| /* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "PDN %s: " fmt, __func__ |
| |
| #include <linux/err.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| #include <linux/regulator/of_regulator.h> |
| #include <linux/regulator/krait-regulator.h> |
| #include <linux/debugfs.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/cpu.h> |
| #include <mach/msm_iomap.h> |
| #include "krait-regulator-pmic.h" |
| |
| #include "spm.h" |
| #include "pm.h" |
| |
| /* |
| * supply |
| * from |
| * pmic |
| * gang |
| * | |
| * |________________________________ |
| * | | | |
| * ___|___ | | |
| * | | | | |
| * | | / / |
| * | LDO | / /LDO BYP [6] |
| * | | / BHS[6] /(bypass is a weak BHS |
| * |_______| | | needs to be on when in |
| * | | | BHS mode) |
| * |________________|_______________| |
| * | |
| * ________|________ |
| * | | |
| * | KRAIT | |
| * |_________________| |
| */ |
| |
| #define PMIC_VOLTAGE_MIN 350000 |
| #define PMIC_VOLTAGE_MAX 1355000 |
| #define LV_RANGE_STEP 5000 |
| |
| #define CORE_VOLTAGE_BOOTUP 900000 |
| |
| #define KRAIT_LDO_VOLTAGE_MIN 465000 |
| #define KRAIT_LDO_VOLTAGE_OFFSET 465000 |
| #define KRAIT_LDO_STEP 5000 |
| |
| #define BHS_SETTLING_DELAY_US 1 |
| #define LDO_SETTLING_DELAY_US 1 |
| #define MDD_SETTLING_DELAY_US 5 |
| |
| #define _KRAIT_MASK(BITS, POS) (((u32)(1 << (BITS)) - 1) << POS) |
| #define KRAIT_MASK(LEFT_BIT_POS, RIGHT_BIT_POS) \ |
| _KRAIT_MASK(LEFT_BIT_POS - RIGHT_BIT_POS + 1, RIGHT_BIT_POS) |
| |
| #define APC_SECURE 0x00000000 |
| #define CPU_PWR_CTL 0x00000004 |
| #define APC_PWR_STATUS 0x00000008 |
| #define APC_TEST_BUS_SEL 0x0000000C |
| #define CPU_TRGTD_DBG_RST 0x00000010 |
| #define APC_PWR_GATE_CTL 0x00000014 |
| #define APC_LDO_VREF_SET 0x00000018 |
| #define APC_PWR_GATE_MODE 0x0000001C |
| #define APC_PWR_GATE_DLY 0x00000020 |
| |
| #define PWR_GATE_CONFIG 0x00000044 |
| #define VERSION 0x00000FD0 |
| |
| /* MDD register group */ |
| #define MDD_CONFIG_CTL 0x00000000 |
| #define MDD_MODE 0x00000010 |
| |
| #define PHASE_SCALING_REF 4 |
| |
| /* bit definitions for phase scaling eFuses */ |
| #define PHASE_SCALING_EFUSE_VERSION_POS 26 |
| #define PHASE_SCALING_EFUSE_VERSION_MASK KRAIT_MASK(27, 26) |
| #define PHASE_SCALING_EFUSE_VERSION_SET 1 |
| |
| #define PHASE_SCALING_EFUSE_VALUE_POS 16 |
| #define PHASE_SCALING_EFUSE_VALUE_MASK KRAIT_MASK(18, 16) |
| |
| /* bit definitions for APC_PWR_GATE_CTL */ |
| #define BHS_CNT_BIT_POS 24 |
| #define BHS_CNT_MASK KRAIT_MASK(31, 24) |
| #define BHS_CNT_DEFAULT 64 |
| |
| #define CLK_SRC_SEL_BIT_POS 15 |
| #define CLK_SRC_SEL_MASK KRAIT_MASK(15, 15) |
| #define CLK_SRC_DEFAULT 0 |
| |
| #define LDO_PWR_DWN_BIT_POS 16 |
| #define LDO_PWR_DWN_MASK KRAIT_MASK(21, 16) |
| |
| #define LDO_BYP_BIT_POS 8 |
| #define LDO_BYP_MASK KRAIT_MASK(13, 8) |
| |
| #define BHS_SEG_EN_BIT_POS 1 |
| #define BHS_SEG_EN_MASK KRAIT_MASK(6, 1) |
| #define BHS_SEG_EN_DEFAULT 0x3F |
| |
| #define BHS_EN_BIT_POS 0 |
| #define BHS_EN_MASK KRAIT_MASK(0, 0) |
| |
| /* bit definitions for APC_LDO_VREF_SET register */ |
| #define VREF_RET_POS 8 |
| #define VREF_RET_MASK KRAIT_MASK(14, 8) |
| |
| #define VREF_LDO_BIT_POS 0 |
| #define VREF_LDO_MASK KRAIT_MASK(6, 0) |
| |
| #define PWR_GATE_SWITCH_MODE_POS 4 |
| #define PWR_GATE_SWITCH_MODE_MASK KRAIT_MASK(6, 4) |
| |
| #define PWR_GATE_SWITCH_MODE_PC 0 |
| #define PWR_GATE_SWITCH_MODE_LDO 1 |
| #define PWR_GATE_SWITCH_MODE_BHS 2 |
| #define PWR_GATE_SWITCH_MODE_DT 3 |
| #define PWR_GATE_SWITCH_MODE_RET 4 |
| |
| #define LDO_HDROOM_MIN 50000 |
| #define LDO_HDROOM_MAX 250000 |
| |
| #define LDO_UV_MIN 465000 |
| #define LDO_UV_MAX 750000 |
| |
| #define LDO_TH_MIN 600000 |
| #define LDO_TH_MAX 900000 |
| |
| #define LDO_DELTA_MIN 10000 |
| #define LDO_DELTA_MAX 100000 |
| |
| #define MSM_L2_SAW_PHYS 0xf9012000 |
| #define MSM_MDD_BASE_PHYS 0xf908a800 |
| |
| #define KPSS_VERSION_2P0 0x20000000 |
| |
| /** |
| * struct pmic_gang_vreg - |
| * @name: the string used to represent the gang |
| * @pmic_vmax_uV: the current pmic gang voltage |
| * @pmic_phase_count: the number of phases turned on in the gang |
| * @krait_power_vregs: a list of krait consumers this gang supplies to |
| * @krait_power_vregs_lock: lock to prevent simultaneous access to the list |
| * and its nodes. This needs to be taken by each |
| * regulator's callback functions to prevent |
| * simultaneous updates to the pmic's phase |
| * voltage. |
| * @apcs_gcc_base: virtual address of the APCS GCC registers |
| * @manage_phases: begin phase control |
| * @pfm_threshold: the sum of coefficients below which PFM can be |
| * enabled |
| * @efuse_phase_scaling_factor: Phase scaling factor read out of an eFuse. When |
| * calculating the appropriate phase count to use, |
| * coeff2 is multiplied by this factor and then |
| * divided by PHASE_SCALING_REF. |
| */ |
| struct pmic_gang_vreg { |
| const char *name; |
| int pmic_vmax_uV; |
| int pmic_phase_count; |
| struct list_head krait_power_vregs; |
| struct mutex krait_power_vregs_lock; |
| bool pfm_mode; |
| int pmic_min_uV_for_retention; |
| bool retention_enabled; |
| bool use_phase_switching; |
| void __iomem *apcs_gcc_base; |
| bool manage_phases; |
| int pfm_threshold; |
| int efuse_phase_scaling_factor; |
| }; |
| |
| static struct pmic_gang_vreg *the_gang; |
| |
| enum krait_supply_mode { |
| HS_MODE = REGULATOR_MODE_NORMAL, |
| LDO_MODE = REGULATOR_MODE_IDLE, |
| }; |
| |
| #define WAIT_FOR_LOAD 0x2 |
| #define WAIT_FOR_VOLTAGE 0x1 |
| |
| struct krait_power_vreg { |
| struct list_head link; |
| struct regulator_desc desc; |
| struct regulator_dev *rdev; |
| const char *name; |
| struct pmic_gang_vreg *pvreg; |
| int uV; |
| int load; |
| enum krait_supply_mode mode; |
| void __iomem *reg_base; |
| void __iomem *mdd_base; |
| int ldo_default_uV; |
| int retention_uV; |
| int headroom_uV; |
| int ldo_threshold_uV; |
| int ldo_delta_uV; |
| int cpu_num; |
| int coeff1; |
| int coeff2; |
| bool reg_en; |
| int online_at_probe; |
| bool force_bhs; |
| }; |
| |
| DEFINE_PER_CPU(struct krait_power_vreg *, krait_vregs); |
| |
| static u32 version; |
| |
| static int use_efuse_phase_scaling_factor; |
| module_param_named( |
| use_phase_scaling_efuse, use_efuse_phase_scaling_factor, int, |
| S_IRUSR | S_IWUSR |
| ); |
| |
| static int is_between(int left, int right, int value) |
| { |
| if (left >= right && left >= value && value >= right) |
| return 1; |
| if (left <= right && left <= value && value <= right) |
| return 1; |
| return 0; |
| } |
| |
| static void krait_masked_write(struct krait_power_vreg *kvreg, |
| int reg, uint32_t mask, uint32_t val) |
| { |
| uint32_t reg_val; |
| |
| reg_val = readl_relaxed(kvreg->reg_base + reg); |
| reg_val &= ~mask; |
| reg_val |= (val & mask); |
| writel_relaxed(reg_val, kvreg->reg_base + reg); |
| |
| /* |
| * Barrier to ensure that the reads and writes from |
| * other regulator regions (they are 1k apart) execute in |
| * order to the above write. |
| */ |
| mb(); |
| } |
| |
| static int get_krait_retention_ldo_uv(struct krait_power_vreg *kvreg) |
| { |
| uint32_t reg_val; |
| int uV; |
| |
| reg_val = readl_relaxed(kvreg->reg_base + APC_LDO_VREF_SET); |
| reg_val &= VREF_RET_MASK; |
| reg_val >>= VREF_RET_POS; |
| |
| if (reg_val == 0) |
| uV = 0; |
| else |
| uV = KRAIT_LDO_VOLTAGE_OFFSET + reg_val * KRAIT_LDO_STEP; |
| |
| return uV; |
| } |
| |
| static int get_krait_ldo_uv(struct krait_power_vreg *kvreg) |
| { |
| uint32_t reg_val; |
| int uV; |
| |
| reg_val = readl_relaxed(kvreg->reg_base + APC_LDO_VREF_SET); |
| reg_val &= VREF_LDO_MASK; |
| reg_val >>= VREF_LDO_BIT_POS; |
| |
| if (reg_val == 0) |
| uV = 0; |
| else |
| uV = KRAIT_LDO_VOLTAGE_OFFSET + reg_val * KRAIT_LDO_STEP; |
| |
| return uV; |
| } |
| |
| static int set_krait_retention_uv(struct krait_power_vreg *kvreg, int uV) |
| { |
| uint32_t reg_val; |
| |
| reg_val = DIV_ROUND_UP(uV - KRAIT_LDO_VOLTAGE_OFFSET, KRAIT_LDO_STEP); |
| krait_masked_write(kvreg, APC_LDO_VREF_SET, VREF_RET_MASK, |
| reg_val << VREF_RET_POS); |
| |
| return 0; |
| } |
| |
| static int set_krait_ldo_uv(struct krait_power_vreg *kvreg, int uV) |
| { |
| uint32_t reg_val; |
| |
| reg_val = DIV_ROUND_UP(uV - KRAIT_LDO_VOLTAGE_OFFSET, KRAIT_LDO_STEP); |
| krait_masked_write(kvreg, APC_LDO_VREF_SET, VREF_LDO_MASK, |
| reg_val << VREF_LDO_BIT_POS); |
| |
| return 0; |
| } |
| |
| static int __krait_power_mdd_enable(struct krait_power_vreg *kvreg, bool on) |
| { |
| if (on) { |
| writel_relaxed(0x00000002, kvreg->mdd_base + MDD_MODE); |
| /* complete the above write before the delay */ |
| mb(); |
| udelay(MDD_SETTLING_DELAY_US); |
| } else { |
| writel_relaxed(0x00000000, kvreg->mdd_base + MDD_MODE); |
| /* |
| * complete the above write before other accesses |
| * to krait regulator |
| */ |
| mb(); |
| } |
| return 0; |
| } |
| |
| #define COEFF2_UV_THRESHOLD 850000 |
| static int get_coeff2(int krait_uV, int phase_scaling_factor) |
| { |
| int coeff2 = 0; |
| int krait_mV = krait_uV / 1000; |
| |
| if (krait_uV <= COEFF2_UV_THRESHOLD) |
| coeff2 = (612229 * krait_mV) / 1000 - 211258; |
| else |
| coeff2 = (892564 * krait_mV) / 1000 - 449543; |
| |
| coeff2 = coeff2 * phase_scaling_factor / PHASE_SCALING_REF; |
| |
| return coeff2; |
| } |
| |
| static int get_coeff1(int actual_uV, int requested_uV, int load) |
| { |
| int ratio = actual_uV * 1000 / requested_uV; |
| int coeff1 = 330 * load + (load * 673 * ratio / 1000); |
| |
| return coeff1; |
| } |
| |
| static int get_coeff_total(struct krait_power_vreg *from) |
| { |
| int coeff_total = 0; |
| struct krait_power_vreg *kvreg; |
| struct pmic_gang_vreg *pvreg = from->pvreg; |
| int phase_scaling_factor = PHASE_SCALING_REF; |
| |
| if (use_efuse_phase_scaling_factor) |
| phase_scaling_factor = pvreg->efuse_phase_scaling_factor; |
| |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| if (!kvreg->reg_en) |
| continue; |
| |
| if (kvreg->mode == LDO_MODE) { |
| kvreg->coeff1 = |
| get_coeff1(kvreg->uV - kvreg->ldo_delta_uV, |
| kvreg->uV, kvreg->load); |
| kvreg->coeff2 = |
| get_coeff2(kvreg->uV - kvreg->ldo_delta_uV, |
| phase_scaling_factor); |
| } else { |
| kvreg->coeff1 = |
| get_coeff1(pvreg->pmic_vmax_uV, |
| kvreg->uV, kvreg->load); |
| kvreg->coeff2 = get_coeff2(pvreg->pmic_vmax_uV, |
| phase_scaling_factor); |
| } |
| coeff_total += kvreg->coeff1 + kvreg->coeff2; |
| } |
| |
| return coeff_total; |
| } |
| |
| static int set_pmic_gang_phases(struct pmic_gang_vreg *pvreg, int phase_count) |
| { |
| pr_debug("programming phase_count = %d\n", phase_count); |
| if (pvreg->use_phase_switching) |
| /* |
| * note the PMIC sets the phase count to one more than |
| * the value in the register - hence subtract 1 from it |
| */ |
| return msm_spm_apcs_set_phase(phase_count - 1); |
| else |
| return 0; |
| } |
| |
| static int num_online(struct pmic_gang_vreg *pvreg) |
| { |
| int online_total = 0; |
| struct krait_power_vreg *kvreg; |
| |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| if (kvreg->reg_en) |
| online_total++; |
| } |
| return online_total; |
| } |
| |
| static int get_total_load(struct krait_power_vreg *from) |
| { |
| int load_total = 0; |
| struct krait_power_vreg *kvreg; |
| struct pmic_gang_vreg *pvreg = from->pvreg; |
| |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| if (!kvreg->reg_en) |
| continue; |
| load_total += kvreg->load; |
| } |
| |
| return load_total; |
| } |
| |
| static bool enable_phase_management(struct pmic_gang_vreg *pvreg) |
| { |
| struct krait_power_vreg *kvreg; |
| |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| pr_debug("%s online_at_probe:0x%x\n", kvreg->name, |
| kvreg->online_at_probe); |
| if (kvreg->online_at_probe) |
| return false; |
| } |
| return true; |
| } |
| |
| #define PMIC_FTS_MODE_PFM 0x00 |
| #define PMIC_FTS_MODE_PWM 0x80 |
| #define ONE_PHASE_COEFF 1000000 |
| #define TWO_PHASE_COEFF 2000000 |
| |
| #define PWM_SETTLING_TIME_US 50 |
| #define PHASE_SETTLING_TIME_US 50 |
| static unsigned int pmic_gang_set_phases(struct krait_power_vreg *from, |
| int coeff_total) |
| { |
| struct pmic_gang_vreg *pvreg = from->pvreg; |
| int phase_count; |
| int rc = 0; |
| int n_online = num_online(pvreg); |
| int load_total; |
| |
| load_total = get_total_load(from); |
| |
| if (pvreg->manage_phases == false) { |
| if (enable_phase_management(pvreg)) |
| pvreg->manage_phases = true; |
| else |
| return 0; |
| } |
| |
| /* First check if the coeff is low for PFM mode */ |
| if (load_total <= pvreg->pfm_threshold |
| && n_online == 1 |
| && krait_pmic_is_ready()) { |
| if (!pvreg->pfm_mode) { |
| rc = msm_spm_enable_fts_lpm(PMIC_FTS_MODE_PFM); |
| if (rc) { |
| pr_err("%s PFM en failed load_t %d rc = %d\n", |
| from->name, load_total, rc); |
| return rc; |
| } |
| krait_pmic_post_pfm_entry(); |
| pvreg->pfm_mode = true; |
| } |
| return rc; |
| } |
| |
| /* coeff is high switch to PWM mode before changing phases */ |
| if (pvreg->pfm_mode) { |
| rc = msm_spm_enable_fts_lpm(PMIC_FTS_MODE_PWM); |
| if (rc) { |
| pr_err("%s PFM exit failed load %d rc = %d\n", |
| from->name, coeff_total, rc); |
| return rc; |
| } |
| pvreg->pfm_mode = false; |
| krait_pmic_post_pwm_entry(); |
| udelay(PWM_SETTLING_TIME_US); |
| } |
| |
| /* calculate phases */ |
| if (coeff_total < ONE_PHASE_COEFF) |
| phase_count = 1; |
| else if (coeff_total < TWO_PHASE_COEFF) |
| phase_count = 2; |
| else |
| phase_count = 4; |
| |
| /* don't increase the phase count higher than number of online cpus */ |
| if (phase_count > n_online) |
| phase_count = n_online; |
| |
| if (phase_count != pvreg->pmic_phase_count) { |
| rc = set_pmic_gang_phases(pvreg, phase_count); |
| if (rc < 0) { |
| pr_err("%s failed set phase %d rc = %d\n", |
| from->name, phase_count, rc); |
| return rc; |
| } |
| |
| /* complete the writes before the delay */ |
| mb(); |
| |
| /* |
| * delay until the phases are settled when |
| * the count is raised |
| */ |
| if (phase_count > pvreg->pmic_phase_count) |
| udelay(PHASE_SETTLING_TIME_US); |
| |
| pvreg->pmic_phase_count = phase_count; |
| } |
| |
| return rc; |
| } |
| |
| static unsigned int _get_optimum_mode(struct regulator_dev *rdev, |
| int input_uV, int output_uV, int load) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| int coeff_total; |
| int rc; |
| |
| kvreg->online_at_probe &= ~WAIT_FOR_LOAD; |
| coeff_total = get_coeff_total(kvreg); |
| |
| rc = pmic_gang_set_phases(kvreg, coeff_total); |
| if (rc < 0) { |
| dev_err(&rdev->dev, "%s failed set mode %d rc = %d\n", |
| kvreg->name, coeff_total, rc); |
| } |
| |
| return kvreg->mode; |
| } |
| |
| static unsigned int krait_power_get_optimum_mode(struct regulator_dev *rdev, |
| int input_uV, int output_uV, int load_uA) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| int rc; |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| kvreg->load = load_uA; |
| if (!kvreg->reg_en) { |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| return kvreg->mode; |
| } |
| |
| rc = _get_optimum_mode(rdev, input_uV, output_uV, load_uA); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| |
| return rc; |
| } |
| |
| static int krait_power_set_mode(struct regulator_dev *rdev, unsigned int mode) |
| { |
| return 0; |
| } |
| |
| static unsigned int krait_power_get_mode(struct regulator_dev *rdev) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| |
| return kvreg->mode; |
| } |
| |
| static void __switch_to_using_bhs(void *info) |
| { |
| struct krait_power_vreg *kvreg = info; |
| |
| /* enable bhs */ |
| if (version > KPSS_VERSION_2P0) { |
| krait_masked_write(kvreg, APC_PWR_GATE_MODE, |
| PWR_GATE_SWITCH_MODE_MASK, |
| PWR_GATE_SWITCH_MODE_BHS << PWR_GATE_SWITCH_MODE_POS); |
| |
| /* complete the writes before the delay */ |
| mb(); |
| |
| /* wait for the bhs to settle */ |
| udelay(BHS_SETTLING_DELAY_US); |
| } else { |
| /* enable bhs */ |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, |
| BHS_EN_MASK, BHS_EN_MASK); |
| |
| /* complete the above write before the delay */ |
| mb(); |
| |
| /* wait for the bhs to settle */ |
| udelay(BHS_SETTLING_DELAY_US); |
| |
| /* Turn on BHS segments */ |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, BHS_SEG_EN_MASK, |
| BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS); |
| |
| /* complete the above write before the delay */ |
| mb(); |
| |
| /* |
| * wait for the bhs to settle - note that |
| * after the voltage has settled both BHS and LDO are supplying |
| * power to the krait. This avoids glitches during switching |
| */ |
| udelay(BHS_SETTLING_DELAY_US); |
| |
| /* |
| * enable ldo bypass - the krait is powered still by LDO since |
| * LDO is enabled |
| */ |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, |
| LDO_BYP_MASK, LDO_BYP_MASK); |
| |
| /* |
| * disable ldo - only the BHS provides voltage to |
| * the cpu after this |
| */ |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, |
| LDO_PWR_DWN_MASK, LDO_PWR_DWN_MASK); |
| } |
| |
| kvreg->mode = HS_MODE; |
| pr_debug("%s using BHS\n", kvreg->name); |
| } |
| |
| static void __switch_to_using_ldo(void *info) |
| { |
| struct krait_power_vreg *kvreg = info; |
| |
| /* |
| * if the krait is in ldo mode and a voltage change is requested on the |
| * ldo switch to using hs before changing ldo voltage |
| */ |
| if (kvreg->mode == LDO_MODE) |
| __switch_to_using_bhs(kvreg); |
| |
| set_krait_ldo_uv(kvreg, kvreg->uV - kvreg->ldo_delta_uV); |
| if (version > KPSS_VERSION_2P0) { |
| krait_masked_write(kvreg, APC_PWR_GATE_MODE, |
| PWR_GATE_SWITCH_MODE_MASK, |
| PWR_GATE_SWITCH_MODE_LDO << PWR_GATE_SWITCH_MODE_POS); |
| |
| /* complete the writes before the delay */ |
| mb(); |
| |
| /* wait for the ldo to settle */ |
| udelay(LDO_SETTLING_DELAY_US); |
| } else { |
| /* |
| * enable ldo - note that both LDO and BHS are are supplying |
| * voltage to the cpu after this. This avoids glitches during |
| * switching from BHS to LDO. |
| */ |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, |
| LDO_PWR_DWN_MASK, 0); |
| |
| /* complete the writes before the delay */ |
| mb(); |
| |
| /* wait for the ldo to settle */ |
| udelay(LDO_SETTLING_DELAY_US); |
| |
| /* |
| * disable BHS and disable LDO bypass seperate from enabling |
| * the LDO above. |
| */ |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, |
| BHS_EN_MASK | LDO_BYP_MASK, 0); |
| krait_masked_write(kvreg, APC_PWR_GATE_CTL, BHS_SEG_EN_MASK, 0); |
| } |
| |
| kvreg->mode = LDO_MODE; |
| pr_debug("%s using LDO\n", kvreg->name); |
| } |
| |
| static int switch_to_using_ldo(struct krait_power_vreg *kvreg) |
| { |
| if (kvreg->mode == LDO_MODE |
| && get_krait_ldo_uv(kvreg) == kvreg->uV - kvreg->ldo_delta_uV) |
| return 0; |
| |
| return smp_call_function_single(kvreg->cpu_num, |
| __switch_to_using_ldo, kvreg, 1); |
| } |
| |
| static int switch_to_using_bhs(struct krait_power_vreg *kvreg) |
| { |
| if (kvreg->mode == HS_MODE) |
| return 0; |
| |
| return smp_call_function_single(kvreg->cpu_num, |
| __switch_to_using_bhs, kvreg, 1); |
| } |
| |
| static int set_pmic_gang_voltage(struct pmic_gang_vreg *pvreg, int uV) |
| { |
| int setpoint; |
| int rc; |
| |
| if (pvreg->pmic_vmax_uV == uV) |
| return 0; |
| |
| pr_debug("%d\n", uV); |
| |
| if (uV < PMIC_VOLTAGE_MIN) { |
| pr_err("requested %d < %d, restricting it to %d\n", |
| uV, PMIC_VOLTAGE_MIN, PMIC_VOLTAGE_MIN); |
| uV = PMIC_VOLTAGE_MIN; |
| } |
| if (uV > PMIC_VOLTAGE_MAX) { |
| pr_err("requested %d > %d, restricting it to %d\n", |
| uV, PMIC_VOLTAGE_MAX, PMIC_VOLTAGE_MAX); |
| uV = PMIC_VOLTAGE_MAX; |
| } |
| |
| if (uV < pvreg->pmic_min_uV_for_retention) { |
| if (pvreg->retention_enabled) { |
| pr_debug("Disabling Retention pmic = %duV, pmic_min_uV_for_retention = %duV", |
| uV, pvreg->pmic_min_uV_for_retention); |
| msm_pm_enable_retention(false); |
| pvreg->retention_enabled = false; |
| } |
| } else { |
| if (!pvreg->retention_enabled) { |
| pr_debug("Enabling Retention pmic = %duV, pmic_min_uV_for_retention = %duV", |
| uV, pvreg->pmic_min_uV_for_retention); |
| msm_pm_enable_retention(true); |
| pvreg->retention_enabled = true; |
| } |
| } |
| |
| setpoint = DIV_ROUND_UP(uV, LV_RANGE_STEP); |
| |
| rc = msm_spm_set_vdd(0, setpoint); /* value of CPU is don't care */ |
| if (rc < 0) |
| pr_err("could not set %duV setpt = 0x%x rc = %d\n", |
| uV, setpoint, rc); |
| else |
| pvreg->pmic_vmax_uV = uV; |
| |
| return rc; |
| } |
| |
| static int configure_ldo_or_hs_one(struct krait_power_vreg *kvreg, int vmax) |
| { |
| int rc; |
| |
| if (!kvreg->reg_en) |
| return 0; |
| |
| if (kvreg->force_bhs) |
| /* |
| * The cpu is in transitory phase where it is being |
| * prepared to be offlined or onlined and is being |
| * forced to run on BHS during that time |
| */ |
| return 0; |
| |
| if (kvreg->uV <= kvreg->ldo_threshold_uV |
| && kvreg->uV - kvreg->ldo_delta_uV + kvreg->headroom_uV |
| <= vmax) { |
| rc = switch_to_using_ldo(kvreg); |
| if (rc < 0) { |
| pr_err("could not switch %s to ldo rc = %d\n", |
| kvreg->name, rc); |
| return rc; |
| } |
| } else { |
| rc = switch_to_using_bhs(kvreg); |
| if (rc < 0) { |
| pr_err("could not switch %s to hs rc = %d\n", |
| kvreg->name, rc); |
| return rc; |
| } |
| } |
| return 0; |
| } |
| |
| static int configure_ldo_or_hs_all(struct krait_power_vreg *from, int vmax) |
| { |
| struct pmic_gang_vreg *pvreg = from->pvreg; |
| struct krait_power_vreg *kvreg; |
| int rc = 0; |
| |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| rc = configure_ldo_or_hs_one(kvreg, vmax); |
| if (rc) { |
| pr_err("could not switch %s\n", kvreg->name); |
| break; |
| } |
| } |
| return rc; |
| } |
| |
| #define SLEW_RATE 2395 |
| static int krait_voltage_increase(struct krait_power_vreg *from, |
| int vmax) |
| { |
| struct pmic_gang_vreg *pvreg = from->pvreg; |
| int rc = 0; |
| int settling_us = DIV_ROUND_UP(vmax - pvreg->pmic_vmax_uV, SLEW_RATE); |
| |
| /* |
| * since krait voltage is increasing set the gang voltage |
| * prior to changing ldo/hs states of the requesting krait |
| */ |
| rc = set_pmic_gang_voltage(pvreg, vmax); |
| if (rc < 0) { |
| dev_err(&from->rdev->dev, "%s failed set voltage %d rc = %d\n", |
| pvreg->name, vmax, rc); |
| return rc; |
| } |
| |
| /* complete the above writes before the delay */ |
| mb(); |
| |
| /* delay until the voltage is settled when it is raised */ |
| udelay(settling_us); |
| |
| rc = configure_ldo_or_hs_all(from, vmax); |
| if (rc < 0) { |
| dev_err(&from->rdev->dev, "%s failed ldo/hs conf %d rc = %d\n", |
| pvreg->name, vmax, rc); |
| } |
| |
| return rc; |
| } |
| |
| static int krait_voltage_decrease(struct krait_power_vreg *from, |
| int vmax) |
| { |
| struct pmic_gang_vreg *pvreg = from->pvreg; |
| int rc = 0; |
| |
| /* |
| * since krait voltage is decreasing ldos might get out of their |
| * operating range. Hence configure such kraits to be in hs mode prior |
| * to setting the pmic gang voltage |
| */ |
| rc = configure_ldo_or_hs_all(from, vmax); |
| if (rc < 0) { |
| dev_err(&from->rdev->dev, "%s failed ldo/hs conf %d rc = %d\n", |
| pvreg->name, vmax, rc); |
| return rc; |
| } |
| |
| rc = set_pmic_gang_voltage(pvreg, vmax); |
| if (rc < 0) { |
| dev_err(&from->rdev->dev, "%s failed set voltage %d rc = %d\n", |
| pvreg->name, vmax, rc); |
| } |
| |
| return rc; |
| } |
| |
| static int krait_power_get_voltage(struct regulator_dev *rdev) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| |
| return kvreg->uV; |
| } |
| |
| static int get_vmax(struct pmic_gang_vreg *pvreg) |
| { |
| int vmax = 0; |
| int v; |
| struct krait_power_vreg *kvreg; |
| |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| if (!kvreg->reg_en) |
| continue; |
| |
| v = kvreg->uV; |
| |
| if (vmax < v) |
| vmax = v; |
| } |
| |
| return vmax; |
| } |
| |
| #define ROUND_UP_VOLTAGE(v, res) (DIV_ROUND_UP(v, res) * res) |
| static int _set_voltage(struct regulator_dev *rdev, |
| int orig_krait_uV, int requested_uV) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| int rc; |
| int vmax; |
| int coeff_total; |
| |
| pr_debug("%s: %d to %d\n", kvreg->name, orig_krait_uV, requested_uV); |
| /* |
| * Assign the voltage before updating the gang voltage as we iterate |
| * over all the core voltages and choose HS or LDO for each of them |
| */ |
| kvreg->uV = requested_uV; |
| |
| vmax = get_vmax(pvreg); |
| |
| /* round up the pmic voltage as per its resolution */ |
| vmax = ROUND_UP_VOLTAGE(vmax, LV_RANGE_STEP); |
| |
| if (requested_uV > orig_krait_uV) |
| rc = krait_voltage_increase(kvreg, vmax); |
| else |
| rc = krait_voltage_decrease(kvreg, vmax); |
| |
| if (rc < 0) { |
| pr_err("%s failed to set %duV from %duV rc = %d\n", |
| kvreg->name, requested_uV, orig_krait_uV, rc); |
| } |
| |
| kvreg->online_at_probe &= ~WAIT_FOR_VOLTAGE; |
| coeff_total = get_coeff_total(kvreg); |
| /* adjust the phases since coeff2 would have changed */ |
| rc = pmic_gang_set_phases(kvreg, coeff_total); |
| |
| return rc; |
| } |
| |
| static int krait_power_set_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV, unsigned *selector) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| int rc; |
| |
| /* |
| * if the voltage requested is below LDO_THRESHOLD this cpu could |
| * switch to LDO mode. Hence round the voltage as per the LDO |
| * resolution |
| */ |
| if (min_uV < kvreg->ldo_threshold_uV) { |
| if (min_uV < KRAIT_LDO_VOLTAGE_MIN) |
| min_uV = KRAIT_LDO_VOLTAGE_MIN; |
| min_uV = ROUND_UP_VOLTAGE(min_uV, KRAIT_LDO_STEP); |
| } |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| if (!kvreg->reg_en) { |
| kvreg->uV = min_uV; |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| return 0; |
| } |
| |
| rc = _set_voltage(rdev, kvreg->uV, min_uV); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| |
| return rc; |
| } |
| |
| static int krait_power_is_enabled(struct regulator_dev *rdev) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| |
| return kvreg->reg_en; |
| } |
| |
| static int krait_power_enable(struct regulator_dev *rdev) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| int rc; |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| pr_debug("enable %s\n", kvreg->name); |
| __krait_power_mdd_enable(kvreg, true); |
| kvreg->reg_en = true; |
| rc = _get_optimum_mode(rdev, kvreg->uV, kvreg->uV, kvreg->load); |
| if (rc < 0) |
| goto en_err; |
| /* |
| * since the core is being enabled, behave as if it is increasing |
| * the core voltage |
| */ |
| rc = _set_voltage(rdev, 0, kvreg->uV); |
| en_err: |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| return rc; |
| } |
| |
| static int krait_power_disable(struct regulator_dev *rdev) |
| { |
| struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| int rc; |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| pr_debug("disable %s\n", kvreg->name); |
| kvreg->reg_en = false; |
| |
| rc = _get_optimum_mode(rdev, kvreg->uV, kvreg->uV, kvreg->load); |
| if (rc < 0) |
| goto dis_err; |
| |
| rc = _set_voltage(rdev, kvreg->uV, kvreg->uV); |
| __krait_power_mdd_enable(kvreg, false); |
| dis_err: |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| return rc; |
| } |
| |
| static struct regulator_ops krait_power_ops = { |
| .get_voltage = krait_power_get_voltage, |
| .set_voltage = krait_power_set_voltage, |
| .get_optimum_mode = krait_power_get_optimum_mode, |
| .set_mode = krait_power_set_mode, |
| .get_mode = krait_power_get_mode, |
| .enable = krait_power_enable, |
| .disable = krait_power_disable, |
| .is_enabled = krait_power_is_enabled, |
| }; |
| |
| static int krait_regulator_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| int cpu = (int)hcpu; |
| struct krait_power_vreg *kvreg = per_cpu(krait_vregs, cpu); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| |
| pr_debug("start state=0x%02x, cpu=%d is_online=%d\n", |
| (int)action, cpu, cpu_online(cpu)); |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_UP_PREPARE: |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| kvreg->force_bhs = true; |
| /* |
| * cpu is offline at this point, force bhs on which ever cpu |
| * this callback is running on |
| */ |
| pr_debug("%s force BHS locally\n", kvreg->name); |
| __switch_to_using_bhs(kvreg); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| break; |
| case CPU_UP_CANCELED: |
| case CPU_ONLINE: |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| kvreg->force_bhs = false; |
| /* |
| * switch the cpu to proper bhs/ldo, the cpu is online at this |
| * point. The gang voltage and mode votes for the cpu were |
| * submitted in CPU_UP_PREPARE phase |
| */ |
| configure_ldo_or_hs_one(kvreg, pvreg->pmic_vmax_uV); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| break; |
| case CPU_DOWN_PREPARE: |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| kvreg->force_bhs = true; |
| /* |
| * switch the cpu to run on bhs using smp function calls. Note |
| * that the cpu is online at this point. |
| */ |
| pr_debug("%s force BHS remotely\n", kvreg->name); |
| switch_to_using_bhs(kvreg); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| break; |
| case CPU_DOWN_FAILED: |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| kvreg->force_bhs = false; |
| configure_ldo_or_hs_one(kvreg, pvreg->pmic_vmax_uV); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| break; |
| default: |
| break; |
| } |
| |
| pr_debug("done state=0x%02x, cpu=%d is_online=%d\n", |
| (int)action, cpu, cpu_online(cpu)); |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block krait_cpu_notifier = { |
| .notifier_call = krait_regulator_cpu_callback, |
| }; |
| |
| static struct dentry *dent; |
| static int get_retention_dbg_uV(void *data, u64 *val) |
| { |
| struct pmic_gang_vreg *pvreg = data; |
| struct krait_power_vreg *kvreg; |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| if (!list_empty(&pvreg->krait_power_vregs)) { |
| /* return the retention voltage on just the first cpu */ |
| kvreg = list_entry((&pvreg->krait_power_vregs)->next, |
| typeof(*kvreg), link); |
| *val = get_krait_retention_ldo_uv(kvreg); |
| } |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| return 0; |
| } |
| |
| static int set_retention_dbg_uV(void *data, u64 val) |
| { |
| struct pmic_gang_vreg *pvreg = data; |
| struct krait_power_vreg *kvreg; |
| int retention_uV = val; |
| |
| if (!is_between(LDO_UV_MIN, LDO_UV_MAX, retention_uV)) |
| return -EINVAL; |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) { |
| kvreg->retention_uV = retention_uV; |
| set_krait_retention_uv(kvreg, retention_uV); |
| } |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(retention_fops, |
| get_retention_dbg_uV, set_retention_dbg_uV, "%llu\n"); |
| |
| static void kvreg_ldo_voltage_init(struct krait_power_vreg *kvreg) |
| { |
| set_krait_retention_uv(kvreg, kvreg->retention_uV); |
| set_krait_ldo_uv(kvreg, kvreg->ldo_default_uV); |
| } |
| |
| #define CPU_PWR_CTL_ONLINE_MASK 0x80 |
| static void kvreg_hw_init(struct krait_power_vreg *kvreg) |
| { |
| /* setup the bandgap that configures the reference to the LDO */ |
| writel_relaxed(0x00000190, kvreg->mdd_base + MDD_CONFIG_CTL); |
| /* Enable MDD */ |
| writel_relaxed(0x00000002, kvreg->mdd_base + MDD_MODE); |
| mb(); |
| |
| if (version > KPSS_VERSION_2P0) { |
| /* Configure hardware sequencer delays. */ |
| writel_relaxed(0x30430600, kvreg->reg_base + APC_PWR_GATE_DLY); |
| |
| /* Enable the hardware sequencer in BHS mode. */ |
| writel_relaxed(0x00000021, kvreg->reg_base + APC_PWR_GATE_MODE); |
| } |
| } |
| |
| static void online_at_probe(struct krait_power_vreg *kvreg) |
| { |
| int online; |
| |
| online = CPU_PWR_CTL_ONLINE_MASK |
| & readl_relaxed(kvreg->reg_base + CPU_PWR_CTL); |
| kvreg->online_at_probe |
| = online ? (WAIT_FOR_LOAD | WAIT_FOR_VOLTAGE) : 0x0; |
| } |
| |
| static void glb_init(void __iomem *apcs_gcc_base) |
| { |
| /* read kpss version */ |
| version = readl_relaxed(apcs_gcc_base + VERSION); |
| pr_debug("version= 0x%x\n", version); |
| |
| /* configure bi-modal switch */ |
| if (version > KPSS_VERSION_2P0) |
| writel_relaxed(0x0308736E, apcs_gcc_base + PWR_GATE_CONFIG); |
| else |
| writel_relaxed(0x0008736E, apcs_gcc_base + PWR_GATE_CONFIG); |
| } |
| |
| static int __devinit krait_power_probe(struct platform_device *pdev) |
| { |
| struct krait_power_vreg *kvreg; |
| struct resource *res, *res_mdd; |
| struct regulator_init_data *init_data = pdev->dev.platform_data; |
| int rc = 0; |
| int headroom_uV, retention_uV, ldo_default_uV, ldo_threshold_uV; |
| int ldo_delta_uV; |
| int cpu_num; |
| |
| if (pdev->dev.of_node) { |
| /* Get init_data from device tree. */ |
| init_data = of_get_regulator_init_data(&pdev->dev, |
| pdev->dev.of_node); |
| init_data->constraints.valid_ops_mask |
| |= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_DRMS |
| | REGULATOR_CHANGE_MODE; |
| init_data->constraints.valid_modes_mask |
| |= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE |
| | REGULATOR_MODE_FAST; |
| init_data->constraints.input_uV = init_data->constraints.max_uV; |
| rc = of_property_read_u32(pdev->dev.of_node, |
| "qcom,headroom-voltage", |
| &headroom_uV); |
| if (rc < 0) { |
| pr_err("headroom-voltage missing rc=%d\n", rc); |
| return rc; |
| } |
| if (!is_between(LDO_HDROOM_MIN, LDO_HDROOM_MAX, headroom_uV)) { |
| pr_err("bad headroom-voltage = %d specified\n", |
| headroom_uV); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(pdev->dev.of_node, |
| "qcom,retention-voltage", |
| &retention_uV); |
| if (rc < 0) { |
| pr_err("retention-voltage missing rc=%d\n", rc); |
| return rc; |
| } |
| if (!is_between(LDO_UV_MIN, LDO_UV_MAX, retention_uV)) { |
| pr_err("bad retention-voltage = %d specified\n", |
| retention_uV); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(pdev->dev.of_node, |
| "qcom,ldo-default-voltage", |
| &ldo_default_uV); |
| if (rc < 0) { |
| pr_err("ldo-default-voltage missing rc=%d\n", rc); |
| return rc; |
| } |
| if (!is_between(LDO_UV_MIN, LDO_UV_MAX, ldo_default_uV)) { |
| pr_err("bad ldo-default-voltage = %d specified\n", |
| ldo_default_uV); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(pdev->dev.of_node, |
| "qcom,ldo-threshold-voltage", |
| &ldo_threshold_uV); |
| if (rc < 0) { |
| pr_err("ldo-threshold-voltage missing rc=%d\n", rc); |
| return rc; |
| } |
| if (!is_between(LDO_TH_MIN, LDO_TH_MAX, ldo_threshold_uV)) { |
| pr_err("bad ldo-threshold-voltage = %d specified\n", |
| ldo_threshold_uV); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(pdev->dev.of_node, |
| "qcom,ldo-delta-voltage", |
| &ldo_delta_uV); |
| if (rc < 0) { |
| pr_err("ldo-delta-voltage missing rc=%d\n", rc); |
| return rc; |
| } |
| if (!is_between(LDO_DELTA_MIN, LDO_DELTA_MAX, ldo_delta_uV)) { |
| pr_err("bad ldo-delta-voltage = %d specified\n", |
| ldo_delta_uV); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(pdev->dev.of_node, |
| "qcom,cpu-num", |
| &cpu_num); |
| if (cpu_num > num_possible_cpus()) { |
| pr_err("bad cpu-num= %d specified\n", cpu_num); |
| return -EINVAL; |
| } |
| } |
| |
| if (!init_data) { |
| dev_err(&pdev->dev, "init data required.\n"); |
| return -EINVAL; |
| } |
| |
| if (!init_data->constraints.name) { |
| dev_err(&pdev->dev, |
| "regulator name must be specified in constraints.\n"); |
| return -EINVAL; |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acs"); |
| if (!res) { |
| dev_err(&pdev->dev, "missing physical register addresses\n"); |
| return -EINVAL; |
| } |
| |
| res_mdd = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mdd"); |
| if (!res_mdd) { |
| dev_err(&pdev->dev, "missing mdd register addresses\n"); |
| return -EINVAL; |
| } |
| |
| kvreg = devm_kzalloc(&pdev->dev, |
| sizeof(struct krait_power_vreg), GFP_KERNEL); |
| if (!kvreg) { |
| dev_err(&pdev->dev, "kzalloc failed.\n"); |
| return -ENOMEM; |
| } |
| |
| kvreg->reg_base = devm_ioremap(&pdev->dev, |
| res->start, resource_size(res)); |
| |
| kvreg->mdd_base = devm_ioremap(&pdev->dev, |
| res_mdd->start, resource_size(res)); |
| |
| kvreg->pvreg = the_gang; |
| kvreg->name = init_data->constraints.name; |
| kvreg->desc.name = kvreg->name; |
| kvreg->desc.ops = &krait_power_ops; |
| kvreg->desc.type = REGULATOR_VOLTAGE; |
| kvreg->desc.owner = THIS_MODULE; |
| kvreg->uV = CORE_VOLTAGE_BOOTUP; |
| kvreg->mode = HS_MODE; |
| kvreg->desc.ops = &krait_power_ops; |
| kvreg->headroom_uV = headroom_uV; |
| kvreg->retention_uV = retention_uV; |
| kvreg->ldo_default_uV = ldo_default_uV; |
| kvreg->ldo_threshold_uV = ldo_threshold_uV; |
| kvreg->ldo_delta_uV = ldo_delta_uV; |
| kvreg->cpu_num = cpu_num; |
| |
| platform_set_drvdata(pdev, kvreg); |
| |
| mutex_lock(&the_gang->krait_power_vregs_lock); |
| the_gang->pmic_min_uV_for_retention |
| = min(the_gang->pmic_min_uV_for_retention, |
| kvreg->retention_uV + kvreg->headroom_uV); |
| list_add_tail(&kvreg->link, &the_gang->krait_power_vregs); |
| mutex_unlock(&the_gang->krait_power_vregs_lock); |
| |
| online_at_probe(kvreg); |
| kvreg_ldo_voltage_init(kvreg); |
| |
| if (kvreg->cpu_num == 0) |
| kvreg_hw_init(kvreg); |
| |
| per_cpu(krait_vregs, cpu_num) = kvreg; |
| |
| kvreg->rdev = regulator_register(&kvreg->desc, &pdev->dev, init_data, |
| kvreg, pdev->dev.of_node); |
| if (IS_ERR(kvreg->rdev)) { |
| rc = PTR_ERR(kvreg->rdev); |
| pr_err("regulator_register failed, rc=%d.\n", rc); |
| goto out; |
| } |
| |
| dev_dbg(&pdev->dev, "id=%d, name=%s\n", pdev->id, kvreg->name); |
| |
| return 0; |
| out: |
| mutex_lock(&the_gang->krait_power_vregs_lock); |
| list_del(&kvreg->link); |
| mutex_unlock(&the_gang->krait_power_vregs_lock); |
| |
| platform_set_drvdata(pdev, NULL); |
| return rc; |
| } |
| |
| static int __devexit krait_power_remove(struct platform_device *pdev) |
| { |
| struct krait_power_vreg *kvreg = platform_get_drvdata(pdev); |
| struct pmic_gang_vreg *pvreg = kvreg->pvreg; |
| |
| mutex_lock(&pvreg->krait_power_vregs_lock); |
| list_del(&kvreg->link); |
| mutex_unlock(&pvreg->krait_power_vregs_lock); |
| |
| regulator_unregister(kvreg->rdev); |
| platform_set_drvdata(pdev, NULL); |
| return 0; |
| } |
| |
| static struct of_device_id krait_power_match_table[] = { |
| { .compatible = "qcom,krait-regulator", }, |
| {} |
| }; |
| |
| static struct platform_driver krait_power_driver = { |
| .probe = krait_power_probe, |
| .remove = __devexit_p(krait_power_remove), |
| .driver = { |
| .name = KRAIT_REGULATOR_DRIVER_NAME, |
| .of_match_table = krait_power_match_table, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static struct of_device_id krait_pdn_match_table[] = { |
| { .compatible = "qcom,krait-pdn", }, |
| {} |
| }; |
| |
| static int boot_cpu_mdd_off(void) |
| { |
| struct krait_power_vreg *kvreg = per_cpu(krait_vregs, 0); |
| |
| __krait_power_mdd_enable(kvreg, false); |
| return 0; |
| } |
| |
| static void boot_cpu_mdd_on(void) |
| { |
| struct krait_power_vreg *kvreg = per_cpu(krait_vregs, 0); |
| |
| __krait_power_mdd_enable(kvreg, true); |
| } |
| |
| static struct syscore_ops boot_cpu_mdd_ops = { |
| .suspend = boot_cpu_mdd_off, |
| .resume = boot_cpu_mdd_on, |
| }; |
| |
| static int __devinit krait_pdn_phase_scaling_init(struct pmic_gang_vreg *pvreg, |
| struct platform_device *pdev) |
| { |
| struct resource *res; |
| void __iomem *efuse; |
| u32 efuse_data, efuse_version; |
| bool scaling_factor_valid, use_efuse; |
| |
| use_efuse = of_property_read_bool(pdev->dev.of_node, |
| "qcom,use-phase-scaling-factor"); |
| /* |
| * Allow usage of the eFuse phase scaling factor if it is enabled in |
| * either device tree or by module parameter. |
| */ |
| use_efuse_phase_scaling_factor = use_efuse_phase_scaling_factor |
| || use_efuse; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| "phase-scaling-efuse"); |
| if (!res || !res->start) { |
| pr_err("phase scaling eFuse address is missing\n"); |
| return -EINVAL; |
| } |
| |
| efuse = ioremap(res->start, 8); |
| if (!efuse) { |
| pr_err("could not map phase scaling eFuse address\n"); |
| return -EINVAL; |
| } |
| |
| efuse_data = readl_relaxed(efuse); |
| efuse_version = readl_relaxed(efuse + 4); |
| |
| iounmap(efuse); |
| |
| scaling_factor_valid |
| = ((efuse_version & PHASE_SCALING_EFUSE_VERSION_MASK) >> |
| PHASE_SCALING_EFUSE_VERSION_POS) |
| == PHASE_SCALING_EFUSE_VERSION_SET; |
| |
| if (scaling_factor_valid) |
| pvreg->efuse_phase_scaling_factor |
| = ((efuse_data & PHASE_SCALING_EFUSE_VALUE_MASK) |
| >> PHASE_SCALING_EFUSE_VALUE_POS) + 1; |
| else |
| pvreg->efuse_phase_scaling_factor = PHASE_SCALING_REF; |
| |
| pr_info("eFuse phase scaling factor = %d/%d%s\n", |
| pvreg->efuse_phase_scaling_factor, PHASE_SCALING_REF, |
| scaling_factor_valid ? "" : " (eFuse not blown)"); |
| pr_info("initial phase scaling factor = %d/%d%s\n", |
| use_efuse_phase_scaling_factor |
| ? pvreg->efuse_phase_scaling_factor : PHASE_SCALING_REF, |
| PHASE_SCALING_REF, |
| use_efuse_phase_scaling_factor ? "" : " (ignoring eFuse)"); |
| |
| return 0; |
| } |
| |
| static int __devinit krait_pdn_probe(struct platform_device *pdev) |
| { |
| int rc; |
| bool use_phase_switching = false; |
| int pfm_threshold; |
| struct device *dev = &pdev->dev; |
| struct device_node *node = dev->of_node; |
| struct pmic_gang_vreg *pvreg; |
| struct resource *res; |
| |
| if (!dev->of_node) { |
| dev_err(dev, "device tree information missing\n"); |
| return -ENODEV; |
| } |
| |
| use_phase_switching = of_property_read_bool(node, |
| "qcom,use-phase-switching"); |
| |
| rc = of_property_read_u32(node, "qcom,pfm-threshold", &pfm_threshold); |
| if (rc < 0) { |
| dev_err(dev, "pfm-threshold missing rc=%d, pfm disabled\n", rc); |
| return -EINVAL; |
| } |
| |
| pvreg = devm_kzalloc(&pdev->dev, |
| sizeof(struct pmic_gang_vreg), GFP_KERNEL); |
| if (!pvreg) { |
| pr_err("kzalloc failed.\n"); |
| return 0; |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs_gcc"); |
| if (!res) { |
| dev_err(&pdev->dev, "missing apcs gcc base addresses\n"); |
| return -EINVAL; |
| } |
| |
| pvreg->apcs_gcc_base = devm_ioremap(&pdev->dev, res->start, |
| resource_size(res)); |
| |
| if (pvreg->apcs_gcc_base == NULL) |
| return -ENOMEM; |
| |
| rc = krait_pdn_phase_scaling_init(pvreg, pdev); |
| if (rc) |
| return rc; |
| |
| pvreg->name = "pmic_gang"; |
| pvreg->pmic_vmax_uV = PMIC_VOLTAGE_MIN; |
| pvreg->pmic_phase_count = -EINVAL; |
| pvreg->retention_enabled = true; |
| pvreg->pmic_min_uV_for_retention = INT_MAX; |
| pvreg->use_phase_switching = use_phase_switching; |
| pvreg->pfm_threshold = pfm_threshold; |
| |
| mutex_init(&pvreg->krait_power_vregs_lock); |
| INIT_LIST_HEAD(&pvreg->krait_power_vregs); |
| the_gang = pvreg; |
| |
| pr_debug("name=%s inited\n", pvreg->name); |
| |
| /* global initializtion */ |
| glb_init(pvreg->apcs_gcc_base); |
| |
| rc = of_platform_populate(node, NULL, NULL, dev); |
| if (rc) { |
| dev_err(dev, "failed to add child nodes, rc=%d\n", rc); |
| return rc; |
| } |
| |
| dent = debugfs_create_dir(KRAIT_REGULATOR_DRIVER_NAME, NULL); |
| debugfs_create_file("retention_uV", |
| 0644, dent, the_gang, &retention_fops); |
| register_syscore_ops(&boot_cpu_mdd_ops); |
| return 0; |
| } |
| |
| static int __devexit krait_pdn_remove(struct platform_device *pdev) |
| { |
| the_gang = NULL; |
| debugfs_remove_recursive(dent); |
| return 0; |
| } |
| |
| static struct platform_driver krait_pdn_driver = { |
| .probe = krait_pdn_probe, |
| .remove = __devexit_p(krait_pdn_remove), |
| .driver = { |
| .name = KRAIT_PDN_DRIVER_NAME, |
| .of_match_table = krait_pdn_match_table, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| int __init krait_power_init(void) |
| { |
| int rc = platform_driver_register(&krait_power_driver); |
| if (rc) { |
| pr_err("failed to add %s driver rc = %d\n", |
| KRAIT_REGULATOR_DRIVER_NAME, rc); |
| return rc; |
| } |
| |
| register_hotcpu_notifier(&krait_cpu_notifier); |
| return platform_driver_register(&krait_pdn_driver); |
| } |
| |
| static void __exit krait_power_exit(void) |
| { |
| unregister_hotcpu_notifier(&krait_cpu_notifier); |
| platform_driver_unregister(&krait_power_driver); |
| platform_driver_unregister(&krait_pdn_driver); |
| } |
| module_exit(krait_power_exit); |
| |
| #define GCC_BASE 0xF9011000 |
| |
| /** |
| * secondary_cpu_hs_init - Initialize BHS and LDO registers |
| * for nonboot cpu |
| * |
| * @base_ptr: address pointer to APC registers of a cpu |
| * @cpu: the cpu being brought out of reset |
| * |
| * seconday_cpu_hs_init() is called when a secondary cpu |
| * is being brought online for the first time. It is not |
| * called for boot cpu. It initializes power related |
| * registers and makes the core run from BHS. |
| * It also ends up turning on MDD which is required when the |
| * core switches to LDO mode |
| */ |
| void secondary_cpu_hs_init(void *base_ptr, int cpu) |
| { |
| uint32_t reg_val; |
| void *l2_saw_base; |
| void *gcc_base_ptr; |
| void *mdd_base; |
| struct krait_power_vreg *kvreg; |
| |
| /* Turn on the BHS, turn off LDO Bypass and power down LDO */ |
| reg_val = BHS_CNT_DEFAULT << BHS_CNT_BIT_POS |
| | LDO_PWR_DWN_MASK |
| | CLK_SRC_DEFAULT << CLK_SRC_SEL_BIT_POS |
| | BHS_EN_MASK; |
| writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL); |
| |
| if (version == 0) { |
| gcc_base_ptr = ioremap_nocache(GCC_BASE, SZ_4K); |
| version = readl_relaxed(gcc_base_ptr + VERSION); |
| iounmap(gcc_base_ptr); |
| } |
| |
| /* Turn on the BHS segments only for version < 2 */ |
| if (version <= KPSS_VERSION_2P0) { |
| /* complete the above write before the delay */ |
| mb(); |
| /* wait for the bhs to settle */ |
| udelay(BHS_SETTLING_DELAY_US); |
| |
| /* Turn on BHS segments */ |
| reg_val |= BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS; |
| writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL); |
| } |
| |
| /* complete the above write before the delay */ |
| mb(); |
| /* wait for the bhs to settle */ |
| udelay(BHS_SETTLING_DELAY_US); |
| |
| /* Finally turn on the bypass so that BHS supplies power */ |
| reg_val |= LDO_BYP_MASK; |
| writel_relaxed(reg_val, base_ptr + APC_PWR_GATE_CTL); |
| |
| kvreg = per_cpu(krait_vregs, cpu); |
| if (kvreg != NULL) { |
| kvreg_hw_init(kvreg); |
| } else { |
| /* |
| * This nonboot cpu has not been probed yet. This cpu was |
| * brought out of reset as a part of maxcpus >= 2. Initialize |
| * its MDD and APC_PWR_GATE_MODE register here |
| */ |
| mdd_base = ioremap_nocache(MSM_MDD_BASE_PHYS + cpu * 0x10000, |
| SZ_4K); |
| /* setup the bandgap that configures the reference to the LDO */ |
| writel_relaxed(0x00000190, mdd_base + MDD_CONFIG_CTL); |
| /* Enable MDD */ |
| writel_relaxed(0x00000002, mdd_base + MDD_MODE); |
| mb(); |
| iounmap(mdd_base); |
| |
| if (version > KPSS_VERSION_2P0) { |
| writel_relaxed(0x30430600, base_ptr + APC_PWR_GATE_DLY); |
| writel_relaxed(0x00000021, |
| base_ptr + APC_PWR_GATE_MODE); |
| } |
| mb(); |
| } |
| |
| if (!the_gang || !the_gang->manage_phases) { |
| /* |
| * If the driver has not yet started to manage phases then |
| * enable max phases. |
| */ |
| l2_saw_base = ioremap_nocache(MSM_L2_SAW_PHYS, SZ_4K); |
| if (l2_saw_base) { |
| writel_relaxed(0x10003, l2_saw_base + 0x1c); |
| mb(); |
| udelay(PHASE_SETTLING_TIME_US); |
| |
| iounmap(l2_saw_base); |
| } else { |
| __WARN(); |
| } |
| } |
| } |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("KRAIT POWER regulator driver"); |
| MODULE_ALIAS("platform:"KRAIT_REGULATOR_DRIVER_NAME); |