blob: 08dc696f54ee4543fe4aff4cf551f1f7253e2da3 [file] [log] [blame]
/*
* linux/arch/x86-64/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h> /* For unblank_screen() */
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include <asm/proto.h>
#include <asm/kdebug.h>
#include <asm-generic/sections.h>
/* Page fault error code bits */
#define PF_PROT (1<<0) /* or no page found */
#define PF_WRITE (1<<1)
#define PF_USER (1<<2)
#define PF_RSVD (1<<3)
#define PF_INSTR (1<<4)
#ifdef CONFIG_KPROBES
ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
/* Hook to register for page fault notifications */
int register_page_fault_notifier(struct notifier_block *nb)
{
vmalloc_sync_all();
return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
}
int unregister_page_fault_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
}
static inline int notify_page_fault(enum die_val val, const char *str,
struct pt_regs *regs, long err, int trap, int sig)
{
struct die_args args = {
.regs = regs,
.str = str,
.err = err,
.trapnr = trap,
.signr = sig
};
return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
}
#else
static inline int notify_page_fault(enum die_val val, const char *str,
struct pt_regs *regs, long err, int trap, int sig)
{
return NOTIFY_DONE;
}
#endif
void bust_spinlocks(int yes)
{
int loglevel_save = console_loglevel;
if (yes) {
oops_in_progress = 1;
} else {
#ifdef CONFIG_VT
unblank_screen();
#endif
oops_in_progress = 0;
/*
* OK, the message is on the console. Now we call printk()
* without oops_in_progress set so that printk will give klogd
* a poke. Hold onto your hats...
*/
console_loglevel = 15; /* NMI oopser may have shut the console up */
printk(" ");
console_loglevel = loglevel_save;
}
}
/* Sometimes the CPU reports invalid exceptions on prefetch.
Check that here and ignore.
Opcode checker based on code by Richard Brunner */
static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
unsigned long error_code)
{
unsigned char *instr;
int scan_more = 1;
int prefetch = 0;
unsigned char *max_instr;
/* If it was a exec fault ignore */
if (error_code & PF_INSTR)
return 0;
instr = (unsigned char *)convert_rip_to_linear(current, regs);
max_instr = instr + 15;
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
return 0;
while (scan_more && instr < max_instr) {
unsigned char opcode;
unsigned char instr_hi;
unsigned char instr_lo;
if (__get_user(opcode, instr))
break;
instr_hi = opcode & 0xf0;
instr_lo = opcode & 0x0f;
instr++;
switch (instr_hi) {
case 0x20:
case 0x30:
/* Values 0x26,0x2E,0x36,0x3E are valid x86
prefixes. In long mode, the CPU will signal
invalid opcode if some of these prefixes are
present so we will never get here anyway */
scan_more = ((instr_lo & 7) == 0x6);
break;
case 0x40:
/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
Need to figure out under what instruction mode the
instruction was issued ... */
/* Could check the LDT for lm, but for now it's good
enough to assume that long mode only uses well known
segments or kernel. */
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
break;
case 0x60:
/* 0x64 thru 0x67 are valid prefixes in all modes. */
scan_more = (instr_lo & 0xC) == 0x4;
break;
case 0xF0:
/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
scan_more = !instr_lo || (instr_lo>>1) == 1;
break;
case 0x00:
/* Prefetch instruction is 0x0F0D or 0x0F18 */
scan_more = 0;
if (__get_user(opcode, instr))
break;
prefetch = (instr_lo == 0xF) &&
(opcode == 0x0D || opcode == 0x18);
break;
default:
scan_more = 0;
break;
}
}
return prefetch;
}
static int bad_address(void *p)
{
unsigned long dummy;
return __get_user(dummy, (unsigned long *)p);
}
void dump_pagetable(unsigned long address)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
asm("movq %%cr3,%0" : "=r" (pgd));
pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
pgd += pgd_index(address);
if (bad_address(pgd)) goto bad;
printk("PGD %lx ", pgd_val(*pgd));
if (!pgd_present(*pgd)) goto ret;
pud = pud_offset(pgd, address);
if (bad_address(pud)) goto bad;
printk("PUD %lx ", pud_val(*pud));
if (!pud_present(*pud)) goto ret;
pmd = pmd_offset(pud, address);
if (bad_address(pmd)) goto bad;
printk("PMD %lx ", pmd_val(*pmd));
if (!pmd_present(*pmd)) goto ret;
pte = pte_offset_kernel(pmd, address);
if (bad_address(pte)) goto bad;
printk("PTE %lx", pte_val(*pte));
ret:
printk("\n");
return;
bad:
printk("BAD\n");
}
static const char errata93_warning[] =
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
KERN_ERR "******* Please consider a BIOS update.\n"
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
/* Workaround for K8 erratum #93 & buggy BIOS.
BIOS SMM functions are required to use a specific workaround
to avoid corruption of the 64bit RIP register on C stepping K8.
A lot of BIOS that didn't get tested properly miss this.
The OS sees this as a page fault with the upper 32bits of RIP cleared.
Try to work around it here.
Note we only handle faults in kernel here. */
static int is_errata93(struct pt_regs *regs, unsigned long address)
{
static int warned;
if (address != regs->rip)
return 0;
if ((address >> 32) != 0)
return 0;
address |= 0xffffffffUL << 32;
if ((address >= (u64)_stext && address <= (u64)_etext) ||
(address >= MODULES_VADDR && address <= MODULES_END)) {
if (!warned) {
printk(errata93_warning);
warned = 1;
}
regs->rip = address;
return 1;
}
return 0;
}
int unhandled_signal(struct task_struct *tsk, int sig)
{
if (tsk->pid == 1)
return 1;
if (tsk->ptrace & PT_PTRACED)
return 0;
return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
}
static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
unsigned long error_code)
{
unsigned long flags = oops_begin();
struct task_struct *tsk;
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
current->comm, address);
dump_pagetable(address);
tsk = current;
tsk->thread.cr2 = address;
tsk->thread.trap_no = 14;
tsk->thread.error_code = error_code;
__die("Bad pagetable", regs, error_code);
oops_end(flags);
do_exit(SIGKILL);
}
/*
* Handle a fault on the vmalloc area
*
* This assumes no large pages in there.
*/
static int vmalloc_fault(unsigned long address)
{
pgd_t *pgd, *pgd_ref;
pud_t *pud, *pud_ref;
pmd_t *pmd, *pmd_ref;
pte_t *pte, *pte_ref;
/* Copy kernel mappings over when needed. This can also
happen within a race in page table update. In the later
case just flush. */
pgd = pgd_offset(current->mm ?: &init_mm, address);
pgd_ref = pgd_offset_k(address);
if (pgd_none(*pgd_ref))
return -1;
if (pgd_none(*pgd))
set_pgd(pgd, *pgd_ref);
else
BUG_ON(pgd_page(*pgd) != pgd_page(*pgd_ref));
/* Below here mismatches are bugs because these lower tables
are shared */
pud = pud_offset(pgd, address);
pud_ref = pud_offset(pgd_ref, address);
if (pud_none(*pud_ref))
return -1;
if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref))
BUG();
pmd = pmd_offset(pud, address);
pmd_ref = pmd_offset(pud_ref, address);
if (pmd_none(*pmd_ref))
return -1;
if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
BUG();
pte_ref = pte_offset_kernel(pmd_ref, address);
if (!pte_present(*pte_ref))
return -1;
pte = pte_offset_kernel(pmd, address);
/* Don't use pte_page here, because the mappings can point
outside mem_map, and the NUMA hash lookup cannot handle
that. */
if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
BUG();
return 0;
}
int page_fault_trace = 0;
int exception_trace = 1;
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*/
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
unsigned long error_code)
{
struct task_struct *tsk;
struct mm_struct *mm;
struct vm_area_struct * vma;
unsigned long address;
const struct exception_table_entry *fixup;
int write;
unsigned long flags;
siginfo_t info;
tsk = current;
mm = tsk->mm;
prefetchw(&mm->mmap_sem);
/* get the address */
__asm__("movq %%cr2,%0":"=r" (address));
info.si_code = SEGV_MAPERR;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & 4) == 0, and that the fault was not a
* protection error (error_code & 9) == 0.
*/
if (unlikely(address >= TASK_SIZE64)) {
/*
* Don't check for the module range here: its PML4
* is always initialized because it's shared with the main
* kernel text. Only vmalloc may need PML4 syncups.
*/
if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
((address >= VMALLOC_START && address < VMALLOC_END))) {
if (vmalloc_fault(address) >= 0)
return;
}
if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
SIGSEGV) == NOTIFY_STOP)
return;
/*
* Don't take the mm semaphore here. If we fixup a prefetch
* fault we could otherwise deadlock.
*/
goto bad_area_nosemaphore;
}
if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
SIGSEGV) == NOTIFY_STOP)
return;
if (likely(regs->eflags & X86_EFLAGS_IF))
local_irq_enable();
if (unlikely(page_fault_trace))
printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
if (unlikely(error_code & PF_RSVD))
pgtable_bad(address, regs, error_code);
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
if (unlikely(in_atomic() || !mm))
goto bad_area_nosemaphore;
again:
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunatly, in the case of an
* erroneous fault occuring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibilty of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if ((error_code & PF_USER) == 0 &&
!search_exception_tables(regs->rip))
goto bad_area_nosemaphore;
down_read(&mm->mmap_sem);
}
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (likely(vma->vm_start <= address))
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (error_code & 4) {
/* Allow userspace just enough access below the stack pointer
* to let the 'enter' instruction work.
*/
if (address + 65536 + 32 * sizeof(unsigned long) < regs->rsp)
goto bad_area;
}
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
info.si_code = SEGV_ACCERR;
write = 0;
switch (error_code & (PF_PROT|PF_WRITE)) {
default: /* 3: write, present */
/* fall through */
case PF_WRITE: /* write, not present */
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
write++;
break;
case PF_PROT: /* read, present */
goto bad_area;
case 0: /* read, not present */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
switch (handle_mm_fault(mm, vma, address, write)) {
case VM_FAULT_MINOR:
tsk->min_flt++;
break;
case VM_FAULT_MAJOR:
tsk->maj_flt++;
break;
case VM_FAULT_SIGBUS:
goto do_sigbus;
default:
goto out_of_memory;
}
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (error_code & PF_USER) {
if (is_prefetch(regs, address, error_code))
return;
/* Work around K8 erratum #100 K8 in compat mode
occasionally jumps to illegal addresses >4GB. We
catch this here in the page fault handler because
these addresses are not reachable. Just detect this
case and return. Any code segment in LDT is
compatibility mode. */
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
(address >> 32))
return;
if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
printk(
"%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
tsk->comm, tsk->pid, address, regs->rip,
regs->rsp, error_code);
}
tsk->thread.cr2 = address;
/* Kernel addresses are always protection faults */
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
tsk->thread.trap_no = 14;
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* info.si_code has been set above */
info.si_addr = (void __user *)address;
force_sig_info(SIGSEGV, &info, tsk);
return;
}
no_context:
/* Are we prepared to handle this kernel fault? */
fixup = search_exception_tables(regs->rip);
if (fixup) {
regs->rip = fixup->fixup;
return;
}
/*
* Hall of shame of CPU/BIOS bugs.
*/
if (is_prefetch(regs, address, error_code))
return;
if (is_errata93(regs, address))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*/
flags = oops_begin();
if (address < PAGE_SIZE)
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
else
printk(KERN_ALERT "Unable to handle kernel paging request");
printk(" at %016lx RIP: \n" KERN_ALERT,address);
printk_address(regs->rip);
printk("\n");
dump_pagetable(address);
tsk->thread.cr2 = address;
tsk->thread.trap_no = 14;
tsk->thread.error_code = error_code;
__die("Oops", regs, error_code);
/* Executive summary in case the body of the oops scrolled away */
printk(KERN_EMERG "CR2: %016lx\n", address);
oops_end(flags);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (current->pid == 1) {
yield();
goto again;
}
printk("VM: killing process %s\n", tsk->comm);
if (error_code & 4)
do_exit(SIGKILL);
goto no_context;
do_sigbus:
up_read(&mm->mmap_sem);
/* Kernel mode? Handle exceptions or die */
if (!(error_code & PF_USER))
goto no_context;
tsk->thread.cr2 = address;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 14;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)address;
force_sig_info(SIGBUS, &info, tsk);
return;
}
DEFINE_SPINLOCK(pgd_lock);
struct page *pgd_list;
void vmalloc_sync_all(void)
{
/* Note that races in the updates of insync and start aren't
problematic:
insync can only get set bits added, and updates to start are only
improving performance (without affecting correctness if undone). */
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
static unsigned long start = VMALLOC_START & PGDIR_MASK;
unsigned long address;
for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
if (!test_bit(pgd_index(address), insync)) {
const pgd_t *pgd_ref = pgd_offset_k(address);
struct page *page;
if (pgd_none(*pgd_ref))
continue;
spin_lock(&pgd_lock);
for (page = pgd_list; page;
page = (struct page *)page->index) {
pgd_t *pgd;
pgd = (pgd_t *)page_address(page) + pgd_index(address);
if (pgd_none(*pgd))
set_pgd(pgd, *pgd_ref);
else
BUG_ON(pgd_page(*pgd) != pgd_page(*pgd_ref));
}
spin_unlock(&pgd_lock);
set_bit(pgd_index(address), insync);
}
if (address == start)
start = address + PGDIR_SIZE;
}
/* Check that there is no need to do the same for the modules area. */
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
(__START_KERNEL & PGDIR_MASK)));
}
static int __init enable_pagefaulttrace(char *str)
{
page_fault_trace = 1;
return 1;
}
__setup("pagefaulttrace", enable_pagefaulttrace);