| struct wa_seg *seg = urb->context; |
| struct wa_xfer *xfer = seg->xfer; |
| struct wahc *wa; |
| struct device *dev; |
| struct wa_rpipe *rpipe; |
| unsigned rpipe_ready; |
| unsigned long flags; |
| u8 done = 0; |
| |
| switch (urb->status) { |
| case 0: |
| spin_lock_irqsave(&xfer->lock, flags); |
| wa = xfer->wa; |
| dev = &wa->usb_iface->dev; |
| rpipe = xfer->ep->hcpriv; |
| dev_dbg(dev, "xfer %p#%u: data in done (%zu bytes)\n", |
| xfer, seg->index, (size_t)urb->actual_length); |
| seg->status = WA_SEG_DONE; |
| seg->result = urb->actual_length; |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| done = __wa_xfer_is_done(xfer); |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| break; |
| case -ECONNRESET: /* URB unlinked; no need to do anything */ |
| case -ENOENT: /* as it was done by the who unlinked us */ |
| break; |
| default: /* Other errors ... */ |
| spin_lock_irqsave(&xfer->lock, flags); |
| wa = xfer->wa; |
| dev = &wa->usb_iface->dev; |
| rpipe = xfer->ep->hcpriv; |
| if (printk_ratelimit()) |
| dev_err(dev, "xfer %p#%u: data in error %d\n", |
| xfer, seg->index, urb->status); |
| if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS, |
| EDC_ERROR_TIMEFRAME)){ |
| dev_err(dev, "DTO: URB max acceptable errors " |
| "exceeded, resetting device\n"); |
| wa_reset_all(wa); |
| } |
| seg->status = WA_SEG_ERROR; |
| seg->result = urb->status; |
| xfer->segs_done++; |
| rpipe_ready = rpipe_avail_inc(rpipe); |
| __wa_xfer_abort(xfer); |
| done = __wa_xfer_is_done(xfer); |
| spin_unlock_irqrestore(&xfer->lock, flags); |
| if (done) |
| wa_xfer_completion(xfer); |
| if (rpipe_ready) |
| wa_xfer_delayed_run(rpipe); |
| } |
| } |
| |
| /* |
| * Handle an incoming transfer result buffer |
| * |
| * Given a transfer result buffer, it completes the transfer (possibly |
| * scheduling and buffer in read) and then resubmits the DTI URB for a |
| * new transfer result read. |
| * |
| * |
| * The xfer_result DTI URB state machine |
| * |
| * States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In) |
| * |
| * We start in OFF mode, the first xfer_result notification [through |
| * wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to |
| * read. |
| * |
| * We receive a buffer -- if it is not a xfer_result, we complain and |
| * repost the DTI-URB. If it is a xfer_result then do the xfer seg |
| * request accounting. If it is an IN segment, we move to RBI and post |
| * a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will |
| * repost the DTI-URB and move to RXR state. if there was no IN |
| * segment, it will repost the DTI-URB. |
| * |
| * We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many |
| * errors) in the URBs. |
| */ |
| static void wa_xfer_result_cb(struct urb *urb) |
| { |
| int result; |
| struct wahc *wa = urb->context; |
| struct device *dev = &wa->usb_iface->dev; |
| struct wa_xfer_result *xfer_result; |
| u32 xfer_id; |
| struct wa_xfer *xfer; |
| u8 usb_status; |
| |
| BUG_ON(wa->dti_urb != urb); |
| switch (wa->dti_urb->status) { |
| case 0: |
| /* We have a xfer result buffer; check it */ |
| dev_dbg(dev, "DTI: xfer result %d bytes at %p\n", |
| urb->actual_length, urb->transfer_buffer); |
| if (wa->dti_urb->actual_length != sizeof(*xfer_result)) { |
| dev_err(dev, "DTI Error: xfer result--bad size " |
| "xfer result (%d bytes vs %zu needed)\n", |
| urb->actual_length, sizeof(*xfer_result)); |
| break; |
| } |
| xfer_result = wa->xfer_result; |
| if (xfer_result->hdr.bLength != sizeof(*xfer_result)) { |
| dev_err(dev, "DTI Error: xfer result--" |
| "bad header length %u\n", |
| xfer_result->hdr.bLength); |
| break; |
| } |
| if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) { |
| dev_err(dev, "DTI Error: xfer result--" |
| "bad header type 0x%02x\n", |
| xfer_result->hdr.bNotifyType); |
| break; |
| } |
| usb_status = xfer_result->bTransferStatus & 0x3f; |
| if (usb_status == WA_XFER_STATUS_ABORTED |
| || usb_status == WA_XFER_STATUS_NOT_FOUND) |
| /* taken care of already */ |
| break; |
| xfer_id = xfer_result->dwTransferID; |
| xfer = wa_xfer_get_by_id(wa, xfer_id); |
| if (xfer == NULL) { |
| /* FIXME: transaction might have been cancelled */ |
| dev_err(dev, "DTI Error: xfer result--" |
| "unknown xfer 0x%08x (status 0x%02x)\n", |
| xfer_id, usb_status); |
| break; |
| } |
| wa_xfer_result_chew(wa, xfer); |
| wa_xfer_put(xfer); |
| break; |
| case -ENOENT: /* (we killed the URB)...so, no broadcast */ |
| case -ESHUTDOWN: /* going away! */ |
| dev_dbg(dev, "DTI: going down! %d\n", urb->status); |
| goto out; |
| default: |
| /* Unknown error */ |
| if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, |
| EDC_ERROR_TIMEFRAME)) { |
| dev_err(dev, "DTI: URB max acceptable errors " |
| "exceeded, resetting device\n"); |
| wa_reset_all(wa); |
| goto out; |
| } |
| if (printk_ratelimit()) |
| dev_err(dev, "DTI: URB error %d\n", urb->status); |
| break; |
| } |
| /* Resubmit the DTI URB */ |
| result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC); |
| if (result < 0) { |
| dev_err(dev, "DTI Error: Could not submit DTI URB (%d), " |
| "resetting\n", result); |
| wa_reset_all(wa); |
| } |
| out: |
| return; |
| } |
| |
| /* |
| * Transfer complete notification |
| * |
| * Called from the notif.c code. We get a notification on EP2 saying |
| * that some endpoint has some transfer result data available. We are |
| * about to read it. |
| * |
| * To speed up things, we always have a URB reading the DTI URB; we |
| * don't really set it up and start it until the first xfer complete |
| * notification arrives, which is what we do here. |
| * |
| * Follow up in wa_xfer_result_cb(), as that's where the whole state |
| * machine starts. |
| * |
| * So here we just initialize the DTI URB for reading transfer result |
| * notifications and also the buffer-in URB, for reading buffers. Then |
| * we just submit the DTI URB. |
| * |
| * @wa shall be referenced |
| */ |
| void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr) |
| { |
| int result; |
| struct device *dev = &wa->usb_iface->dev; |
| struct wa_notif_xfer *notif_xfer; |
| const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd; |
| |
| notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr); |
| BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER); |
| |
| if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) { |
| /* FIXME: hardcoded limitation, adapt */ |
| dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n", |
| notif_xfer->bEndpoint, dti_epd->bEndpointAddress); |
| goto error; |
| } |
| if (wa->dti_urb != NULL) /* DTI URB already started */ |
| goto out; |
| |
| wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (wa->dti_urb == NULL) { |
| dev_err(dev, "Can't allocate DTI URB\n"); |
| goto error_dti_urb_alloc; |
| } |
| usb_fill_bulk_urb( |
| wa->dti_urb, wa->usb_dev, |
| usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint), |
| wa->xfer_result, wa->xfer_result_size, |
| wa_xfer_result_cb, wa); |
| |
| wa->buf_in_urb = usb_alloc_urb(0, GFP_KERNEL); |
| if (wa->buf_in_urb == NULL) { |
| dev_err(dev, "Can't allocate BUF-IN URB\n"); |
| goto error_buf_in_urb_alloc; |
| } |
| usb_fill_bulk_urb( |
| wa->buf_in_urb, wa->usb_dev, |
| usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint), |
| NULL, 0, wa_buf_in_cb, wa); |
| result = usb_submit_urb(wa->dti_urb, GFP_KERNEL); |
| if (result < 0) { |
| dev_err(dev, "DTI Error: Could not submit DTI URB (%d), " |
| "resetting\n", result); |
| goto error_dti_urb_submit; |
| } |
| out: |
| return; |
| |
| error_dti_urb_submit: |
| usb_put_urb(wa->buf_in_urb); |
| error_buf_in_urb_alloc: |
| usb_put_urb(wa->dti_urb); |
| wa->dti_urb = NULL; |
| error_dti_urb_alloc: |
| error: |
| wa_reset_all(wa); |
| } |