blob: 6f633c8fbdf2b44d1ec59c60ea38bdec456fab8a [file] [log] [blame]
/*
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <mach/clk-provider.h>
#include <mach/clock-generic.h>
/* ==================== Mux clock ==================== */
static int parent_to_src_sel(struct mux_clk *mux, struct clk *p)
{
int i;
for (i = 0; i < mux->num_parents; i++) {
if (mux->parents[i].src == p)
return mux->parents[i].sel;
}
return -EINVAL;
}
static int mux_set_parent(struct clk *c, struct clk *p)
{
struct mux_clk *mux = to_mux_clk(c);
int sel = parent_to_src_sel(mux, p);
struct clk *old_parent;
int rc = 0, i;
unsigned long flags;
if (sel < 0 && mux->rec_set_par) {
for (i = 0; i < mux->num_parents; i++) {
rc = clk_set_parent(mux->parents[i].src, p);
if (!rc) {
sel = mux->parents[i].sel;
/*
* This is necessary to ensure prepare/enable
* counts get propagated correctly.
*/
p = mux->parents[i].src;
break;
}
}
}
if (sel < 0)
return sel;
rc = __clk_pre_reparent(c, p, &flags);
if (rc)
goto out;
rc = mux->ops->set_mux_sel(mux, sel);
if (rc)
goto set_fail;
old_parent = c->parent;
c->parent = p;
c->rate = clk_get_rate(p);
__clk_post_reparent(c, old_parent, &flags);
return 0;
set_fail:
__clk_post_reparent(c, p, &flags);
out:
return rc;
}
static long mux_round_rate(struct clk *c, unsigned long rate)
{
struct mux_clk *mux = to_mux_clk(c);
int i;
unsigned long prate, rrate = 0;
for (i = 0; i < mux->num_parents; i++) {
prate = clk_round_rate(mux->parents[i].src, rate);
if (is_better_rate(rate, rrate, prate))
rrate = prate;
}
if (!rrate)
return -EINVAL;
return rrate;
}
static int mux_set_rate(struct clk *c, unsigned long rate)
{
struct mux_clk *mux = to_mux_clk(c);
struct clk *new_parent = NULL;
int rc = 0, i;
unsigned long new_par_curr_rate;
unsigned long flags;
for (i = 0; i < mux->num_parents; i++) {
if (clk_round_rate(mux->parents[i].src, rate) == rate) {
new_parent = mux->parents[i].src;
break;
}
}
if (new_parent == NULL)
return -EINVAL;
/*
* Switch to safe parent since the old and new parent might be the
* same and the parent might temporarily turn off while switching
* rates.
*/
if (mux->safe_sel >= 0) {
/*
* Some mux implementations might switch to/from a low power
* parent as part of their disable/enable ops. Grab the
* enable lock to avoid racing with these implementations.
*/
spin_lock_irqsave(&c->lock, flags);
rc = mux->ops->set_mux_sel(mux, mux->safe_sel);
spin_unlock_irqrestore(&c->lock, flags);
}
if (rc)
return rc;
new_par_curr_rate = clk_get_rate(new_parent);
rc = clk_set_rate(new_parent, rate);
if (rc)
goto set_rate_fail;
rc = mux_set_parent(c, new_parent);
if (rc)
goto set_par_fail;
return 0;
set_par_fail:
clk_set_rate(new_parent, new_par_curr_rate);
set_rate_fail:
WARN(mux->ops->set_mux_sel(mux, parent_to_src_sel(mux, c->parent)),
"Set rate failed for %s. Also in bad state!\n", c->dbg_name);
return rc;
}
static int mux_enable(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
if (mux->ops->enable)
return mux->ops->enable(mux);
return 0;
}
static void mux_disable(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
if (mux->ops->disable)
return mux->ops->disable(mux);
}
static struct clk *mux_get_parent(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
int sel = mux->ops->get_mux_sel(mux);
int i;
for (i = 0; i < mux->num_parents; i++) {
if (mux->parents[i].sel == sel)
return mux->parents[i].src;
}
/* Unfamiliar parent. */
return NULL;
}
static enum handoff mux_handoff(struct clk *c)
{
struct mux_clk *mux = to_mux_clk(c);
c->rate = clk_get_rate(c->parent);
mux->safe_sel = parent_to_src_sel(mux, mux->safe_parent);
if (mux->en_mask && mux->ops && mux->ops->is_enabled)
return mux->ops->is_enabled(mux)
? HANDOFF_ENABLED_CLK
: HANDOFF_DISABLED_CLK;
/*
* If this function returns 'enabled' even when the clock downstream
* of this clock is disabled, then handoff code will unnecessarily
* enable the current parent of this clock. If this function always
* returns 'disabled' and a clock downstream is on, the clock handoff
* code will bump up the ref count for this clock and its current
* parent as necessary. So, clocks without an actual HW gate can
* always return disabled.
*/
return HANDOFF_DISABLED_CLK;
}
struct clk_ops clk_ops_gen_mux = {
.enable = mux_enable,
.disable = mux_disable,
.set_parent = mux_set_parent,
.round_rate = mux_round_rate,
.set_rate = mux_set_rate,
.handoff = mux_handoff,
.get_parent = mux_get_parent,
};
static DEFINE_SPINLOCK(mux_reg_lock);
static int mux_reg_enable(struct mux_clk *clk)
{
u32 regval;
unsigned long flags;
spin_lock_irqsave(&mux_reg_lock, flags);
regval = readl_relaxed(*clk->base + clk->offset);
regval |= clk->en_mask;
writel_relaxed(regval, *clk->base + clk->offset);
/* Ensure enable request goes through before returning */
mb();
spin_unlock_irqrestore(&mux_reg_lock, flags);
return 0;
}
static void mux_reg_disable(struct mux_clk *clk)
{
u32 regval;
unsigned long flags;
spin_lock_irqsave(&mux_reg_lock, flags);
regval = readl_relaxed(*clk->base + clk->offset);
regval &= ~clk->en_mask;
writel_relaxed(regval, *clk->base + clk->offset);
spin_unlock_irqrestore(&mux_reg_lock, flags);
}
static int mux_reg_set_mux_sel(struct mux_clk *clk, int sel)
{
u32 regval;
unsigned long flags;
spin_lock_irqsave(&mux_reg_lock, flags);
regval = readl_relaxed(*clk->base + clk->offset);
regval &= ~(clk->mask << clk->shift);
regval |= (sel & clk->mask) << clk->shift;
writel_relaxed(regval, *clk->base + clk->offset);
/* Ensure switch request goes through before returning */
mb();
spin_unlock_irqrestore(&mux_reg_lock, flags);
return 0;
}
static int mux_reg_get_mux_sel(struct mux_clk *clk)
{
u32 regval = readl_relaxed(*clk->base + clk->offset);
return !!((regval >> clk->shift) & clk->mask);
}
static bool mux_reg_is_enabled(struct mux_clk *clk)
{
u32 regval = readl_relaxed(*clk->base + clk->offset);
return !!(regval & clk->en_mask);
}
struct clk_mux_ops mux_reg_ops = {
.enable = mux_reg_enable,
.disable = mux_reg_disable,
.set_mux_sel = mux_reg_set_mux_sel,
.get_mux_sel = mux_reg_get_mux_sel,
.is_enabled = mux_reg_is_enabled,
};
/* ==================== Divider clock ==================== */
static long __div_round_rate(struct div_data *data, unsigned long rate,
struct clk *parent, unsigned int *best_div)
{
unsigned int div, min_div, max_div, rrate_div = 1;
unsigned long p_rrate, rrate = 0;
rate = max(rate, 1UL);
min_div = max(data->min_div, 1U);
max_div = min(data->max_div, (unsigned int) (ULONG_MAX / rate));
for (div = min_div; div <= max_div; div++) {
p_rrate = clk_round_rate(parent, rate * div);
if (IS_ERR_VALUE(p_rrate))
break;
p_rrate /= div;
if (is_better_rate(rate, rrate, p_rrate)) {
rrate = p_rrate;
rrate_div = div;
}
/*
* Trying higher dividers is only going to ask the parent for
* a higher rate. If it can't even output a rate higher than
* the one we request for this divider, the parent is not
* going to be able to output an even higher rate required
* for a higher divider. So, stop trying higher dividers.
*/
if (p_rrate < rate)
break;
if (rrate <= rate + data->rate_margin)
break;
}
if (!rrate)
return -EINVAL;
if (best_div)
*best_div = rrate_div;
return rrate;
}
static long div_round_rate(struct clk *c, unsigned long rate)
{
struct div_clk *d = to_div_clk(c);
return __div_round_rate(&d->data, rate, c->parent, NULL);
}
static int div_set_rate(struct clk *c, unsigned long rate)
{
struct div_clk *d = to_div_clk(c);
int div, rc = 0;
long rrate, old_prate;
struct div_data *data = &d->data;
rrate = __div_round_rate(data, rate, c->parent, &div);
if (rrate != rate)
return -EINVAL;
/*
* For fixed divider clock we don't want to return an error if the
* requested rate matches the achievable rate. So, don't check for
* !d->ops and return an error. __div_round_rate() ensures div ==
* d->div if !d->ops.
*/
if (div > data->div)
rc = d->ops->set_div(d, div);
if (rc)
return rc;
old_prate = clk_get_rate(c->parent);
rc = clk_set_rate(c->parent, rate * div);
if (rc)
goto set_rate_fail;
if (div < data->div)
rc = d->ops->set_div(d, div);
if (rc)
goto div_dec_fail;
data->div = div;
return 0;
div_dec_fail:
WARN(clk_set_rate(c->parent, old_prate),
"Set rate failed for %s. Also in bad state!\n", c->dbg_name);
set_rate_fail:
if (div > data->div)
WARN(d->ops->set_div(d, data->div),
"Set rate failed for %s. Also in bad state!\n",
c->dbg_name);
return rc;
}
static int div_enable(struct clk *c)
{
struct div_clk *d = to_div_clk(c);
if (d->ops && d->ops->enable)
return d->ops->enable(d);
return 0;
}
static void div_disable(struct clk *c)
{
struct div_clk *d = to_div_clk(c);
if (d->ops && d->ops->disable)
return d->ops->disable(d);
}
static enum handoff div_handoff(struct clk *c)
{
struct div_clk *d = to_div_clk(c);
unsigned int div = d->data.div;
if (d->ops && d->ops->get_div)
div = max(d->ops->get_div(d), 1);
div = max(div, 1U);
c->rate = clk_get_rate(c->parent) / div;
if (!d->ops || !d->ops->set_div)
d->data.min_div = d->data.max_div = div;
d->data.div = div;
if (d->en_mask && d->ops && d->ops->is_enabled)
return d->ops->is_enabled(d)
? HANDOFF_ENABLED_CLK
: HANDOFF_DISABLED_CLK;
/*
* If this function returns 'enabled' even when the clock downstream
* of this clock is disabled, then handoff code will unnecessarily
* enable the current parent of this clock. If this function always
* returns 'disabled' and a clock downstream is on, the clock handoff
* code will bump up the ref count for this clock and its current
* parent as necessary. So, clocks without an actual HW gate can
* always return disabled.
*/
return HANDOFF_DISABLED_CLK;
}
struct clk_ops clk_ops_div = {
.enable = div_enable,
.disable = div_disable,
.round_rate = div_round_rate,
.set_rate = div_set_rate,
.handoff = div_handoff,
};
static long __slave_div_round_rate(struct clk *c, unsigned long rate,
int *best_div)
{
struct div_clk *d = to_div_clk(c);
unsigned int div, min_div, max_div;
long p_rate;
rate = max(rate, 1UL);
min_div = d->data.min_div;
max_div = d->data.max_div;
p_rate = clk_get_rate(c->parent);
div = p_rate / rate;
div = max(div, min_div);
div = min(div, max_div);
if (best_div)
*best_div = div;
return p_rate / div;
}
static long slave_div_round_rate(struct clk *c, unsigned long rate)
{
return __slave_div_round_rate(c, rate, NULL);
}
static int slave_div_set_rate(struct clk *c, unsigned long rate)
{
struct div_clk *d = to_div_clk(c);
int div, rc = 0;
long rrate;
rrate = __slave_div_round_rate(c, rate, &div);
if (rrate != rate)
return -EINVAL;
if (div == d->data.div)
return 0;
/*
* For fixed divider clock we don't want to return an error if the
* requested rate matches the achievable rate. So, don't check for
* !d->ops and return an error. __slave_div_round_rate() ensures
* div == d->data.div if !d->ops.
*/
rc = d->ops->set_div(d, div);
if (rc)
return rc;
d->data.div = div;
return 0;
}
struct clk_ops clk_ops_slave_div = {
.enable = div_enable,
.disable = div_disable,
.round_rate = slave_div_round_rate,
.set_rate = slave_div_set_rate,
.handoff = div_handoff,
};
/**
* External clock
* Some clock controllers have input clock signal that come from outside the
* clock controller. That input clock signal might then be used as a source for
* several clocks inside the clock controller. This external clock
* implementation models this input clock signal by just passing on the requests
* to the clock's parent, the original external clock source. The driver for the
* clock controller should clk_get() the original external clock in the probe
* function and set is as a parent to this external clock..
*/
static long ext_round_rate(struct clk *c, unsigned long rate)
{
return clk_round_rate(c->parent, rate);
}
static int ext_set_rate(struct clk *c, unsigned long rate)
{
return clk_set_rate(c->parent, rate);
}
static int ext_set_parent(struct clk *c, struct clk *p)
{
return clk_set_parent(c->parent, p);
}
static enum handoff ext_handoff(struct clk *c)
{
c->rate = clk_get_rate(c->parent);
/* Similar reasoning applied in div_handoff, see comment there. */
return HANDOFF_DISABLED_CLK;
}
struct clk_ops clk_ops_ext = {
.handoff = ext_handoff,
.round_rate = ext_round_rate,
.set_rate = ext_set_rate,
.set_parent = ext_set_parent,
};