| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. |
| */ |
| |
| /* |
| * Cross Partition Communication (XPC) support - standard version. |
| * |
| * XPC provides a message passing capability that crosses partition |
| * boundaries. This module is made up of two parts: |
| * |
| * partition This part detects the presence/absence of other |
| * partitions. It provides a heartbeat and monitors |
| * the heartbeats of other partitions. |
| * |
| * channel This part manages the channels and sends/receives |
| * messages across them to/from other partitions. |
| * |
| * There are a couple of additional functions residing in XP, which |
| * provide an interface to XPC for its users. |
| * |
| * |
| * Caveats: |
| * |
| * . Currently on sn2, we have no way to determine which nasid an IRQ |
| * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write |
| * followed by an IPI. The amo indicates where data is to be pulled |
| * from, so after the IPI arrives, the remote partition checks the amo |
| * word. The IPI can actually arrive before the amo however, so other |
| * code must periodically check for this case. Also, remote amo |
| * operations do not reliably time out. Thus we do a remote PIO read |
| * solely to know whether the remote partition is down and whether we |
| * should stop sending IPIs to it. This remote PIO read operation is |
| * set up in a special nofault region so SAL knows to ignore (and |
| * cleanup) any errors due to the remote amo write, PIO read, and/or |
| * PIO write operations. |
| * |
| * If/when new hardware solves this IPI problem, we should abandon |
| * the current approach. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sysctl.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/kdebug.h> |
| #include <linux/kthread.h> |
| #include "xpc.h" |
| |
| /* define two XPC debug device structures to be used with dev_dbg() et al */ |
| |
| struct device_driver xpc_dbg_name = { |
| .name = "xpc" |
| }; |
| |
| struct device xpc_part_dbg_subname = { |
| .init_name = "", /* set to "part" at xpc_init() time */ |
| .driver = &xpc_dbg_name |
| }; |
| |
| struct device xpc_chan_dbg_subname = { |
| .init_name = "", /* set to "chan" at xpc_init() time */ |
| .driver = &xpc_dbg_name |
| }; |
| |
| struct device *xpc_part = &xpc_part_dbg_subname; |
| struct device *xpc_chan = &xpc_chan_dbg_subname; |
| |
| static int xpc_kdebug_ignore; |
| |
| /* systune related variables for /proc/sys directories */ |
| |
| static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; |
| static int xpc_hb_min_interval = 1; |
| static int xpc_hb_max_interval = 10; |
| |
| static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; |
| static int xpc_hb_check_min_interval = 10; |
| static int xpc_hb_check_max_interval = 120; |
| |
| int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; |
| static int xpc_disengage_min_timelimit; /* = 0 */ |
| static int xpc_disengage_max_timelimit = 120; |
| |
| static ctl_table xpc_sys_xpc_hb_dir[] = { |
| { |
| .procname = "hb_interval", |
| .data = &xpc_hb_interval, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_minmax, |
| .extra1 = &xpc_hb_min_interval, |
| .extra2 = &xpc_hb_max_interval}, |
| { |
| .procname = "hb_check_interval", |
| .data = &xpc_hb_check_interval, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_minmax, |
| .extra1 = &xpc_hb_check_min_interval, |
| .extra2 = &xpc_hb_check_max_interval}, |
| {} |
| }; |
| static ctl_table xpc_sys_xpc_dir[] = { |
| { |
| .procname = "hb", |
| .mode = 0555, |
| .child = xpc_sys_xpc_hb_dir}, |
| { |
| .procname = "disengage_timelimit", |
| .data = &xpc_disengage_timelimit, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_minmax, |
| .extra1 = &xpc_disengage_min_timelimit, |
| .extra2 = &xpc_disengage_max_timelimit}, |
| {} |
| }; |
| static ctl_table xpc_sys_dir[] = { |
| { |
| .procname = "xpc", |
| .mode = 0555, |
| .child = xpc_sys_xpc_dir}, |
| {} |
| }; |
| static struct ctl_table_header *xpc_sysctl; |
| |
| /* non-zero if any remote partition disengage was timed out */ |
| int xpc_disengage_timedout; |
| |
| /* #of activate IRQs received and not yet processed */ |
| int xpc_activate_IRQ_rcvd; |
| DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); |
| |
| /* IRQ handler notifies this wait queue on receipt of an IRQ */ |
| DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); |
| |
| static unsigned long xpc_hb_check_timeout; |
| static struct timer_list xpc_hb_timer; |
| |
| /* notification that the xpc_hb_checker thread has exited */ |
| static DECLARE_COMPLETION(xpc_hb_checker_exited); |
| |
| /* notification that the xpc_discovery thread has exited */ |
| static DECLARE_COMPLETION(xpc_discovery_exited); |
| |
| static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); |
| |
| static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); |
| static struct notifier_block xpc_reboot_notifier = { |
| .notifier_call = xpc_system_reboot, |
| }; |
| |
| static int xpc_system_die(struct notifier_block *, unsigned long, void *); |
| static struct notifier_block xpc_die_notifier = { |
| .notifier_call = xpc_system_die, |
| }; |
| |
| struct xpc_arch_operations xpc_arch_ops; |
| |
| /* |
| * Timer function to enforce the timelimit on the partition disengage. |
| */ |
| static void |
| xpc_timeout_partition_disengage(unsigned long data) |
| { |
| struct xpc_partition *part = (struct xpc_partition *)data; |
| |
| DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); |
| |
| (void)xpc_partition_disengaged(part); |
| |
| DBUG_ON(part->disengage_timeout != 0); |
| DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); |
| } |
| |
| /* |
| * Timer to produce the heartbeat. The timer structures function is |
| * already set when this is initially called. A tunable is used to |
| * specify when the next timeout should occur. |
| */ |
| static void |
| xpc_hb_beater(unsigned long dummy) |
| { |
| xpc_arch_ops.increment_heartbeat(); |
| |
| if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) |
| wake_up_interruptible(&xpc_activate_IRQ_wq); |
| |
| xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); |
| add_timer(&xpc_hb_timer); |
| } |
| |
| static void |
| xpc_start_hb_beater(void) |
| { |
| xpc_arch_ops.heartbeat_init(); |
| init_timer(&xpc_hb_timer); |
| xpc_hb_timer.function = xpc_hb_beater; |
| xpc_hb_beater(0); |
| } |
| |
| static void |
| xpc_stop_hb_beater(void) |
| { |
| del_timer_sync(&xpc_hb_timer); |
| xpc_arch_ops.heartbeat_exit(); |
| } |
| |
| /* |
| * At periodic intervals, scan through all active partitions and ensure |
| * their heartbeat is still active. If not, the partition is deactivated. |
| */ |
| static void |
| xpc_check_remote_hb(void) |
| { |
| struct xpc_partition *part; |
| short partid; |
| enum xp_retval ret; |
| |
| for (partid = 0; partid < xp_max_npartitions; partid++) { |
| |
| if (xpc_exiting) |
| break; |
| |
| if (partid == xp_partition_id) |
| continue; |
| |
| part = &xpc_partitions[partid]; |
| |
| if (part->act_state == XPC_P_AS_INACTIVE || |
| part->act_state == XPC_P_AS_DEACTIVATING) { |
| continue; |
| } |
| |
| ret = xpc_arch_ops.get_remote_heartbeat(part); |
| if (ret != xpSuccess) |
| XPC_DEACTIVATE_PARTITION(part, ret); |
| } |
| } |
| |
| /* |
| * This thread is responsible for nearly all of the partition |
| * activation/deactivation. |
| */ |
| static int |
| xpc_hb_checker(void *ignore) |
| { |
| int force_IRQ = 0; |
| |
| /* this thread was marked active by xpc_hb_init() */ |
| |
| set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); |
| |
| /* set our heartbeating to other partitions into motion */ |
| xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); |
| xpc_start_hb_beater(); |
| |
| while (!xpc_exiting) { |
| |
| dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " |
| "been received\n", |
| (int)(xpc_hb_check_timeout - jiffies), |
| xpc_activate_IRQ_rcvd); |
| |
| /* checking of remote heartbeats is skewed by IRQ handling */ |
| if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { |
| xpc_hb_check_timeout = jiffies + |
| (xpc_hb_check_interval * HZ); |
| |
| dev_dbg(xpc_part, "checking remote heartbeats\n"); |
| xpc_check_remote_hb(); |
| |
| /* |
| * On sn2 we need to periodically recheck to ensure no |
| * IRQ/amo pairs have been missed. |
| */ |
| if (is_shub()) |
| force_IRQ = 1; |
| } |
| |
| /* check for outstanding IRQs */ |
| if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { |
| force_IRQ = 0; |
| dev_dbg(xpc_part, "processing activate IRQs " |
| "received\n"); |
| xpc_arch_ops.process_activate_IRQ_rcvd(); |
| } |
| |
| /* wait for IRQ or timeout */ |
| (void)wait_event_interruptible(xpc_activate_IRQ_wq, |
| (time_is_before_eq_jiffies( |
| xpc_hb_check_timeout) || |
| xpc_activate_IRQ_rcvd > 0 || |
| xpc_exiting)); |
| } |
| |
| xpc_stop_hb_beater(); |
| |
| dev_dbg(xpc_part, "heartbeat checker is exiting\n"); |
| |
| /* mark this thread as having exited */ |
| complete(&xpc_hb_checker_exited); |
| return 0; |
| } |
| |
| /* |
| * This thread will attempt to discover other partitions to activate |
| * based on info provided by SAL. This new thread is short lived and |
| * will exit once discovery is complete. |
| */ |
| static int |
| xpc_initiate_discovery(void *ignore) |
| { |
| xpc_discovery(); |
| |
| dev_dbg(xpc_part, "discovery thread is exiting\n"); |
| |
| /* mark this thread as having exited */ |
| complete(&xpc_discovery_exited); |
| return 0; |
| } |
| |
| /* |
| * The first kthread assigned to a newly activated partition is the one |
| * created by XPC HB with which it calls xpc_activating(). XPC hangs on to |
| * that kthread until the partition is brought down, at which time that kthread |
| * returns back to XPC HB. (The return of that kthread will signify to XPC HB |
| * that XPC has dismantled all communication infrastructure for the associated |
| * partition.) This kthread becomes the channel manager for that partition. |
| * |
| * Each active partition has a channel manager, who, besides connecting and |
| * disconnecting channels, will ensure that each of the partition's connected |
| * channels has the required number of assigned kthreads to get the work done. |
| */ |
| static void |
| xpc_channel_mgr(struct xpc_partition *part) |
| { |
| while (part->act_state != XPC_P_AS_DEACTIVATING || |
| atomic_read(&part->nchannels_active) > 0 || |
| !xpc_partition_disengaged(part)) { |
| |
| xpc_process_sent_chctl_flags(part); |
| |
| /* |
| * Wait until we've been requested to activate kthreads or |
| * all of the channel's message queues have been torn down or |
| * a signal is pending. |
| * |
| * The channel_mgr_requests is set to 1 after being awakened, |
| * This is done to prevent the channel mgr from making one pass |
| * through the loop for each request, since he will |
| * be servicing all the requests in one pass. The reason it's |
| * set to 1 instead of 0 is so that other kthreads will know |
| * that the channel mgr is running and won't bother trying to |
| * wake him up. |
| */ |
| atomic_dec(&part->channel_mgr_requests); |
| (void)wait_event_interruptible(part->channel_mgr_wq, |
| (atomic_read(&part->channel_mgr_requests) > 0 || |
| part->chctl.all_flags != 0 || |
| (part->act_state == XPC_P_AS_DEACTIVATING && |
| atomic_read(&part->nchannels_active) == 0 && |
| xpc_partition_disengaged(part)))); |
| atomic_set(&part->channel_mgr_requests, 1); |
| } |
| } |
| |
| /* |
| * Guarantee that the kzalloc'd memory is cacheline aligned. |
| */ |
| void * |
| xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) |
| { |
| /* see if kzalloc will give us cachline aligned memory by default */ |
| *base = kzalloc(size, flags); |
| if (*base == NULL) |
| return NULL; |
| |
| if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) |
| return *base; |
| |
| kfree(*base); |
| |
| /* nope, we'll have to do it ourselves */ |
| *base = kzalloc(size + L1_CACHE_BYTES, flags); |
| if (*base == NULL) |
| return NULL; |
| |
| return (void *)L1_CACHE_ALIGN((u64)*base); |
| } |
| |
| /* |
| * Setup the channel structures necessary to support XPartition Communication |
| * between the specified remote partition and the local one. |
| */ |
| static enum xp_retval |
| xpc_setup_ch_structures(struct xpc_partition *part) |
| { |
| enum xp_retval ret; |
| int ch_number; |
| struct xpc_channel *ch; |
| short partid = XPC_PARTID(part); |
| |
| /* |
| * Allocate all of the channel structures as a contiguous chunk of |
| * memory. |
| */ |
| DBUG_ON(part->channels != NULL); |
| part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, |
| GFP_KERNEL); |
| if (part->channels == NULL) { |
| dev_err(xpc_chan, "can't get memory for channels\n"); |
| return xpNoMemory; |
| } |
| |
| /* allocate the remote open and close args */ |
| |
| part->remote_openclose_args = |
| xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, |
| GFP_KERNEL, &part-> |
| remote_openclose_args_base); |
| if (part->remote_openclose_args == NULL) { |
| dev_err(xpc_chan, "can't get memory for remote connect args\n"); |
| ret = xpNoMemory; |
| goto out_1; |
| } |
| |
| part->chctl.all_flags = 0; |
| spin_lock_init(&part->chctl_lock); |
| |
| atomic_set(&part->channel_mgr_requests, 1); |
| init_waitqueue_head(&part->channel_mgr_wq); |
| |
| part->nchannels = XPC_MAX_NCHANNELS; |
| |
| atomic_set(&part->nchannels_active, 0); |
| atomic_set(&part->nchannels_engaged, 0); |
| |
| for (ch_number = 0; ch_number < part->nchannels; ch_number++) { |
| ch = &part->channels[ch_number]; |
| |
| ch->partid = partid; |
| ch->number = ch_number; |
| ch->flags = XPC_C_DISCONNECTED; |
| |
| atomic_set(&ch->kthreads_assigned, 0); |
| atomic_set(&ch->kthreads_idle, 0); |
| atomic_set(&ch->kthreads_active, 0); |
| |
| atomic_set(&ch->references, 0); |
| atomic_set(&ch->n_to_notify, 0); |
| |
| spin_lock_init(&ch->lock); |
| init_completion(&ch->wdisconnect_wait); |
| |
| atomic_set(&ch->n_on_msg_allocate_wq, 0); |
| init_waitqueue_head(&ch->msg_allocate_wq); |
| init_waitqueue_head(&ch->idle_wq); |
| } |
| |
| ret = xpc_arch_ops.setup_ch_structures(part); |
| if (ret != xpSuccess) |
| goto out_2; |
| |
| /* |
| * With the setting of the partition setup_state to XPC_P_SS_SETUP, |
| * we're declaring that this partition is ready to go. |
| */ |
| part->setup_state = XPC_P_SS_SETUP; |
| |
| return xpSuccess; |
| |
| /* setup of ch structures failed */ |
| out_2: |
| kfree(part->remote_openclose_args_base); |
| part->remote_openclose_args = NULL; |
| out_1: |
| kfree(part->channels); |
| part->channels = NULL; |
| return ret; |
| } |
| |
| /* |
| * Teardown the channel structures necessary to support XPartition Communication |
| * between the specified remote partition and the local one. |
| */ |
| static void |
| xpc_teardown_ch_structures(struct xpc_partition *part) |
| { |
| DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); |
| DBUG_ON(atomic_read(&part->nchannels_active) != 0); |
| |
| /* |
| * Make this partition inaccessible to local processes by marking it |
| * as no longer setup. Then wait before proceeding with the teardown |
| * until all existing references cease. |
| */ |
| DBUG_ON(part->setup_state != XPC_P_SS_SETUP); |
| part->setup_state = XPC_P_SS_WTEARDOWN; |
| |
| wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); |
| |
| /* now we can begin tearing down the infrastructure */ |
| |
| xpc_arch_ops.teardown_ch_structures(part); |
| |
| kfree(part->remote_openclose_args_base); |
| part->remote_openclose_args = NULL; |
| kfree(part->channels); |
| part->channels = NULL; |
| |
| part->setup_state = XPC_P_SS_TORNDOWN; |
| } |
| |
| /* |
| * When XPC HB determines that a partition has come up, it will create a new |
| * kthread and that kthread will call this function to attempt to set up the |
| * basic infrastructure used for Cross Partition Communication with the newly |
| * upped partition. |
| * |
| * The kthread that was created by XPC HB and which setup the XPC |
| * infrastructure will remain assigned to the partition becoming the channel |
| * manager for that partition until the partition is deactivating, at which |
| * time the kthread will teardown the XPC infrastructure and then exit. |
| */ |
| static int |
| xpc_activating(void *__partid) |
| { |
| short partid = (u64)__partid; |
| struct xpc_partition *part = &xpc_partitions[partid]; |
| unsigned long irq_flags; |
| |
| DBUG_ON(partid < 0 || partid >= xp_max_npartitions); |
| |
| spin_lock_irqsave(&part->act_lock, irq_flags); |
| |
| if (part->act_state == XPC_P_AS_DEACTIVATING) { |
| part->act_state = XPC_P_AS_INACTIVE; |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| part->remote_rp_pa = 0; |
| return 0; |
| } |
| |
| /* indicate the thread is activating */ |
| DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); |
| part->act_state = XPC_P_AS_ACTIVATING; |
| |
| XPC_SET_REASON(part, 0, 0); |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| |
| dev_dbg(xpc_part, "activating partition %d\n", partid); |
| |
| xpc_arch_ops.allow_hb(partid); |
| |
| if (xpc_setup_ch_structures(part) == xpSuccess) { |
| (void)xpc_part_ref(part); /* this will always succeed */ |
| |
| if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { |
| xpc_mark_partition_active(part); |
| xpc_channel_mgr(part); |
| /* won't return until partition is deactivating */ |
| } |
| |
| xpc_part_deref(part); |
| xpc_teardown_ch_structures(part); |
| } |
| |
| xpc_arch_ops.disallow_hb(partid); |
| xpc_mark_partition_inactive(part); |
| |
| if (part->reason == xpReactivating) { |
| /* interrupting ourselves results in activating partition */ |
| xpc_arch_ops.request_partition_reactivation(part); |
| } |
| |
| return 0; |
| } |
| |
| void |
| xpc_activate_partition(struct xpc_partition *part) |
| { |
| short partid = XPC_PARTID(part); |
| unsigned long irq_flags; |
| struct task_struct *kthread; |
| |
| spin_lock_irqsave(&part->act_lock, irq_flags); |
| |
| DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); |
| |
| part->act_state = XPC_P_AS_ACTIVATION_REQ; |
| XPC_SET_REASON(part, xpCloneKThread, __LINE__); |
| |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| |
| kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", |
| partid); |
| if (IS_ERR(kthread)) { |
| spin_lock_irqsave(&part->act_lock, irq_flags); |
| part->act_state = XPC_P_AS_INACTIVE; |
| XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| } |
| } |
| |
| void |
| xpc_activate_kthreads(struct xpc_channel *ch, int needed) |
| { |
| int idle = atomic_read(&ch->kthreads_idle); |
| int assigned = atomic_read(&ch->kthreads_assigned); |
| int wakeup; |
| |
| DBUG_ON(needed <= 0); |
| |
| if (idle > 0) { |
| wakeup = (needed > idle) ? idle : needed; |
| needed -= wakeup; |
| |
| dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " |
| "channel=%d\n", wakeup, ch->partid, ch->number); |
| |
| /* only wakeup the requested number of kthreads */ |
| wake_up_nr(&ch->idle_wq, wakeup); |
| } |
| |
| if (needed <= 0) |
| return; |
| |
| if (needed + assigned > ch->kthreads_assigned_limit) { |
| needed = ch->kthreads_assigned_limit - assigned; |
| if (needed <= 0) |
| return; |
| } |
| |
| dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", |
| needed, ch->partid, ch->number); |
| |
| xpc_create_kthreads(ch, needed, 0); |
| } |
| |
| /* |
| * This function is where XPC's kthreads wait for messages to deliver. |
| */ |
| static void |
| xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) |
| { |
| int (*n_of_deliverable_payloads) (struct xpc_channel *) = |
| xpc_arch_ops.n_of_deliverable_payloads; |
| |
| do { |
| /* deliver messages to their intended recipients */ |
| |
| while (n_of_deliverable_payloads(ch) > 0 && |
| !(ch->flags & XPC_C_DISCONNECTING)) { |
| xpc_deliver_payload(ch); |
| } |
| |
| if (atomic_inc_return(&ch->kthreads_idle) > |
| ch->kthreads_idle_limit) { |
| /* too many idle kthreads on this channel */ |
| atomic_dec(&ch->kthreads_idle); |
| break; |
| } |
| |
| dev_dbg(xpc_chan, "idle kthread calling " |
| "wait_event_interruptible_exclusive()\n"); |
| |
| (void)wait_event_interruptible_exclusive(ch->idle_wq, |
| (n_of_deliverable_payloads(ch) > 0 || |
| (ch->flags & XPC_C_DISCONNECTING))); |
| |
| atomic_dec(&ch->kthreads_idle); |
| |
| } while (!(ch->flags & XPC_C_DISCONNECTING)); |
| } |
| |
| static int |
| xpc_kthread_start(void *args) |
| { |
| short partid = XPC_UNPACK_ARG1(args); |
| u16 ch_number = XPC_UNPACK_ARG2(args); |
| struct xpc_partition *part = &xpc_partitions[partid]; |
| struct xpc_channel *ch; |
| int n_needed; |
| unsigned long irq_flags; |
| int (*n_of_deliverable_payloads) (struct xpc_channel *) = |
| xpc_arch_ops.n_of_deliverable_payloads; |
| |
| dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", |
| partid, ch_number); |
| |
| ch = &part->channels[ch_number]; |
| |
| if (!(ch->flags & XPC_C_DISCONNECTING)) { |
| |
| /* let registerer know that connection has been established */ |
| |
| spin_lock_irqsave(&ch->lock, irq_flags); |
| if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { |
| ch->flags |= XPC_C_CONNECTEDCALLOUT; |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| |
| xpc_connected_callout(ch); |
| |
| spin_lock_irqsave(&ch->lock, irq_flags); |
| ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| |
| /* |
| * It is possible that while the callout was being |
| * made that the remote partition sent some messages. |
| * If that is the case, we may need to activate |
| * additional kthreads to help deliver them. We only |
| * need one less than total #of messages to deliver. |
| */ |
| n_needed = n_of_deliverable_payloads(ch) - 1; |
| if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) |
| xpc_activate_kthreads(ch, n_needed); |
| |
| } else { |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| } |
| |
| xpc_kthread_waitmsgs(part, ch); |
| } |
| |
| /* let registerer know that connection is disconnecting */ |
| |
| spin_lock_irqsave(&ch->lock, irq_flags); |
| if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && |
| !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { |
| ch->flags |= XPC_C_DISCONNECTINGCALLOUT; |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| |
| xpc_disconnect_callout(ch, xpDisconnecting); |
| |
| spin_lock_irqsave(&ch->lock, irq_flags); |
| ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; |
| } |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| |
| if (atomic_dec_return(&ch->kthreads_assigned) == 0 && |
| atomic_dec_return(&part->nchannels_engaged) == 0) { |
| xpc_arch_ops.indicate_partition_disengaged(part); |
| } |
| |
| xpc_msgqueue_deref(ch); |
| |
| dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", |
| partid, ch_number); |
| |
| xpc_part_deref(part); |
| return 0; |
| } |
| |
| /* |
| * For each partition that XPC has established communications with, there is |
| * a minimum of one kernel thread assigned to perform any operation that |
| * may potentially sleep or block (basically the callouts to the asynchronous |
| * functions registered via xpc_connect()). |
| * |
| * Additional kthreads are created and destroyed by XPC as the workload |
| * demands. |
| * |
| * A kthread is assigned to one of the active channels that exists for a given |
| * partition. |
| */ |
| void |
| xpc_create_kthreads(struct xpc_channel *ch, int needed, |
| int ignore_disconnecting) |
| { |
| unsigned long irq_flags; |
| u64 args = XPC_PACK_ARGS(ch->partid, ch->number); |
| struct xpc_partition *part = &xpc_partitions[ch->partid]; |
| struct task_struct *kthread; |
| void (*indicate_partition_disengaged) (struct xpc_partition *) = |
| xpc_arch_ops.indicate_partition_disengaged; |
| |
| while (needed-- > 0) { |
| |
| /* |
| * The following is done on behalf of the newly created |
| * kthread. That kthread is responsible for doing the |
| * counterpart to the following before it exits. |
| */ |
| if (ignore_disconnecting) { |
| if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { |
| /* kthreads assigned had gone to zero */ |
| BUG_ON(!(ch->flags & |
| XPC_C_DISCONNECTINGCALLOUT_MADE)); |
| break; |
| } |
| |
| } else if (ch->flags & XPC_C_DISCONNECTING) { |
| break; |
| |
| } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && |
| atomic_inc_return(&part->nchannels_engaged) == 1) { |
| xpc_arch_ops.indicate_partition_engaged(part); |
| } |
| (void)xpc_part_ref(part); |
| xpc_msgqueue_ref(ch); |
| |
| kthread = kthread_run(xpc_kthread_start, (void *)args, |
| "xpc%02dc%d", ch->partid, ch->number); |
| if (IS_ERR(kthread)) { |
| /* the fork failed */ |
| |
| /* |
| * NOTE: if (ignore_disconnecting && |
| * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, |
| * then we'll deadlock if all other kthreads assigned |
| * to this channel are blocked in the channel's |
| * registerer, because the only thing that will unblock |
| * them is the xpDisconnecting callout that this |
| * failed kthread_run() would have made. |
| */ |
| |
| if (atomic_dec_return(&ch->kthreads_assigned) == 0 && |
| atomic_dec_return(&part->nchannels_engaged) == 0) { |
| indicate_partition_disengaged(part); |
| } |
| xpc_msgqueue_deref(ch); |
| xpc_part_deref(part); |
| |
| if (atomic_read(&ch->kthreads_assigned) < |
| ch->kthreads_idle_limit) { |
| /* |
| * Flag this as an error only if we have an |
| * insufficient #of kthreads for the channel |
| * to function. |
| */ |
| spin_lock_irqsave(&ch->lock, irq_flags); |
| XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, |
| &irq_flags); |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| } |
| break; |
| } |
| } |
| } |
| |
| void |
| xpc_disconnect_wait(int ch_number) |
| { |
| unsigned long irq_flags; |
| short partid; |
| struct xpc_partition *part; |
| struct xpc_channel *ch; |
| int wakeup_channel_mgr; |
| |
| /* now wait for all callouts to the caller's function to cease */ |
| for (partid = 0; partid < xp_max_npartitions; partid++) { |
| part = &xpc_partitions[partid]; |
| |
| if (!xpc_part_ref(part)) |
| continue; |
| |
| ch = &part->channels[ch_number]; |
| |
| if (!(ch->flags & XPC_C_WDISCONNECT)) { |
| xpc_part_deref(part); |
| continue; |
| } |
| |
| wait_for_completion(&ch->wdisconnect_wait); |
| |
| spin_lock_irqsave(&ch->lock, irq_flags); |
| DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); |
| wakeup_channel_mgr = 0; |
| |
| if (ch->delayed_chctl_flags) { |
| if (part->act_state != XPC_P_AS_DEACTIVATING) { |
| spin_lock(&part->chctl_lock); |
| part->chctl.flags[ch->number] |= |
| ch->delayed_chctl_flags; |
| spin_unlock(&part->chctl_lock); |
| wakeup_channel_mgr = 1; |
| } |
| ch->delayed_chctl_flags = 0; |
| } |
| |
| ch->flags &= ~XPC_C_WDISCONNECT; |
| spin_unlock_irqrestore(&ch->lock, irq_flags); |
| |
| if (wakeup_channel_mgr) |
| xpc_wakeup_channel_mgr(part); |
| |
| xpc_part_deref(part); |
| } |
| } |
| |
| static int |
| xpc_setup_partitions(void) |
| { |
| short partid; |
| struct xpc_partition *part; |
| |
| xpc_partitions = kzalloc(sizeof(struct xpc_partition) * |
| xp_max_npartitions, GFP_KERNEL); |
| if (xpc_partitions == NULL) { |
| dev_err(xpc_part, "can't get memory for partition structure\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * The first few fields of each entry of xpc_partitions[] need to |
| * be initialized now so that calls to xpc_connect() and |
| * xpc_disconnect() can be made prior to the activation of any remote |
| * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE |
| * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING |
| * PARTITION HAS BEEN ACTIVATED. |
| */ |
| for (partid = 0; partid < xp_max_npartitions; partid++) { |
| part = &xpc_partitions[partid]; |
| |
| DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); |
| |
| part->activate_IRQ_rcvd = 0; |
| spin_lock_init(&part->act_lock); |
| part->act_state = XPC_P_AS_INACTIVE; |
| XPC_SET_REASON(part, 0, 0); |
| |
| init_timer(&part->disengage_timer); |
| part->disengage_timer.function = |
| xpc_timeout_partition_disengage; |
| part->disengage_timer.data = (unsigned long)part; |
| |
| part->setup_state = XPC_P_SS_UNSET; |
| init_waitqueue_head(&part->teardown_wq); |
| atomic_set(&part->references, 0); |
| } |
| |
| return xpc_arch_ops.setup_partitions(); |
| } |
| |
| static void |
| xpc_teardown_partitions(void) |
| { |
| xpc_arch_ops.teardown_partitions(); |
| kfree(xpc_partitions); |
| } |
| |
| static void |
| xpc_do_exit(enum xp_retval reason) |
| { |
| short partid; |
| int active_part_count, printed_waiting_msg = 0; |
| struct xpc_partition *part; |
| unsigned long printmsg_time, disengage_timeout = 0; |
| |
| /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ |
| DBUG_ON(xpc_exiting == 1); |
| |
| /* |
| * Let the heartbeat checker thread and the discovery thread |
| * (if one is running) know that they should exit. Also wake up |
| * the heartbeat checker thread in case it's sleeping. |
| */ |
| xpc_exiting = 1; |
| wake_up_interruptible(&xpc_activate_IRQ_wq); |
| |
| /* wait for the discovery thread to exit */ |
| wait_for_completion(&xpc_discovery_exited); |
| |
| /* wait for the heartbeat checker thread to exit */ |
| wait_for_completion(&xpc_hb_checker_exited); |
| |
| /* sleep for a 1/3 of a second or so */ |
| (void)msleep_interruptible(300); |
| |
| /* wait for all partitions to become inactive */ |
| |
| printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); |
| xpc_disengage_timedout = 0; |
| |
| do { |
| active_part_count = 0; |
| |
| for (partid = 0; partid < xp_max_npartitions; partid++) { |
| part = &xpc_partitions[partid]; |
| |
| if (xpc_partition_disengaged(part) && |
| part->act_state == XPC_P_AS_INACTIVE) { |
| continue; |
| } |
| |
| active_part_count++; |
| |
| XPC_DEACTIVATE_PARTITION(part, reason); |
| |
| if (part->disengage_timeout > disengage_timeout) |
| disengage_timeout = part->disengage_timeout; |
| } |
| |
| if (xpc_arch_ops.any_partition_engaged()) { |
| if (time_is_before_jiffies(printmsg_time)) { |
| dev_info(xpc_part, "waiting for remote " |
| "partitions to deactivate, timeout in " |
| "%ld seconds\n", (disengage_timeout - |
| jiffies) / HZ); |
| printmsg_time = jiffies + |
| (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); |
| printed_waiting_msg = 1; |
| } |
| |
| } else if (active_part_count > 0) { |
| if (printed_waiting_msg) { |
| dev_info(xpc_part, "waiting for local partition" |
| " to deactivate\n"); |
| printed_waiting_msg = 0; |
| } |
| |
| } else { |
| if (!xpc_disengage_timedout) { |
| dev_info(xpc_part, "all partitions have " |
| "deactivated\n"); |
| } |
| break; |
| } |
| |
| /* sleep for a 1/3 of a second or so */ |
| (void)msleep_interruptible(300); |
| |
| } while (1); |
| |
| DBUG_ON(xpc_arch_ops.any_partition_engaged()); |
| |
| xpc_teardown_rsvd_page(); |
| |
| if (reason == xpUnloading) { |
| (void)unregister_die_notifier(&xpc_die_notifier); |
| (void)unregister_reboot_notifier(&xpc_reboot_notifier); |
| } |
| |
| /* clear the interface to XPC's functions */ |
| xpc_clear_interface(); |
| |
| if (xpc_sysctl) |
| unregister_sysctl_table(xpc_sysctl); |
| |
| xpc_teardown_partitions(); |
| |
| if (is_shub()) |
| xpc_exit_sn2(); |
| else if (is_uv()) |
| xpc_exit_uv(); |
| } |
| |
| /* |
| * This function is called when the system is being rebooted. |
| */ |
| static int |
| xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) |
| { |
| enum xp_retval reason; |
| |
| switch (event) { |
| case SYS_RESTART: |
| reason = xpSystemReboot; |
| break; |
| case SYS_HALT: |
| reason = xpSystemHalt; |
| break; |
| case SYS_POWER_OFF: |
| reason = xpSystemPoweroff; |
| break; |
| default: |
| reason = xpSystemGoingDown; |
| } |
| |
| xpc_do_exit(reason); |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * Notify other partitions to deactivate from us by first disengaging from all |
| * references to our memory. |
| */ |
| static void |
| xpc_die_deactivate(void) |
| { |
| struct xpc_partition *part; |
| short partid; |
| int any_engaged; |
| long keep_waiting; |
| long wait_to_print; |
| |
| /* keep xpc_hb_checker thread from doing anything (just in case) */ |
| xpc_exiting = 1; |
| |
| xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ |
| |
| for (partid = 0; partid < xp_max_npartitions; partid++) { |
| part = &xpc_partitions[partid]; |
| |
| if (xpc_arch_ops.partition_engaged(partid) || |
| part->act_state != XPC_P_AS_INACTIVE) { |
| xpc_arch_ops.request_partition_deactivation(part); |
| xpc_arch_ops.indicate_partition_disengaged(part); |
| } |
| } |
| |
| /* |
| * Though we requested that all other partitions deactivate from us, |
| * we only wait until they've all disengaged or we've reached the |
| * defined timelimit. |
| * |
| * Given that one iteration through the following while-loop takes |
| * approximately 200 microseconds, calculate the #of loops to take |
| * before bailing and the #of loops before printing a waiting message. |
| */ |
| keep_waiting = xpc_disengage_timelimit * 1000 * 5; |
| wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; |
| |
| while (1) { |
| any_engaged = xpc_arch_ops.any_partition_engaged(); |
| if (!any_engaged) { |
| dev_info(xpc_part, "all partitions have deactivated\n"); |
| break; |
| } |
| |
| if (!keep_waiting--) { |
| for (partid = 0; partid < xp_max_npartitions; |
| partid++) { |
| if (xpc_arch_ops.partition_engaged(partid)) { |
| dev_info(xpc_part, "deactivate from " |
| "remote partition %d timed " |
| "out\n", partid); |
| } |
| } |
| break; |
| } |
| |
| if (!wait_to_print--) { |
| dev_info(xpc_part, "waiting for remote partitions to " |
| "deactivate, timeout in %ld seconds\n", |
| keep_waiting / (1000 * 5)); |
| wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * |
| 1000 * 5; |
| } |
| |
| udelay(200); |
| } |
| } |
| |
| /* |
| * This function is called when the system is being restarted or halted due |
| * to some sort of system failure. If this is the case we need to notify the |
| * other partitions to disengage from all references to our memory. |
| * This function can also be called when our heartbeater could be offlined |
| * for a time. In this case we need to notify other partitions to not worry |
| * about the lack of a heartbeat. |
| */ |
| static int |
| xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) |
| { |
| #ifdef CONFIG_IA64 /* !!! temporary kludge */ |
| switch (event) { |
| case DIE_MACHINE_RESTART: |
| case DIE_MACHINE_HALT: |
| xpc_die_deactivate(); |
| break; |
| |
| case DIE_KDEBUG_ENTER: |
| /* Should lack of heartbeat be ignored by other partitions? */ |
| if (!xpc_kdebug_ignore) |
| break; |
| |
| /* fall through */ |
| case DIE_MCA_MONARCH_ENTER: |
| case DIE_INIT_MONARCH_ENTER: |
| xpc_arch_ops.offline_heartbeat(); |
| break; |
| |
| case DIE_KDEBUG_LEAVE: |
| /* Is lack of heartbeat being ignored by other partitions? */ |
| if (!xpc_kdebug_ignore) |
| break; |
| |
| /* fall through */ |
| case DIE_MCA_MONARCH_LEAVE: |
| case DIE_INIT_MONARCH_LEAVE: |
| xpc_arch_ops.online_heartbeat(); |
| break; |
| } |
| #else |
| xpc_die_deactivate(); |
| #endif |
| |
| return NOTIFY_DONE; |
| } |
| |
| int __init |
| xpc_init(void) |
| { |
| int ret; |
| struct task_struct *kthread; |
| |
| dev_set_name(xpc_part, "part"); |
| dev_set_name(xpc_chan, "chan"); |
| |
| if (is_shub()) { |
| /* |
| * The ia64-sn2 architecture supports at most 64 partitions. |
| * And the inability to unregister remote amos restricts us |
| * further to only support exactly 64 partitions on this |
| * architecture, no less. |
| */ |
| if (xp_max_npartitions != 64) { |
| dev_err(xpc_part, "max #of partitions not set to 64\n"); |
| ret = -EINVAL; |
| } else { |
| ret = xpc_init_sn2(); |
| } |
| |
| } else if (is_uv()) { |
| ret = xpc_init_uv(); |
| |
| } else { |
| ret = -ENODEV; |
| } |
| |
| if (ret != 0) |
| return ret; |
| |
| ret = xpc_setup_partitions(); |
| if (ret != 0) { |
| dev_err(xpc_part, "can't get memory for partition structure\n"); |
| goto out_1; |
| } |
| |
| xpc_sysctl = register_sysctl_table(xpc_sys_dir); |
| |
| /* |
| * Fill the partition reserved page with the information needed by |
| * other partitions to discover we are alive and establish initial |
| * communications. |
| */ |
| ret = xpc_setup_rsvd_page(); |
| if (ret != 0) { |
| dev_err(xpc_part, "can't setup our reserved page\n"); |
| goto out_2; |
| } |
| |
| /* add ourselves to the reboot_notifier_list */ |
| ret = register_reboot_notifier(&xpc_reboot_notifier); |
| if (ret != 0) |
| dev_warn(xpc_part, "can't register reboot notifier\n"); |
| |
| /* add ourselves to the die_notifier list */ |
| ret = register_die_notifier(&xpc_die_notifier); |
| if (ret != 0) |
| dev_warn(xpc_part, "can't register die notifier\n"); |
| |
| /* |
| * The real work-horse behind xpc. This processes incoming |
| * interrupts and monitors remote heartbeats. |
| */ |
| kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); |
| if (IS_ERR(kthread)) { |
| dev_err(xpc_part, "failed while forking hb check thread\n"); |
| ret = -EBUSY; |
| goto out_3; |
| } |
| |
| /* |
| * Startup a thread that will attempt to discover other partitions to |
| * activate based on info provided by SAL. This new thread is short |
| * lived and will exit once discovery is complete. |
| */ |
| kthread = kthread_run(xpc_initiate_discovery, NULL, |
| XPC_DISCOVERY_THREAD_NAME); |
| if (IS_ERR(kthread)) { |
| dev_err(xpc_part, "failed while forking discovery thread\n"); |
| |
| /* mark this new thread as a non-starter */ |
| complete(&xpc_discovery_exited); |
| |
| xpc_do_exit(xpUnloading); |
| return -EBUSY; |
| } |
| |
| /* set the interface to point at XPC's functions */ |
| xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, |
| xpc_initiate_send, xpc_initiate_send_notify, |
| xpc_initiate_received, xpc_initiate_partid_to_nasids); |
| |
| return 0; |
| |
| /* initialization was not successful */ |
| out_3: |
| xpc_teardown_rsvd_page(); |
| |
| (void)unregister_die_notifier(&xpc_die_notifier); |
| (void)unregister_reboot_notifier(&xpc_reboot_notifier); |
| out_2: |
| if (xpc_sysctl) |
| unregister_sysctl_table(xpc_sysctl); |
| |
| xpc_teardown_partitions(); |
| out_1: |
| if (is_shub()) |
| xpc_exit_sn2(); |
| else if (is_uv()) |
| xpc_exit_uv(); |
| return ret; |
| } |
| |
| module_init(xpc_init); |
| |
| void __exit |
| xpc_exit(void) |
| { |
| xpc_do_exit(xpUnloading); |
| } |
| |
| module_exit(xpc_exit); |
| |
| MODULE_AUTHOR("Silicon Graphics, Inc."); |
| MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); |
| MODULE_LICENSE("GPL"); |
| |
| module_param(xpc_hb_interval, int, 0); |
| MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " |
| "heartbeat increments."); |
| |
| module_param(xpc_hb_check_interval, int, 0); |
| MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " |
| "heartbeat checks."); |
| |
| module_param(xpc_disengage_timelimit, int, 0); |
| MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " |
| "for disengage to complete."); |
| |
| module_param(xpc_kdebug_ignore, int, 0); |
| MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " |
| "other partitions when dropping into kdebug."); |