blob: 40ef20e98f95625c2e08ce628579a7b37064df82 [file] [log] [blame]
/* arch/arm/mach-msm/smd.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2008-2013, The Linux Foundation. All rights reserved.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/termios.h>
#include <linux/ctype.h>
#include <linux/remote_spinlock.h>
#include <linux/uaccess.h>
#include <linux/kfifo.h>
#include <linux/wakelock.h>
#include <linux/notifier.h>
#include <linux/sort.h>
#include <linux/suspend.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <mach/msm_smd.h>
#include <mach/msm_iomap.h>
#include <mach/system.h>
#include <mach/subsystem_notif.h>
#include <mach/socinfo.h>
#include <mach/proc_comm.h>
#include <mach/msm_ipc_logging.h>
#include <asm/cacheflush.h>
#include "smd_private.h"
#include "modem_notifier.h"
#include "ramdump.h"
#if defined(CONFIG_ARCH_QSD8X50) || defined(CONFIG_ARCH_MSM8X60) \
|| defined(CONFIG_ARCH_MSM8960) || defined(CONFIG_ARCH_FSM9XXX) \
|| defined(CONFIG_ARCH_MSM9615) || defined(CONFIG_ARCH_APQ8064)
#define CONFIG_QDSP6 1
#endif
#if defined(CONFIG_ARCH_MSM8X60) || defined(CONFIG_ARCH_MSM8960) \
|| defined(CONFIG_ARCH_APQ8064)
#define CONFIG_DSPS 1
#endif
#if defined(CONFIG_ARCH_MSM8960) \
|| defined(CONFIG_ARCH_APQ8064)
#define CONFIG_WCNSS 1
#define CONFIG_DSPS_SMSM 1
#endif
#define MODULE_NAME "msm_smd"
#define SMEM_VERSION 0x000B
#define SMD_VERSION 0x00020000
#define SMSM_SNAPSHOT_CNT 64
#define SMSM_SNAPSHOT_SIZE ((SMSM_NUM_ENTRIES + 1) * 4)
#define RSPIN_INIT_WAIT_MS 1000
uint32_t SMSM_NUM_ENTRIES = 8;
uint32_t SMSM_NUM_HOSTS = 3;
/* Legacy SMSM interrupt notifications */
#define LEGACY_MODEM_SMSM_MASK (SMSM_RESET | SMSM_INIT | SMSM_SMDINIT \
| SMSM_RUN | SMSM_SYSTEM_DOWNLOAD)
enum {
MSM_SMD_DEBUG = 1U << 0,
MSM_SMSM_DEBUG = 1U << 1,
MSM_SMD_INFO = 1U << 2,
MSM_SMSM_INFO = 1U << 3,
MSM_SMx_POWER_INFO = 1U << 4,
};
struct smsm_shared_info {
uint32_t *state;
uint32_t *intr_mask;
uint32_t *intr_mux;
};
static struct smsm_shared_info smsm_info;
static struct kfifo smsm_snapshot_fifo;
static struct wake_lock smsm_snapshot_wakelock;
static int smsm_snapshot_count;
static DEFINE_SPINLOCK(smsm_snapshot_count_lock);
struct smsm_size_info_type {
uint32_t num_hosts;
uint32_t num_entries;
uint32_t reserved0;
uint32_t reserved1;
};
struct smsm_state_cb_info {
struct list_head cb_list;
uint32_t mask;
void *data;
void (*notify)(void *data, uint32_t old_state, uint32_t new_state);
};
struct smsm_state_info {
struct list_head callbacks;
uint32_t last_value;
uint32_t intr_mask_set;
uint32_t intr_mask_clear;
};
struct interrupt_config_item {
/* must be initialized */
irqreturn_t (*irq_handler)(int req, void *data);
/* outgoing interrupt config (set from platform data) */
uint32_t out_bit_pos;
void __iomem *out_base;
uint32_t out_offset;
int irq_id;
};
struct interrupt_config {
struct interrupt_config_item smd;
struct interrupt_config_item smsm;
};
static irqreturn_t smd_modem_irq_handler(int irq, void *data);
static irqreturn_t smsm_modem_irq_handler(int irq, void *data);
static irqreturn_t smd_dsp_irq_handler(int irq, void *data);
static irqreturn_t smsm_dsp_irq_handler(int irq, void *data);
static irqreturn_t smd_dsps_irq_handler(int irq, void *data);
static irqreturn_t smsm_dsps_irq_handler(int irq, void *data);
static irqreturn_t smd_wcnss_irq_handler(int irq, void *data);
static irqreturn_t smsm_wcnss_irq_handler(int irq, void *data);
static irqreturn_t smd_rpm_irq_handler(int irq, void *data);
static irqreturn_t smsm_irq_handler(int irq, void *data);
static struct interrupt_config private_intr_config[NUM_SMD_SUBSYSTEMS] = {
[SMD_MODEM] = {
.smd.irq_handler = smd_modem_irq_handler,
.smsm.irq_handler = smsm_modem_irq_handler,
},
[SMD_Q6] = {
.smd.irq_handler = smd_dsp_irq_handler,
.smsm.irq_handler = smsm_dsp_irq_handler,
},
[SMD_DSPS] = {
.smd.irq_handler = smd_dsps_irq_handler,
.smsm.irq_handler = smsm_dsps_irq_handler,
},
[SMD_WCNSS] = {
.smd.irq_handler = smd_wcnss_irq_handler,
.smsm.irq_handler = smsm_wcnss_irq_handler,
},
[SMD_RPM] = {
.smd.irq_handler = smd_rpm_irq_handler,
.smsm.irq_handler = NULL, /* does not support smsm */
},
};
struct smem_area {
phys_addr_t phys_addr;
resource_size_t size;
void __iomem *virt_addr;
};
static uint32_t num_smem_areas;
static struct smem_area *smem_areas;
static struct ramdump_segment *smem_ramdump_segments;
static void *smem_ramdump_dev;
static void *smem_range_check(phys_addr_t base, unsigned offset);
static void *smd_dev;
struct interrupt_stat interrupt_stats[NUM_SMD_SUBSYSTEMS];
#define SMSM_STATE_ADDR(entry) (smsm_info.state + entry)
#define SMSM_INTR_MASK_ADDR(entry, host) (smsm_info.intr_mask + \
entry * SMSM_NUM_HOSTS + host)
#define SMSM_INTR_MUX_ADDR(entry) (smsm_info.intr_mux + entry)
/* Internal definitions which are not exported in some targets */
enum {
SMSM_APPS_DEM_I = 3,
};
static int msm_smd_debug_mask = MSM_SMx_POWER_INFO;
module_param_named(debug_mask, msm_smd_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
static void *smd_log_ctx;
#define NUM_LOG_PAGES 4
#define IPC_LOG(level, x...) do { \
if (smd_log_ctx) \
ipc_log_string(smd_log_ctx, x); \
else \
printk(level x); \
} while (0)
#if defined(CONFIG_MSM_SMD_DEBUG)
#define SMD_DBG(x...) do { \
if (msm_smd_debug_mask & MSM_SMD_DEBUG) \
IPC_LOG(KERN_DEBUG, x); \
} while (0)
#define SMSM_DBG(x...) do { \
if (msm_smd_debug_mask & MSM_SMSM_DEBUG) \
IPC_LOG(KERN_DEBUG, x); \
} while (0)
#define SMD_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMD_INFO) \
IPC_LOG(KERN_INFO, x); \
} while (0)
#define SMSM_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMSM_INFO) \
IPC_LOG(KERN_INFO, x); \
} while (0)
#define SMx_POWER_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMx_POWER_INFO) \
IPC_LOG(KERN_INFO, x); \
} while (0)
#else
#define SMD_DBG(x...) do { } while (0)
#define SMSM_DBG(x...) do { } while (0)
#define SMD_INFO(x...) do { } while (0)
#define SMSM_INFO(x...) do { } while (0)
#define SMx_POWER_INFO(x...) do { } while (0)
#endif
static unsigned last_heap_free = 0xffffffff;
static inline void smd_write_intr(unsigned int val,
const void __iomem *addr);
#if defined(CONFIG_ARCH_MSM7X30)
#define MSM_TRIG_A2M_SMD_INT \
(smd_write_intr(1 << 0, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMD_INT \
(smd_write_intr(1 << 8, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2M_SMSM_INT \
(smd_write_intr(1 << 5, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMSM_INT \
(smd_write_intr(1 << 8, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2DSPS_SMD_INT
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#elif defined(CONFIG_ARCH_MSM8X60)
#define MSM_TRIG_A2M_SMD_INT \
(smd_write_intr(1 << 3, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMD_INT \
(smd_write_intr(1 << 15, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2M_SMSM_INT \
(smd_write_intr(1 << 4, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMSM_INT \
(smd_write_intr(1 << 14, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2DSPS_SMD_INT \
(smd_write_intr(1, MSM_SIC_NON_SECURE_BASE + 0x4080))
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#elif defined(CONFIG_ARCH_MSM9615)
#define MSM_TRIG_A2M_SMD_INT \
(smd_write_intr(1 << 3, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMD_INT \
(smd_write_intr(1 << 15, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2M_SMSM_INT \
(smd_write_intr(1 << 4, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMSM_INT \
(smd_write_intr(1 << 14, MSM_APCS_GCC_BASE + 0x8))
#define MSM_TRIG_A2DSPS_SMD_INT
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#elif defined(CONFIG_ARCH_FSM9XXX)
#define MSM_TRIG_A2Q6_SMD_INT \
(smd_write_intr(1 << 10, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2Q6_SMSM_INT \
(smd_write_intr(1 << 10, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2M_SMD_INT \
(smd_write_intr(1 << 0, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2M_SMSM_INT \
(smd_write_intr(1 << 5, MSM_GCC_BASE + 0x8))
#define MSM_TRIG_A2DSPS_SMD_INT
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#elif defined(CONFIG_ARCH_MSM7X01A) || defined(CONFIG_ARCH_MSM7x25)
#define MSM_TRIG_A2M_SMD_INT \
(smd_write_intr(1, MSM_CSR_BASE + 0x400 + (0) * 4))
#define MSM_TRIG_A2Q6_SMD_INT
#define MSM_TRIG_A2M_SMSM_INT \
(smd_write_intr(1, MSM_CSR_BASE + 0x400 + (5) * 4))
#define MSM_TRIG_A2Q6_SMSM_INT
#define MSM_TRIG_A2DSPS_SMD_INT
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#elif defined(CONFIG_ARCH_MSM7X27) || defined(CONFIG_ARCH_MSM7X27A)
#define MSM_TRIG_A2M_SMD_INT \
(smd_write_intr(1, MSM_CSR_BASE + 0x400 + (0) * 4))
#define MSM_TRIG_A2Q6_SMD_INT
#define MSM_TRIG_A2M_SMSM_INT \
(smd_write_intr(1, MSM_CSR_BASE + 0x400 + (5) * 4))
#define MSM_TRIG_A2Q6_SMSM_INT
#define MSM_TRIG_A2DSPS_SMD_INT
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#else /* use platform device / device tree configuration */
#define MSM_TRIG_A2M_SMD_INT
#define MSM_TRIG_A2Q6_SMD_INT
#define MSM_TRIG_A2M_SMSM_INT
#define MSM_TRIG_A2Q6_SMSM_INT
#define MSM_TRIG_A2DSPS_SMD_INT
#define MSM_TRIG_A2DSPS_SMSM_INT
#define MSM_TRIG_A2WCNSS_SMD_INT
#define MSM_TRIG_A2WCNSS_SMSM_INT
#endif
/*
* stub out legacy macros if they are not being used so that the legacy
* code compiles even though it is not used
*
* these definitions should not be used in active code and will cause
* an early failure
*/
#ifndef INT_A9_M2A_0
#define INT_A9_M2A_0 -1
#endif
#ifndef INT_A9_M2A_5
#define INT_A9_M2A_5 -1
#endif
#ifndef INT_ADSP_A11
#define INT_ADSP_A11 -1
#endif
#ifndef INT_ADSP_A11_SMSM
#define INT_ADSP_A11_SMSM -1
#endif
#ifndef INT_DSPS_A11
#define INT_DSPS_A11 -1
#endif
#ifndef INT_DSPS_A11_SMSM
#define INT_DSPS_A11_SMSM -1
#endif
#ifndef INT_WCNSS_A11
#define INT_WCNSS_A11 -1
#endif
#ifndef INT_WCNSS_A11_SMSM
#define INT_WCNSS_A11_SMSM -1
#endif
#define SMD_LOOPBACK_CID 100
#define SMEM_SPINLOCK_SMEM_ALLOC "S:3"
static remote_spinlock_t remote_spinlock;
static LIST_HEAD(smd_ch_list_loopback);
static void smd_fake_irq_handler(unsigned long arg);
static void smsm_cb_snapshot(uint32_t use_wakelock);
static struct workqueue_struct *smsm_cb_wq;
static void notify_smsm_cb_clients_worker(struct work_struct *work);
static DECLARE_WORK(smsm_cb_work, notify_smsm_cb_clients_worker);
static DEFINE_MUTEX(smsm_lock);
static struct smsm_state_info *smsm_states;
static int spinlocks_initialized;
/**
* Variables to indicate smd module initialization.
* Dependents to register for smd module init notifier.
*/
static int smd_module_inited;
static RAW_NOTIFIER_HEAD(smd_module_init_notifier_list);
static DEFINE_MUTEX(smd_module_init_notifier_lock);
static void smd_module_init_notify(uint32_t state, void *data);
static int smd_stream_write_avail(struct smd_channel *ch);
static int smd_stream_read_avail(struct smd_channel *ch);
static inline void smd_write_intr(unsigned int val,
const void __iomem *addr)
{
wmb();
__raw_writel(val, addr);
}
static inline void log_notify(uint32_t subsystem, smd_channel_t *ch)
{
const char *subsys = smd_edge_to_subsystem(subsystem);
(void) subsys;
if (!ch)
SMx_POWER_INFO("Apps->%s\n", subsys);
else
SMx_POWER_INFO(
"Apps->%s ch%d '%s': tx%d/rx%d %dr/%dw : %dr/%dw\n",
subsys, ch->n, ch->name,
ch->fifo_size -
(smd_stream_write_avail(ch) + 1),
smd_stream_read_avail(ch),
ch->half_ch->get_tail(ch->send),
ch->half_ch->get_head(ch->send),
ch->half_ch->get_tail(ch->recv),
ch->half_ch->get_head(ch->recv)
);
}
static inline void notify_modem_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_MODEM].smd;
log_notify(SMD_APPS_MODEM, ch);
if (intr->out_base) {
++interrupt_stats[SMD_MODEM].smd_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_MODEM].smd_out_hardcode_count;
MSM_TRIG_A2M_SMD_INT;
}
}
static inline void notify_dsp_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_Q6].smd;
log_notify(SMD_APPS_QDSP, ch);
if (intr->out_base) {
++interrupt_stats[SMD_Q6].smd_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_Q6].smd_out_hardcode_count;
MSM_TRIG_A2Q6_SMD_INT;
}
}
static inline void notify_dsps_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_DSPS].smd;
log_notify(SMD_APPS_DSPS, ch);
if (intr->out_base) {
++interrupt_stats[SMD_DSPS].smd_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_DSPS].smd_out_hardcode_count;
MSM_TRIG_A2DSPS_SMD_INT;
}
}
static inline void notify_wcnss_smd(struct smd_channel *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_WCNSS].smd;
log_notify(SMD_APPS_WCNSS, ch);
if (intr->out_base) {
++interrupt_stats[SMD_WCNSS].smd_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_WCNSS].smd_out_hardcode_count;
MSM_TRIG_A2WCNSS_SMD_INT;
}
}
static inline void notify_rpm_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_RPM].smd;
if (intr->out_base) {
log_notify(SMD_APPS_RPM, ch);
++interrupt_stats[SMD_RPM].smd_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_modem_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_MODEM].smsm;
if (intr->out_base) {
++interrupt_stats[SMD_MODEM].smsm_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_MODEM].smsm_out_hardcode_count;
MSM_TRIG_A2M_SMSM_INT;
}
}
static inline void notify_dsp_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_Q6].smsm;
if (intr->out_base) {
++interrupt_stats[SMD_Q6].smsm_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_Q6].smsm_out_hardcode_count;
MSM_TRIG_A2Q6_SMSM_INT;
}
}
static inline void notify_dsps_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_DSPS].smsm;
if (intr->out_base) {
++interrupt_stats[SMD_DSPS].smsm_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_DSPS].smsm_out_hardcode_count;
MSM_TRIG_A2DSPS_SMSM_INT;
}
}
static inline void notify_wcnss_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_WCNSS].smsm;
if (intr->out_base) {
++interrupt_stats[SMD_WCNSS].smsm_out_config_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
} else {
++interrupt_stats[SMD_WCNSS].smsm_out_hardcode_count;
MSM_TRIG_A2WCNSS_SMSM_INT;
}
}
static void notify_other_smsm(uint32_t smsm_entry, uint32_t notify_mask)
{
/* older protocol don't use smsm_intr_mask,
but still communicates with modem */
if (!smsm_info.intr_mask ||
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_MODEM))
& notify_mask))
notify_modem_smsm();
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_Q6))
& notify_mask)) {
uint32_t mux_val;
if (cpu_is_qsd8x50() && smsm_info.intr_mux) {
mux_val = __raw_readl(
SMSM_INTR_MUX_ADDR(SMEM_APPS_Q6_SMSM));
mux_val++;
__raw_writel(mux_val,
SMSM_INTR_MUX_ADDR(SMEM_APPS_Q6_SMSM));
}
notify_dsp_smsm();
}
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_WCNSS))
& notify_mask)) {
notify_wcnss_smsm();
}
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_DSPS))
& notify_mask)) {
notify_dsps_smsm();
}
/*
* Notify local SMSM callback clients without wakelock since this
* code is used by power management during power-down/-up sequencing
* on DEM-based targets. Grabbing a wakelock in this case will
* abort the power-down sequencing.
*/
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS))
& notify_mask)) {
smsm_cb_snapshot(0);
}
}
static int smsm_pm_notifier(struct notifier_block *nb,
unsigned long event, void *unused)
{
switch (event) {
case PM_SUSPEND_PREPARE:
smsm_change_state(SMSM_APPS_STATE, SMSM_PROC_AWAKE, 0);
break;
case PM_POST_SUSPEND:
smsm_change_state(SMSM_APPS_STATE, 0, SMSM_PROC_AWAKE);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block smsm_pm_nb = {
.notifier_call = smsm_pm_notifier,
.priority = 0,
};
void smd_diag(void)
{
char *x;
int size;
x = smem_find(ID_DIAG_ERR_MSG, SZ_DIAG_ERR_MSG);
if (x != 0) {
x[SZ_DIAG_ERR_MSG - 1] = 0;
SMD_INFO("smem: DIAG '%s'\n", x);
}
x = smem_get_entry(SMEM_ERR_CRASH_LOG, &size);
if (x != 0) {
x[size - 1] = 0;
pr_err("smem: CRASH LOG\n'%s'\n", x);
}
}
static void handle_modem_crash(void)
{
pr_err("MODEM/AMSS has CRASHED\n");
smd_diag();
/* hard reboot if possible FIXME
if (msm_reset_hook)
msm_reset_hook();
*/
/* in this case the modem or watchdog should reboot us */
for (;;)
;
}
int smsm_check_for_modem_crash(void)
{
/* if the modem's not ready yet, we have to hope for the best */
if (!smsm_info.state)
return 0;
if (__raw_readl(SMSM_STATE_ADDR(SMSM_MODEM_STATE)) & SMSM_RESET) {
handle_modem_crash();
return -1;
}
return 0;
}
EXPORT_SYMBOL(smsm_check_for_modem_crash);
/* the spinlock is used to synchronize between the
* irq handler and code that mutates the channel
* list or fiddles with channel state
*/
static DEFINE_SPINLOCK(smd_lock);
DEFINE_SPINLOCK(smem_lock);
/* the mutex is used during open() and close()
* operations to avoid races while creating or
* destroying smd_channel structures
*/
static DEFINE_MUTEX(smd_creation_mutex);
static int smd_initialized;
struct smd_shared_v1 {
struct smd_half_channel ch0;
unsigned char data0[SMD_BUF_SIZE];
struct smd_half_channel ch1;
unsigned char data1[SMD_BUF_SIZE];
};
struct smd_shared_v2 {
struct smd_half_channel ch0;
struct smd_half_channel ch1;
};
struct smd_shared_v2_word_access {
struct smd_half_channel_word_access ch0;
struct smd_half_channel_word_access ch1;
};
struct edge_to_pid {
uint32_t local_pid;
uint32_t remote_pid;
char subsys_name[SMD_MAX_CH_NAME_LEN];
};
/**
* Maps edge type to local and remote processor ID's.
*/
static struct edge_to_pid edge_to_pids[] = {
[SMD_APPS_MODEM] = {SMD_APPS, SMD_MODEM, "modem"},
[SMD_APPS_QDSP] = {SMD_APPS, SMD_Q6, "adsp"},
[SMD_MODEM_QDSP] = {SMD_MODEM, SMD_Q6},
[SMD_APPS_DSPS] = {SMD_APPS, SMD_DSPS, "dsps"},
[SMD_MODEM_DSPS] = {SMD_MODEM, SMD_DSPS},
[SMD_QDSP_DSPS] = {SMD_Q6, SMD_DSPS},
[SMD_APPS_WCNSS] = {SMD_APPS, SMD_WCNSS, "wcnss"},
[SMD_MODEM_WCNSS] = {SMD_MODEM, SMD_WCNSS},
[SMD_QDSP_WCNSS] = {SMD_Q6, SMD_WCNSS},
[SMD_DSPS_WCNSS] = {SMD_DSPS, SMD_WCNSS},
[SMD_APPS_Q6FW] = {SMD_APPS, SMD_MODEM_Q6_FW},
[SMD_MODEM_Q6FW] = {SMD_MODEM, SMD_MODEM_Q6_FW},
[SMD_QDSP_Q6FW] = {SMD_Q6, SMD_MODEM_Q6_FW},
[SMD_DSPS_Q6FW] = {SMD_DSPS, SMD_MODEM_Q6_FW},
[SMD_WCNSS_Q6FW] = {SMD_WCNSS, SMD_MODEM_Q6_FW},
[SMD_APPS_RPM] = {SMD_APPS, SMD_RPM},
[SMD_MODEM_RPM] = {SMD_MODEM, SMD_RPM},
[SMD_QDSP_RPM] = {SMD_Q6, SMD_RPM},
[SMD_WCNSS_RPM] = {SMD_WCNSS, SMD_RPM},
};
struct restart_notifier_block {
unsigned processor;
char *name;
struct notifier_block nb;
};
static int disable_smsm_reset_handshake;
static struct platform_device loopback_tty_pdev = {.name = "LOOPBACK_TTY"};
static LIST_HEAD(smd_ch_closed_list);
static LIST_HEAD(smd_ch_closing_list);
static LIST_HEAD(smd_ch_to_close_list);
static LIST_HEAD(smd_ch_list_modem);
static LIST_HEAD(smd_ch_list_dsp);
static LIST_HEAD(smd_ch_list_dsps);
static LIST_HEAD(smd_ch_list_wcnss);
static LIST_HEAD(smd_ch_list_rpm);
static unsigned char smd_ch_allocated[64];
static struct work_struct probe_work;
static void finalize_channel_close_fn(struct work_struct *work);
static DECLARE_WORK(finalize_channel_close_work, finalize_channel_close_fn);
static struct workqueue_struct *channel_close_wq;
static int smd_alloc_channel(struct smd_alloc_elm *alloc_elm);
/* on smp systems, the probe might get called from multiple cores,
hence use a lock */
static DEFINE_MUTEX(smd_probe_lock);
static void smd_channel_probe_worker(struct work_struct *work)
{
struct smd_alloc_elm *shared;
unsigned n;
uint32_t type;
shared = smem_find(ID_CH_ALLOC_TBL, sizeof(*shared) * 64);
if (!shared) {
pr_err("%s: allocation table not initialized\n", __func__);
return;
}
mutex_lock(&smd_probe_lock);
for (n = 0; n < 64; n++) {
if (smd_ch_allocated[n])
continue;
/* channel should be allocated only if APPS
processor is involved */
type = SMD_CHANNEL_TYPE(shared[n].type);
if (type >= ARRAY_SIZE(edge_to_pids) ||
edge_to_pids[type].local_pid != SMD_APPS)
continue;
if (!shared[n].ref_count)
continue;
if (!shared[n].name[0])
continue;
if (!smd_alloc_channel(&shared[n]))
smd_ch_allocated[n] = 1;
else
SMD_INFO("Probe skipping ch %d, not allocated\n", n);
}
mutex_unlock(&smd_probe_lock);
}
/**
* Lookup processor ID and determine if it belongs to the proved edge
* type.
*
* @shared2: Pointer to v2 shared channel structure
* @type: Edge type
* @pid: Processor ID of processor on edge
* @local_ch: Channel that belongs to processor @pid
* @remote_ch: Other side of edge contained @pid
* @is_word_access_ch: Bool, is this a word aligned access channel
*
* Returns 0 for not on edge, 1 for found on edge
*/
static int pid_is_on_edge(void *shared2,
uint32_t type, uint32_t pid,
void **local_ch,
void **remote_ch,
int is_word_access_ch
)
{
int ret = 0;
struct edge_to_pid *edge;
void *ch0;
void *ch1;
*local_ch = 0;
*remote_ch = 0;
if (!shared2 || (type >= ARRAY_SIZE(edge_to_pids)))
return 0;
if (is_word_access_ch) {
ch0 = &((struct smd_shared_v2_word_access *)(shared2))->ch0;
ch1 = &((struct smd_shared_v2_word_access *)(shared2))->ch1;
} else {
ch0 = &((struct smd_shared_v2 *)(shared2))->ch0;
ch1 = &((struct smd_shared_v2 *)(shared2))->ch1;
}
edge = &edge_to_pids[type];
if (edge->local_pid != edge->remote_pid) {
if (pid == edge->local_pid) {
*local_ch = ch0;
*remote_ch = ch1;
ret = 1;
} else if (pid == edge->remote_pid) {
*local_ch = ch1;
*remote_ch = ch0;
ret = 1;
}
}
return ret;
}
/*
* Returns a pointer to the subsystem name or NULL if no
* subsystem name is available.
*
* @type - Edge definition
*/
const char *smd_edge_to_subsystem(uint32_t type)
{
const char *subsys = NULL;
if (type < ARRAY_SIZE(edge_to_pids)) {
subsys = edge_to_pids[type].subsys_name;
if (subsys[0] == 0x0)
subsys = NULL;
}
return subsys;
}
EXPORT_SYMBOL(smd_edge_to_subsystem);
/*
* Returns a pointer to the subsystem name given the
* remote processor ID.
* subsystem is not necessarily PIL-loadable
*
* @pid Remote processor ID
* @returns Pointer to subsystem name or NULL if not found
*/
const char *smd_pid_to_subsystem(uint32_t pid)
{
const char *subsys = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(edge_to_pids); ++i) {
if (pid == edge_to_pids[i].remote_pid) {
if (edge_to_pids[i].subsys_name[0] != 0x0) {
subsys = edge_to_pids[i].subsys_name;
break;
} else if (pid == SMD_RPM) {
subsys = "rpm";
break;
}
}
}
return subsys;
}
EXPORT_SYMBOL(smd_pid_to_subsystem);
static void smd_reset_edge(void *void_ch, unsigned new_state,
int is_word_access_ch)
{
if (is_word_access_ch) {
struct smd_half_channel_word_access *ch =
(struct smd_half_channel_word_access *)(void_ch);
if (ch->state != SMD_SS_CLOSED) {
ch->state = new_state;
ch->fDSR = 0;
ch->fCTS = 0;
ch->fCD = 0;
ch->fSTATE = 1;
}
} else {
struct smd_half_channel *ch =
(struct smd_half_channel *)(void_ch);
if (ch->state != SMD_SS_CLOSED) {
ch->state = new_state;
ch->fDSR = 0;
ch->fCTS = 0;
ch->fCD = 0;
ch->fSTATE = 1;
}
}
}
static void smd_channel_reset_state(struct smd_alloc_elm *shared,
unsigned new_state, unsigned pid)
{
unsigned n;
void *shared2;
uint32_t type;
void *local_ch;
void *remote_ch;
int is_word_access;
for (n = 0; n < SMD_CHANNELS; n++) {
if (!shared[n].ref_count)
continue;
if (!shared[n].name[0])
continue;
type = SMD_CHANNEL_TYPE(shared[n].type);
is_word_access = is_word_access_ch(type);
if (is_word_access)
shared2 = smem_alloc(SMEM_SMD_BASE_ID + n,
sizeof(struct smd_shared_v2_word_access));
else
shared2 = smem_alloc(SMEM_SMD_BASE_ID + n,
sizeof(struct smd_shared_v2));
if (!shared2)
continue;
if (pid_is_on_edge(shared2, type, pid, &local_ch, &remote_ch,
is_word_access))
smd_reset_edge(local_ch, new_state, is_word_access);
/*
* ModemFW is in the same subsystem as ModemSW, but has
* separate SMD edges that need to be reset.
*/
if (pid == SMSM_MODEM &&
pid_is_on_edge(shared2, type, SMD_MODEM_Q6_FW,
&local_ch, &remote_ch, is_word_access))
smd_reset_edge(local_ch, new_state, is_word_access);
}
}
void smd_channel_reset(uint32_t restart_pid)
{
struct smd_alloc_elm *shared;
unsigned long flags;
SMx_POWER_INFO("%s: starting reset\n", __func__);
shared = smem_find(ID_CH_ALLOC_TBL, sizeof(*shared) * 64);
if (!shared) {
pr_err("%s: allocation table not initialized\n", __func__);
return;
}
/* reset SMSM entry */
if (smsm_info.state) {
writel_relaxed(0, SMSM_STATE_ADDR(restart_pid));
/* restart SMSM init handshake */
if (restart_pid == SMSM_MODEM) {
smsm_change_state(SMSM_APPS_STATE,
SMSM_INIT | SMSM_SMD_LOOPBACK | SMSM_RESET,
0);
}
/* notify SMSM processors */
smsm_irq_handler(0, 0);
notify_modem_smsm();
notify_dsp_smsm();
notify_dsps_smsm();
notify_wcnss_smsm();
}
/* change all remote states to CLOSING */
mutex_lock(&smd_probe_lock);
spin_lock_irqsave(&smd_lock, flags);
smd_channel_reset_state(shared, SMD_SS_CLOSING, restart_pid);
spin_unlock_irqrestore(&smd_lock, flags);
mutex_unlock(&smd_probe_lock);
/* notify SMD processors */
mb();
smd_fake_irq_handler(0);
notify_modem_smd(NULL);
notify_dsp_smd(NULL);
notify_dsps_smd(NULL);
notify_wcnss_smd(NULL);
notify_rpm_smd(NULL);
/* change all remote states to CLOSED */
mutex_lock(&smd_probe_lock);
spin_lock_irqsave(&smd_lock, flags);
smd_channel_reset_state(shared, SMD_SS_CLOSED, restart_pid);
spin_unlock_irqrestore(&smd_lock, flags);
mutex_unlock(&smd_probe_lock);
/* notify SMD processors */
mb();
smd_fake_irq_handler(0);
notify_modem_smd(NULL);
notify_dsp_smd(NULL);
notify_dsps_smd(NULL);
notify_wcnss_smd(NULL);
notify_rpm_smd(NULL);
SMx_POWER_INFO("%s: finished reset\n", __func__);
}
/* how many bytes are available for reading */
static int smd_stream_read_avail(struct smd_channel *ch)
{
return (ch->half_ch->get_head(ch->recv) -
ch->half_ch->get_tail(ch->recv)) & ch->fifo_mask;
}
/* how many bytes we are free to write */
static int smd_stream_write_avail(struct smd_channel *ch)
{
return ch->fifo_mask - ((ch->half_ch->get_head(ch->send) -
ch->half_ch->get_tail(ch->send)) & ch->fifo_mask);
}
static int smd_packet_read_avail(struct smd_channel *ch)
{
if (ch->current_packet) {
int n = smd_stream_read_avail(ch);
if (n > ch->current_packet)
n = ch->current_packet;
return n;
} else {
return 0;
}
}
static int smd_packet_write_avail(struct smd_channel *ch)
{
int n = smd_stream_write_avail(ch);
return n > SMD_HEADER_SIZE ? n - SMD_HEADER_SIZE : 0;
}
static int ch_is_open(struct smd_channel *ch)
{
return (ch->half_ch->get_state(ch->recv) == SMD_SS_OPENED ||
ch->half_ch->get_state(ch->recv) == SMD_SS_FLUSHING)
&& (ch->half_ch->get_state(ch->send) == SMD_SS_OPENED);
}
/* provide a pointer and length to readable data in the fifo */
static unsigned ch_read_buffer(struct smd_channel *ch, void **ptr)
{
unsigned head = ch->half_ch->get_head(ch->recv);
unsigned tail = ch->half_ch->get_tail(ch->recv);
*ptr = (void *) (ch->recv_data + tail);
if (tail <= head)
return head - tail;
else
return ch->fifo_size - tail;
}
static int read_intr_blocked(struct smd_channel *ch)
{
return ch->half_ch->get_fBLOCKREADINTR(ch->recv);
}
/* advance the fifo read pointer after data from ch_read_buffer is consumed */
static void ch_read_done(struct smd_channel *ch, unsigned count)
{
BUG_ON(count > smd_stream_read_avail(ch));
ch->half_ch->set_tail(ch->recv,
(ch->half_ch->get_tail(ch->recv) + count) & ch->fifo_mask);
wmb();
ch->half_ch->set_fTAIL(ch->send, 1);
}
/* basic read interface to ch_read_{buffer,done} used
* by smd_*_read() and update_packet_state()
* will read-and-discard if the _data pointer is null
*/
static int ch_read(struct smd_channel *ch, void *_data, int len, int user_buf)
{
void *ptr;
unsigned n;
unsigned char *data = _data;
int orig_len = len;
int r = 0;
while (len > 0) {
n = ch_read_buffer(ch, &ptr);
if (n == 0)
break;
if (n > len)
n = len;
if (_data) {
if (user_buf) {
r = copy_to_user(data, ptr, n);
if (r > 0) {
pr_err("%s: "
"copy_to_user could not copy "
"%i bytes.\n",
__func__,
r);
}
} else
memcpy(data, ptr, n);
}
data += n;
len -= n;
ch_read_done(ch, n);
}
return orig_len - len;
}
static void update_stream_state(struct smd_channel *ch)
{
/* streams have no special state requiring updating */
}
static void update_packet_state(struct smd_channel *ch)
{
unsigned hdr[5];
int r;
/* can't do anything if we're in the middle of a packet */
while (ch->current_packet == 0) {
/* discard 0 length packets if any */
/* don't bother unless we can get the full header */
if (smd_stream_read_avail(ch) < SMD_HEADER_SIZE)
return;
r = ch_read(ch, hdr, SMD_HEADER_SIZE, 0);
BUG_ON(r != SMD_HEADER_SIZE);
ch->current_packet = hdr[0];
}
}
/* provide a pointer and length to next free space in the fifo */
static unsigned ch_write_buffer(struct smd_channel *ch, void **ptr)
{
unsigned head = ch->half_ch->get_head(ch->send);
unsigned tail = ch->half_ch->get_tail(ch->send);
*ptr = (void *) (ch->send_data + head);
if (head < tail) {
return tail - head - 1;
} else {
if (tail == 0)
return ch->fifo_size - head - 1;
else
return ch->fifo_size - head;
}
}
/* advace the fifo write pointer after freespace
* from ch_write_buffer is filled
*/
static void ch_write_done(struct smd_channel *ch, unsigned count)
{
BUG_ON(count > smd_stream_write_avail(ch));
ch->half_ch->set_head(ch->send,
(ch->half_ch->get_head(ch->send) + count) & ch->fifo_mask);
wmb();
ch->half_ch->set_fHEAD(ch->send, 1);
}
static void ch_set_state(struct smd_channel *ch, unsigned n)
{
if (n == SMD_SS_OPENED) {
ch->half_ch->set_fDSR(ch->send, 1);
ch->half_ch->set_fCTS(ch->send, 1);
ch->half_ch->set_fCD(ch->send, 1);
} else {
ch->half_ch->set_fDSR(ch->send, 0);
ch->half_ch->set_fCTS(ch->send, 0);
ch->half_ch->set_fCD(ch->send, 0);
}
ch->half_ch->set_state(ch->send, n);
ch->half_ch->set_fSTATE(ch->send, 1);
ch->notify_other_cpu(ch);
}
static void do_smd_probe(void)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
if (shared->heap_info.free_offset != last_heap_free) {
last_heap_free = shared->heap_info.free_offset;
schedule_work(&probe_work);
}
}
static void smd_state_change(struct smd_channel *ch,
unsigned last, unsigned next)
{
ch->last_state = next;
SMD_INFO("SMD: ch %d %d -> %d\n", ch->n, last, next);
switch (next) {
case SMD_SS_OPENING:
if (ch->half_ch->get_state(ch->send) == SMD_SS_CLOSING ||
ch->half_ch->get_state(ch->send) == SMD_SS_CLOSED) {
ch->half_ch->set_tail(ch->recv, 0);
ch->half_ch->set_head(ch->send, 0);
ch->half_ch->set_fBLOCKREADINTR(ch->send, 0);
ch_set_state(ch, SMD_SS_OPENING);
}
break;
case SMD_SS_OPENED:
if (ch->half_ch->get_state(ch->send) == SMD_SS_OPENING) {
ch_set_state(ch, SMD_SS_OPENED);
ch->notify(ch->priv, SMD_EVENT_OPEN);
}
break;
case SMD_SS_FLUSHING:
case SMD_SS_RESET:
/* we should force them to close? */
break;
case SMD_SS_CLOSED:
if (ch->half_ch->get_state(ch->send) == SMD_SS_OPENED) {
ch_set_state(ch, SMD_SS_CLOSING);
ch->current_packet = 0;
ch->pending_pkt_sz = 0;
ch->notify(ch->priv, SMD_EVENT_CLOSE);
}
break;
case SMD_SS_CLOSING:
if (ch->half_ch->get_state(ch->send) == SMD_SS_CLOSED) {
list_move(&ch->ch_list,
&smd_ch_to_close_list);
queue_work(channel_close_wq,
&finalize_channel_close_work);
}
break;
}
}
static void handle_smd_irq_closing_list(void)
{
unsigned long flags;
struct smd_channel *ch;
struct smd_channel *index;
unsigned tmp;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry_safe(ch, index, &smd_ch_closing_list, ch_list) {
if (ch->half_ch->get_fSTATE(ch->recv))
ch->half_ch->set_fSTATE(ch->recv, 0);
tmp = ch->half_ch->get_state(ch->recv);
if (tmp != ch->last_state)
smd_state_change(ch, ch->last_state, tmp);
}
spin_unlock_irqrestore(&smd_lock, flags);
}
static void handle_smd_irq(struct list_head *list,
void (*notify)(smd_channel_t *ch))
{
unsigned long flags;
struct smd_channel *ch;
unsigned ch_flags;
unsigned tmp;
unsigned char state_change;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, list, ch_list) {
state_change = 0;
ch_flags = 0;
if (ch_is_open(ch)) {
if (ch->half_ch->get_fHEAD(ch->recv)) {
ch->half_ch->set_fHEAD(ch->recv, 0);
ch_flags |= 1;
}
if (ch->half_ch->get_fTAIL(ch->recv)) {
ch->half_ch->set_fTAIL(ch->recv, 0);
ch_flags |= 2;
}
if (ch->half_ch->get_fSTATE(ch->recv)) {
ch->half_ch->set_fSTATE(ch->recv, 0);
ch_flags |= 4;
}
}
tmp = ch->half_ch->get_state(ch->recv);
if (tmp != ch->last_state) {
SMx_POWER_INFO("SMD ch%d '%s' State change %d->%d\n",
ch->n, ch->name, ch->last_state, tmp);
smd_state_change(ch, ch->last_state, tmp);
state_change = 1;
}
if (ch_flags & 0x3) {
ch->update_state(ch);
SMx_POWER_INFO(
"SMD ch%d '%s' Data event 0x%x tx%d/rx%d %dr/%dw : %dr/%dw\n",
ch->n, ch->name,
ch_flags,
ch->fifo_size -
(smd_stream_write_avail(ch) + 1),
smd_stream_read_avail(ch),
ch->half_ch->get_tail(ch->send),
ch->half_ch->get_head(ch->send),
ch->half_ch->get_tail(ch->recv),
ch->half_ch->get_head(ch->recv)
);
ch->notify(ch->priv, SMD_EVENT_DATA);
}
if (ch_flags & 0x4 && !state_change) {
SMx_POWER_INFO("SMD ch%d '%s' State update\n",
ch->n, ch->name);
ch->notify(ch->priv, SMD_EVENT_STATUS);
}
}
spin_unlock_irqrestore(&smd_lock, flags);
do_smd_probe();
}
static inline void log_irq(uint32_t subsystem)
{
const char *subsys = smd_edge_to_subsystem(subsystem);
(void) subsys;
SMx_POWER_INFO("SMD Int %s->Apps\n", subsys);
}
static irqreturn_t smd_modem_irq_handler(int irq, void *data)
{
log_irq(SMD_APPS_MODEM);
++interrupt_stats[SMD_MODEM].smd_in_count;
handle_smd_irq(&smd_ch_list_modem, notify_modem_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
static irqreturn_t smd_dsp_irq_handler(int irq, void *data)
{
log_irq(SMD_APPS_QDSP);
++interrupt_stats[SMD_Q6].smd_in_count;
handle_smd_irq(&smd_ch_list_dsp, notify_dsp_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
static irqreturn_t smd_dsps_irq_handler(int irq, void *data)
{
log_irq(SMD_APPS_DSPS);
++interrupt_stats[SMD_DSPS].smd_in_count;
handle_smd_irq(&smd_ch_list_dsps, notify_dsps_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
static irqreturn_t smd_wcnss_irq_handler(int irq, void *data)
{
log_irq(SMD_APPS_WCNSS);
++interrupt_stats[SMD_WCNSS].smd_in_count;
handle_smd_irq(&smd_ch_list_wcnss, notify_wcnss_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
static irqreturn_t smd_rpm_irq_handler(int irq, void *data)
{
log_irq(SMD_APPS_RPM);
++interrupt_stats[SMD_RPM].smd_in_count;
handle_smd_irq(&smd_ch_list_rpm, notify_rpm_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
static void smd_fake_irq_handler(unsigned long arg)
{
handle_smd_irq(&smd_ch_list_modem, notify_modem_smd);
handle_smd_irq(&smd_ch_list_dsp, notify_dsp_smd);
handle_smd_irq(&smd_ch_list_dsps, notify_dsps_smd);
handle_smd_irq(&smd_ch_list_wcnss, notify_wcnss_smd);
handle_smd_irq(&smd_ch_list_rpm, notify_rpm_smd);
handle_smd_irq_closing_list();
}
static DECLARE_TASKLET(smd_fake_irq_tasklet, smd_fake_irq_handler, 0);
static inline int smd_need_int(struct smd_channel *ch)
{
if (ch_is_open(ch)) {
if (ch->half_ch->get_fHEAD(ch->recv) ||
ch->half_ch->get_fTAIL(ch->recv) ||
ch->half_ch->get_fSTATE(ch->recv))
return 1;
if (ch->half_ch->get_state(ch->recv) != ch->last_state)
return 1;
}
return 0;
}
void smd_sleep_exit(void)
{
unsigned long flags;
struct smd_channel *ch;
int need_int = 0;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, &smd_ch_list_modem, ch_list) {
if (smd_need_int(ch)) {
need_int = 1;
break;
}
}
list_for_each_entry(ch, &smd_ch_list_dsp, ch_list) {
if (smd_need_int(ch)) {
need_int = 1;
break;
}
}
list_for_each_entry(ch, &smd_ch_list_dsps, ch_list) {
if (smd_need_int(ch)) {
need_int = 1;
break;
}
}
list_for_each_entry(ch, &smd_ch_list_wcnss, ch_list) {
if (smd_need_int(ch)) {
need_int = 1;
break;
}
}
spin_unlock_irqrestore(&smd_lock, flags);
do_smd_probe();
if (need_int) {
SMD_DBG("smd_sleep_exit need interrupt\n");
tasklet_schedule(&smd_fake_irq_tasklet);
}
}
EXPORT_SYMBOL(smd_sleep_exit);
static int smd_is_packet(struct smd_alloc_elm *alloc_elm)
{
if (SMD_XFER_TYPE(alloc_elm->type) == 1)
return 0;
else if (SMD_XFER_TYPE(alloc_elm->type) == 2)
return 1;
/* for cases where xfer type is 0 */
if (!strncmp(alloc_elm->name, "DAL", 3))
return 0;
/* for cases where xfer type is 0 */
if (!strncmp(alloc_elm->name, "RPCCALL_QDSP", 12))
return 0;
if (alloc_elm->cid > 4 || alloc_elm->cid == 1)
return 1;
else
return 0;
}
static int smd_stream_write(smd_channel_t *ch, const void *_data, int len,
int user_buf)
{
void *ptr;
const unsigned char *buf = _data;
unsigned xfer;
int orig_len = len;
int r = 0;
SMD_DBG("smd_stream_write() %d -> ch%d\n", len, ch->n);
if (len < 0)
return -EINVAL;
else if (len == 0)
return 0;
while ((xfer = ch_write_buffer(ch, &ptr)) != 0) {
if (!ch_is_open(ch)) {
len = orig_len;
break;
}
if (xfer > len)
xfer = len;
if (user_buf) {
r = copy_from_user(ptr, buf, xfer);
if (r > 0) {
pr_err("%s: "
"copy_from_user could not copy %i "
"bytes.\n",
__func__,
r);
}
} else
memcpy(ptr, buf, xfer);
ch_write_done(ch, xfer);
len -= xfer;
buf += xfer;
if (len == 0)
break;
}
if (orig_len - len)
ch->notify_other_cpu(ch);
return orig_len - len;
}
static int smd_packet_write(smd_channel_t *ch, const void *_data, int len,
int user_buf)
{
int ret;
unsigned hdr[5];
SMD_DBG("smd_packet_write() %d -> ch%d\n", len, ch->n);
if (len < 0)
return -EINVAL;
else if (len == 0)
return 0;
if (smd_stream_write_avail(ch) < (len + SMD_HEADER_SIZE))
return -ENOMEM;
hdr[0] = len;
hdr[1] = hdr[2] = hdr[3] = hdr[4] = 0;
ret = smd_stream_write(ch, hdr, sizeof(hdr), 0);
if (ret < 0 || ret != sizeof(hdr)) {
SMD_DBG("%s failed to write pkt header: "
"%d returned\n", __func__, ret);
return -1;
}
ret = smd_stream_write(ch, _data, len, user_buf);
if (ret < 0 || ret != len) {
SMD_DBG("%s failed to write pkt data: "
"%d returned\n", __func__, ret);
return ret;
}
return len;
}
static int smd_stream_read(smd_channel_t *ch, void *data, int len, int user_buf)
{
int r;
if (len < 0)
return -EINVAL;
r = ch_read(ch, data, len, user_buf);
if (r > 0)
if (!read_intr_blocked(ch))
ch->notify_other_cpu(ch);
return r;
}
static int smd_packet_read(smd_channel_t *ch, void *data, int len, int user_buf)
{
unsigned long flags;
int r;
if (len < 0)
return -EINVAL;
if (len > ch->current_packet)
len = ch->current_packet;
r = ch_read(ch, data, len, user_buf);
if (r > 0)
if (!read_intr_blocked(ch))
ch->notify_other_cpu(ch);
spin_lock_irqsave(&smd_lock, flags);
ch->current_packet -= r;
update_packet_state(ch);
spin_unlock_irqrestore(&smd_lock, flags);
return r;
}
static int smd_packet_read_from_cb(smd_channel_t *ch, void *data, int len,
int user_buf)
{
int r;
if (len < 0)
return -EINVAL;
if (len > ch->current_packet)
len = ch->current_packet;
r = ch_read(ch, data, len, user_buf);
if (r > 0)
if (!read_intr_blocked(ch))
ch->notify_other_cpu(ch);
ch->current_packet -= r;
update_packet_state(ch);
return r;
}
#if (defined(CONFIG_MSM_SMD_PKG4) || defined(CONFIG_MSM_SMD_PKG3))
static int smd_alloc_v2(struct smd_channel *ch)
{
void *buffer;
unsigned buffer_sz;
if (is_word_access_ch(ch->type)) {
struct smd_shared_v2_word_access *shared2;
shared2 = smem_alloc(SMEM_SMD_BASE_ID + ch->n,
sizeof(*shared2));
if (!shared2) {
SMD_INFO("smem_alloc failed ch=%d\n", ch->n);
return -EINVAL;
}
ch->send = &shared2->ch0;
ch->recv = &shared2->ch1;
} else {
struct smd_shared_v2 *shared2;
shared2 = smem_alloc(SMEM_SMD_BASE_ID + ch->n,
sizeof(*shared2));
if (!shared2) {
SMD_INFO("smem_alloc failed ch=%d\n", ch->n);
return -EINVAL;
}
ch->send = &shared2->ch0;
ch->recv = &shared2->ch1;
}
ch->half_ch = get_half_ch_funcs(ch->type);
buffer = smem_get_entry(SMEM_SMD_FIFO_BASE_ID + ch->n, &buffer_sz);
if (!buffer) {
SMD_INFO("smem_get_entry failed\n");
return -EINVAL;
}
/* buffer must be a power-of-two size */
if (buffer_sz & (buffer_sz - 1)) {
SMD_INFO("Buffer size: %u not power of two\n", buffer_sz);
return -EINVAL;
}
buffer_sz /= 2;
ch->send_data = buffer;
ch->recv_data = buffer + buffer_sz;
ch->fifo_size = buffer_sz;
return 0;
}
static int smd_alloc_v1(struct smd_channel *ch)
{
return -EINVAL;
}
#else /* define v1 for older targets */
static int smd_alloc_v2(struct smd_channel *ch)
{
return -EINVAL;
}
static int smd_alloc_v1(struct smd_channel *ch)
{
struct smd_shared_v1 *shared1;
shared1 = smem_alloc(ID_SMD_CHANNELS + ch->n, sizeof(*shared1));
if (!shared1) {
pr_err("smd_alloc_channel() cid %d does not exist\n", ch->n);
return -EINVAL;
}
ch->send = &shared1->ch0;
ch->recv = &shared1->ch1;
ch->send_data = shared1->data0;
ch->recv_data = shared1->data1;
ch->fifo_size = SMD_BUF_SIZE;
ch->half_ch = get_half_ch_funcs(ch->type);
return 0;
}
#endif
static int smd_alloc_channel(struct smd_alloc_elm *alloc_elm)
{
struct smd_channel *ch;
ch = kzalloc(sizeof(struct smd_channel), GFP_KERNEL);
if (ch == 0) {
pr_err("smd_alloc_channel() out of memory\n");
return -1;
}
ch->n = alloc_elm->cid;
ch->type = SMD_CHANNEL_TYPE(alloc_elm->type);
if (smd_alloc_v2(ch) && smd_alloc_v1(ch)) {
kfree(ch);
return -1;
}
ch->fifo_mask = ch->fifo_size - 1;
/* probe_worker guarentees ch->type will be a valid type */
if (ch->type == SMD_APPS_MODEM)
ch->notify_other_cpu = notify_modem_smd;
else if (ch->type == SMD_APPS_QDSP)
ch->notify_other_cpu = notify_dsp_smd;
else if (ch->type == SMD_APPS_DSPS)
ch->notify_other_cpu = notify_dsps_smd;
else if (ch->type == SMD_APPS_WCNSS)
ch->notify_other_cpu = notify_wcnss_smd;
else if (ch->type == SMD_APPS_RPM)
ch->notify_other_cpu = notify_rpm_smd;
if (smd_is_packet(alloc_elm)) {
ch->read = smd_packet_read;
ch->write = smd_packet_write;
ch->read_avail = smd_packet_read_avail;
ch->write_avail = smd_packet_write_avail;
ch->update_state = update_packet_state;
ch->read_from_cb = smd_packet_read_from_cb;
ch->is_pkt_ch = 1;
} else {
ch->read = smd_stream_read;
ch->write = smd_stream_write;
ch->read_avail = smd_stream_read_avail;
ch->write_avail = smd_stream_write_avail;
ch->update_state = update_stream_state;
ch->read_from_cb = smd_stream_read;
}
memcpy(ch->name, alloc_elm->name, SMD_MAX_CH_NAME_LEN);
ch->name[SMD_MAX_CH_NAME_LEN-1] = 0;
ch->pdev.name = ch->name;
ch->pdev.id = ch->type;
SMD_INFO("smd_alloc_channel() '%s' cid=%d\n",
ch->name, ch->n);
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
platform_device_register(&ch->pdev);
if (!strncmp(ch->name, "LOOPBACK", 8) && ch->type == SMD_APPS_MODEM) {
/* create a platform driver to be used by smd_tty driver
* so that it can access the loopback port
*/
loopback_tty_pdev.id = ch->type;
platform_device_register(&loopback_tty_pdev);
}
return 0;
}
static inline void notify_loopback_smd(smd_channel_t *ch_notif)
{
unsigned long flags;
struct smd_channel *ch;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, &smd_ch_list_loopback, ch_list) {
ch->notify(ch->priv, SMD_EVENT_DATA);
}
spin_unlock_irqrestore(&smd_lock, flags);
}
static int smd_alloc_loopback_channel(void)
{
static struct smd_half_channel smd_loopback_ctl;
static char smd_loopback_data[SMD_BUF_SIZE];
struct smd_channel *ch;
ch = kzalloc(sizeof(struct smd_channel), GFP_KERNEL);
if (ch == 0) {
pr_err("%s: out of memory\n", __func__);
return -1;
}
ch->n = SMD_LOOPBACK_CID;
ch->send = &smd_loopback_ctl;
ch->recv = &smd_loopback_ctl;
ch->send_data = smd_loopback_data;
ch->recv_data = smd_loopback_data;
ch->fifo_size = SMD_BUF_SIZE;
ch->fifo_mask = ch->fifo_size - 1;
ch->type = SMD_LOOPBACK_TYPE;
ch->notify_other_cpu = notify_loopback_smd;
ch->read = smd_stream_read;
ch->write = smd_stream_write;
ch->read_avail = smd_stream_read_avail;
ch->write_avail = smd_stream_write_avail;
ch->update_state = update_stream_state;
ch->read_from_cb = smd_stream_read;
memset(ch->name, 0, 20);
memcpy(ch->name, "local_loopback", 14);
ch->pdev.name = ch->name;
ch->pdev.id = ch->type;
SMD_INFO("%s: '%s' cid=%d\n", __func__, ch->name, ch->n);
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
platform_device_register(&ch->pdev);
return 0;
}
static void do_nothing_notify(void *priv, unsigned flags)
{
}
static void finalize_channel_close_fn(struct work_struct *work)
{
unsigned long flags;
struct smd_channel *ch;
struct smd_channel *index;
mutex_lock(&smd_creation_mutex);
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry_safe(ch, index, &smd_ch_to_close_list, ch_list) {
list_del(&ch->ch_list);
list_add(&ch->ch_list, &smd_ch_closed_list);
ch->notify(ch->priv, SMD_EVENT_REOPEN_READY);
ch->notify = do_nothing_notify;
}
spin_unlock_irqrestore(&smd_lock, flags);
mutex_unlock(&smd_creation_mutex);
}
struct smd_channel *smd_get_channel(const char *name, uint32_t type)
{
struct smd_channel *ch;
mutex_lock(&smd_creation_mutex);
list_for_each_entry(ch, &smd_ch_closed_list, ch_list) {
if (!strcmp(name, ch->name) &&
(type == ch->type)) {
list_del(&ch->ch_list);
mutex_unlock(&smd_creation_mutex);
return ch;
}
}
mutex_unlock(&smd_creation_mutex);
return NULL;
}
int smd_named_open_on_edge(const char *name, uint32_t edge,
smd_channel_t **_ch,
void *priv, void (*notify)(void *, unsigned))
{
struct smd_channel *ch;
unsigned long flags;
if (smd_initialized == 0) {
SMD_INFO("smd_open() before smd_init()\n");
return -ENODEV;
}
SMD_DBG("smd_open('%s', %p, %p)\n", name, priv, notify);
ch = smd_get_channel(name, edge);
if (!ch) {
/* check closing list for port */
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, &smd_ch_closing_list, ch_list) {
if (!strncmp(name, ch->name, 20) &&
(edge == ch->type)) {
/* channel exists, but is being closed */
spin_unlock_irqrestore(&smd_lock, flags);
return -EAGAIN;
}
}
/* check closing workqueue list for port */
list_for_each_entry(ch, &smd_ch_to_close_list, ch_list) {
if (!strncmp(name, ch->name, 20) &&
(edge == ch->type)) {
/* channel exists, but is being closed */
spin_unlock_irqrestore(&smd_lock, flags);
return -EAGAIN;
}
}
spin_unlock_irqrestore(&smd_lock, flags);
/* one final check to handle closing->closed race condition */
ch = smd_get_channel(name, edge);
if (!ch)
return -ENODEV;
}
if (notify == 0)
notify = do_nothing_notify;
ch->notify = notify;
ch->current_packet = 0;
ch->last_state = SMD_SS_CLOSED;
ch->priv = priv;
if (edge == SMD_LOOPBACK_TYPE) {
ch->last_state = SMD_SS_OPENED;
ch->half_ch->set_state(ch->send, SMD_SS_OPENED);
ch->half_ch->set_fDSR(ch->send, 1);
ch->half_ch->set_fCTS(ch->send, 1);
ch->half_ch->set_fCD(ch->send, 1);
}
*_ch = ch;
SMD_DBG("smd_open: opening '%s'\n", ch->name);
spin_lock_irqsave(&smd_lock, flags);
if (SMD_CHANNEL_TYPE(ch->type) == SMD_APPS_MODEM)
list_add(&ch->ch_list, &smd_ch_list_modem);
else if (SMD_CHANNEL_TYPE(ch->type) == SMD_APPS_QDSP)
list_add(&ch->ch_list, &smd_ch_list_dsp);
else if (SMD_CHANNEL_TYPE(ch->type) == SMD_APPS_DSPS)
list_add(&ch->ch_list, &smd_ch_list_dsps);
else if (SMD_CHANNEL_TYPE(ch->type) == SMD_APPS_WCNSS)
list_add(&ch->ch_list, &smd_ch_list_wcnss);
else if (SMD_CHANNEL_TYPE(ch->type) == SMD_APPS_RPM)
list_add(&ch->ch_list, &smd_ch_list_rpm);
else
list_add(&ch->ch_list, &smd_ch_list_loopback);
SMD_DBG("%s: opening ch %d\n", __func__, ch->n);
if (edge != SMD_LOOPBACK_TYPE)
smd_state_change(ch, ch->last_state, SMD_SS_OPENING);
spin_unlock_irqrestore(&smd_lock, flags);
return 0;
}
EXPORT_SYMBOL(smd_named_open_on_edge);
int smd_open(const char *name, smd_channel_t **_ch,
void *priv, void (*notify)(void *, unsigned))
{
return smd_named_open_on_edge(name, SMD_APPS_MODEM, _ch, priv,
notify);
}
EXPORT_SYMBOL(smd_open);
int smd_close(smd_channel_t *ch)
{
unsigned long flags;
if (ch == 0)
return -1;
SMD_INFO("smd_close(%s)\n", ch->name);
spin_lock_irqsave(&smd_lock, flags);
list_del(&ch->ch_list);
if (ch->n == SMD_LOOPBACK_CID) {
ch->half_ch->set_fDSR(ch->send, 0);
ch->half_ch->set_fCTS(ch->send, 0);
ch->half_ch->set_fCD(ch->send, 0);
ch->half_ch->set_state(ch->send, SMD_SS_CLOSED);
} else
ch_set_state(ch, SMD_SS_CLOSED);
if (ch->half_ch->get_state(ch->recv) == SMD_SS_OPENED) {
list_add(&ch->ch_list, &smd_ch_closing_list);
spin_unlock_irqrestore(&smd_lock, flags);
} else {
spin_unlock_irqrestore(&smd_lock, flags);
ch->notify = do_nothing_notify;
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
}
return 0;
}
EXPORT_SYMBOL(smd_close);
int smd_write_start(smd_channel_t *ch, int len)
{
int ret;
unsigned hdr[5];
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (!ch->is_pkt_ch) {
pr_err("%s: non-packet channel specified\n", __func__);
return -EACCES;
}
if (len < 1) {
pr_err("%s: invalid length: %d\n", __func__, len);
return -EINVAL;
}
if (ch->pending_pkt_sz) {
pr_err("%s: packet of size: %d in progress\n", __func__,
ch->pending_pkt_sz);
return -EBUSY;
}
ch->pending_pkt_sz = len;
if (smd_stream_write_avail(ch) < (SMD_HEADER_SIZE)) {
ch->pending_pkt_sz = 0;
SMD_DBG("%s: no space to write packet header\n", __func__);
return -EAGAIN;
}
hdr[0] = len;
hdr[1] = hdr[2] = hdr[3] = hdr[4] = 0;
ret = smd_stream_write(ch, hdr, sizeof(hdr), 0);
if (ret < 0 || ret != sizeof(hdr)) {
ch->pending_pkt_sz = 0;
pr_err("%s: packet header failed to write\n", __func__);
return -EPERM;
}
return 0;
}
EXPORT_SYMBOL(smd_write_start);
int smd_write_segment(smd_channel_t *ch, void *data, int len, int user_buf)
{
int bytes_written;
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (len < 1) {
pr_err("%s: invalid length: %d\n", __func__, len);
return -EINVAL;
}
if (!ch->pending_pkt_sz) {
pr_err("%s: no transaction in progress\n", __func__);
return -ENOEXEC;
}
if (ch->pending_pkt_sz - len < 0) {
pr_err("%s: segment of size: %d will make packet go over "
"length\n", __func__, len);
return -EINVAL;
}
bytes_written = smd_stream_write(ch, data, len, user_buf);
ch->pending_pkt_sz -= bytes_written;
return bytes_written;
}
EXPORT_SYMBOL(smd_write_segment);
int smd_write_end(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (ch->pending_pkt_sz) {
pr_err("%s: current packet not completely written\n", __func__);
return -E2BIG;
}
return 0;
}
EXPORT_SYMBOL(smd_write_end);
int smd_read(smd_channel_t *ch, void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->read(ch, data, len, 0);
}
EXPORT_SYMBOL(smd_read);
int smd_read_user_buffer(smd_channel_t *ch, void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->read(ch, data, len, 1);
}
EXPORT_SYMBOL(smd_read_user_buffer);
int smd_read_from_cb(smd_channel_t *ch, void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->read_from_cb(ch, data, len, 0);
}
EXPORT_SYMBOL(smd_read_from_cb);
int smd_write(smd_channel_t *ch, const void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->pending_pkt_sz ? -EBUSY : ch->write(ch, data, len, 0);
}
EXPORT_SYMBOL(smd_write);
int smd_write_user_buffer(smd_channel_t *ch, const void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->pending_pkt_sz ? -EBUSY : ch->write(ch, data, len, 1);
}
EXPORT_SYMBOL(smd_write_user_buffer);
int smd_read_avail(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->read_avail(ch);
}
EXPORT_SYMBOL(smd_read_avail);
int smd_write_avail(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->write_avail(ch);
}
EXPORT_SYMBOL(smd_write_avail);
void smd_enable_read_intr(smd_channel_t *ch)
{
if (ch)
ch->half_ch->set_fBLOCKREADINTR(ch->send, 0);
}
EXPORT_SYMBOL(smd_enable_read_intr);
void smd_disable_read_intr(smd_channel_t *ch)
{
if (ch)
ch->half_ch->set_fBLOCKREADINTR(ch->send, 1);
}
EXPORT_SYMBOL(smd_disable_read_intr);
/**
* Enable/disable receive interrupts for the remote processor used by a
* particular channel.
* @ch: open channel handle to use for the edge
* @mask: 1 = mask interrupts; 0 = unmask interrupts
* @returns: 0 for success; < 0 for failure
*
* Note that this enables/disables all interrupts from the remote subsystem for
* all channels. As such, it should be used with care and only for specific
* use cases such as power-collapse sequencing.
*/
int smd_mask_receive_interrupt(smd_channel_t *ch, bool mask)
{
struct irq_chip *irq_chip;
struct irq_data *irq_data;
struct interrupt_config_item *int_cfg;
if (!ch)
return -EINVAL;
if (ch->type >= ARRAY_SIZE(edge_to_pids))
return -ENODEV;
int_cfg = &private_intr_config[edge_to_pids[ch->type].remote_pid].smd;
if (int_cfg->irq_id < 0)
return -ENODEV;
irq_chip = irq_get_chip(int_cfg->irq_id);
if (!irq_chip)
return -ENODEV;
irq_data = irq_get_irq_data(int_cfg->irq_id);
if (!irq_data)
return -ENODEV;
if (mask) {
SMx_POWER_INFO("SMD Masking interrupts from %s\n",
edge_to_pids[ch->type].subsys_name);
irq_chip->irq_mask(irq_data);
} else {
SMx_POWER_INFO("SMD Unmasking interrupts from %s\n",
edge_to_pids[ch->type].subsys_name);
irq_chip->irq_unmask(irq_data);
}
return 0;
}
EXPORT_SYMBOL(smd_mask_receive_interrupt);
int smd_wait_until_readable(smd_channel_t *ch, int bytes)
{
return -1;
}
int smd_wait_until_writable(smd_channel_t *ch, int bytes)
{
return -1;
}
int smd_cur_packet_size(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->current_packet;
}
EXPORT_SYMBOL(smd_cur_packet_size);
int smd_tiocmget(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return (ch->half_ch->get_fDSR(ch->recv) ? TIOCM_DSR : 0) |
(ch->half_ch->get_fCTS(ch->recv) ? TIOCM_CTS : 0) |
(ch->half_ch->get_fCD(ch->recv) ? TIOCM_CD : 0) |
(ch->half_ch->get_fRI(ch->recv) ? TIOCM_RI : 0) |
(ch->half_ch->get_fCTS(ch->send) ? TIOCM_RTS : 0) |
(ch->half_ch->get_fDSR(ch->send) ? TIOCM_DTR : 0);
}
EXPORT_SYMBOL(smd_tiocmget);
/* this api will be called while holding smd_lock */
int
smd_tiocmset_from_cb(smd_channel_t *ch, unsigned int set, unsigned int clear)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (set & TIOCM_DTR)
ch->half_ch->set_fDSR(ch->send, 1);
if (set & TIOCM_RTS)
ch->half_ch->set_fCTS(ch->send, 1);
if (clear & TIOCM_DTR)
ch->half_ch->set_fDSR(ch->send, 0);
if (clear & TIOCM_RTS)
ch->half_ch->set_fCTS(ch->send, 0);
ch->half_ch->set_fSTATE(ch->send, 1);
barrier();
ch->notify_other_cpu(ch);
return 0;
}
EXPORT_SYMBOL(smd_tiocmset_from_cb);
int smd_tiocmset(smd_channel_t *ch, unsigned int set, unsigned int clear)
{
unsigned long flags;
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
spin_lock_irqsave(&smd_lock, flags);
smd_tiocmset_from_cb(ch, set, clear);
spin_unlock_irqrestore(&smd_lock, flags);
return 0;
}
EXPORT_SYMBOL(smd_tiocmset);
int smd_is_pkt_avail(smd_channel_t *ch)
{
unsigned long flags;
if (!ch || !ch->is_pkt_ch)
return -EINVAL;
if (ch->current_packet)
return 1;
spin_lock_irqsave(&smd_lock, flags);
update_packet_state(ch);
spin_unlock_irqrestore(&smd_lock, flags);
return ch->current_packet ? 1 : 0;
}
EXPORT_SYMBOL(smd_is_pkt_avail);
/* -------------------------------------------------------------------------- */
/*
* Shared Memory Range Check
*
* Takes a physical address and an offset and checks if the resulting physical
* address would fit into one of the aux smem regions. If so, returns the
* corresponding virtual address. Otherwise returns NULL. Expects the array
* of smem regions to be in ascending physical address order.
*
* @base: physical base address to check
* @offset: offset from the base to get the final address
*/
static void *smem_range_check(phys_addr_t base, unsigned offset)
{
int i;
phys_addr_t phys_addr;
resource_size_t size;
for (i = 0; i < num_smem_areas; ++i) {
phys_addr = smem_areas[i].phys_addr;
size = smem_areas[i].size;
if (base < phys_addr)
return NULL;
if (base > phys_addr + size)
continue;
if (base >= phys_addr && base + offset < phys_addr + size)
return smem_areas[i].virt_addr + offset;
}
return NULL;
}
/* smem_alloc returns the pointer to smem item if it is already allocated.
* Otherwise, it returns NULL.
*/
void *smem_alloc(unsigned id, unsigned size)
{
return smem_find(id, size);
}
EXPORT_SYMBOL(smem_alloc);
/* smem_alloc2 returns the pointer to smem item. If it is not allocated,
* it allocates it and then returns the pointer to it.
*/
void *smem_alloc2(unsigned id, unsigned size_in)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
struct smem_heap_entry *toc = shared->heap_toc;
unsigned long flags;
void *ret = NULL;
if (!shared->heap_info.initialized) {
pr_err("%s: smem heap info not initialized\n", __func__);
return NULL;
}
if (id >= SMEM_NUM_ITEMS)
return NULL;
size_in = ALIGN(size_in, 8);
remote_spin_lock_irqsave(&remote_spinlock, flags);
if (toc[id].allocated) {
SMD_DBG("%s: %u already allocated\n", __func__, id);
if (size_in != toc[id].size)
pr_err("%s: wrong size %u (expected %u)\n",
__func__, toc[id].size, size_in);
else
ret = (void *)(MSM_SHARED_RAM_BASE + toc[id].offset);
} else if (id > SMEM_FIXED_ITEM_LAST) {
SMD_DBG("%s: allocating %u\n", __func__, id);
if (shared->heap_info.heap_remaining >= size_in) {
toc[id].offset = shared->heap_info.free_offset;
toc[id].size = size_in;
wmb();
toc[id].allocated = 1;
shared->heap_info.free_offset += size_in;
shared->heap_info.heap_remaining -= size_in;
ret = (void *)(MSM_SHARED_RAM_BASE + toc[id].offset);
} else
pr_err("%s: not enough memory %u (required %u)\n",
__func__, shared->heap_info.heap_remaining,
size_in);
}
wmb();
remote_spin_unlock_irqrestore(&remote_spinlock, flags);
return ret;
}
EXPORT_SYMBOL(smem_alloc2);
void *smem_get_entry(unsigned id, unsigned *size)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
struct smem_heap_entry *toc = shared->heap_toc;
int use_spinlocks = spinlocks_initialized;
void *ret = 0;
unsigned long flags = 0;
if (id >= SMEM_NUM_ITEMS)
return ret;
if (use_spinlocks)
remote_spin_lock_irqsave(&remote_spinlock, flags);
/* toc is in device memory and cannot be speculatively accessed */
if (toc[id].allocated) {
*size = toc[id].size;
barrier();
if (!(toc[id].reserved & BASE_ADDR_MASK))
ret = (void *) (MSM_SHARED_RAM_BASE + toc[id].offset);
else
ret = smem_range_check(
toc[id].reserved & BASE_ADDR_MASK,
toc[id].offset);
} else {
*size = 0;
}
if (use_spinlocks)
remote_spin_unlock_irqrestore(&remote_spinlock, flags);
return ret;
}
EXPORT_SYMBOL(smem_get_entry);
void *smem_find(unsigned id, unsigned size_in)
{
unsigned size;
void *ptr;
ptr = smem_get_entry(id, &size);
if (!ptr)
return 0;
size_in = ALIGN(size_in, 8);
if (size_in != size) {
pr_err("smem_find(%d, %d): wrong size %d\n",
id, size_in, size);
return 0;
}
return ptr;
}
EXPORT_SYMBOL(smem_find);
static int smsm_cb_init(void)
{
struct smsm_state_info *state_info;
int n;
int ret = 0;
smsm_states = kmalloc(sizeof(struct smsm_state_info)*SMSM_NUM_ENTRIES,
GFP_KERNEL);
if (!smsm_states) {
pr_err("%s: SMSM init failed\n", __func__);
return -ENOMEM;
}
smsm_cb_wq = create_singlethread_workqueue("smsm_cb_wq");
if (!smsm_cb_wq) {
pr_err("%s: smsm_cb_wq creation failed\n", __func__);
kfree(smsm_states);
return -EFAULT;
}
mutex_lock(&smsm_lock);
for (n = 0; n < SMSM_NUM_ENTRIES; n++) {
state_info = &smsm_states[n];
state_info->last_value = __raw_readl(SMSM_STATE_ADDR(n));
state_info->intr_mask_set = 0x0;
state_info->intr_mask_clear = 0x0;
INIT_LIST_HEAD(&state_info->callbacks);
}
mutex_unlock(&smsm_lock);
return ret;
}
static int smsm_init(void)
{
struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE;
int i;
struct smsm_size_info_type *smsm_size_info;
unsigned long flags;
unsigned long j_start;
/* Verify that remote spinlock is not deadlocked */
j_start = jiffies;
while (!remote_spin_trylock_irqsave(&remote_spinlock, flags)) {
if (jiffies_to_msecs(jiffies - j_start) > RSPIN_INIT_WAIT_MS) {
panic("%s: Remote processor %d will not release spinlock\n",
__func__, remote_spin_owner(&remote_spinlock));
}
}
remote_spin_unlock_irqrestore(&remote_spinlock, flags);
smsm_size_info = smem_alloc(SMEM_SMSM_SIZE_INFO,
sizeof(struct smsm_size_info_type));
if (smsm_size_info) {
SMSM_NUM_ENTRIES = smsm_size_info->num_entries;
SMSM_NUM_HOSTS = smsm_size_info->num_hosts;
}
i = kfifo_alloc(&smsm_snapshot_fifo,
sizeof(uint32_t) * SMSM_NUM_ENTRIES * SMSM_SNAPSHOT_CNT,
GFP_KERNEL);
if (i) {
pr_err("%s: SMSM state fifo alloc failed %d\n", __func__, i);
return i;
}
wake_lock_init(&smsm_snapshot_wakelock, WAKE_LOCK_SUSPEND,
"smsm_snapshot");
if (!smsm_info.state) {
smsm_info.state = smem_alloc2(ID_SHARED_STATE,
SMSM_NUM_ENTRIES *
sizeof(uint32_t));
if (smsm_info.state) {
__raw_writel(0, SMSM_STATE_ADDR(SMSM_APPS_STATE));
if ((shared->version[VERSION_MODEM] >> 16) >= 0xB)
__raw_writel(0, \
SMSM_STATE_ADDR(SMSM_APPS_DEM_I));
}
}
if (!smsm_info.intr_mask) {
smsm_info.intr_mask = smem_alloc2(SMEM_SMSM_CPU_INTR_MASK,
SMSM_NUM_ENTRIES *
SMSM_NUM_HOSTS *
sizeof(uint32_t));
if (smsm_info.intr_mask) {
for (i = 0; i < SMSM_NUM_ENTRIES; i++)
__raw_writel(0x0,
SMSM_INTR_MASK_ADDR(i, SMSM_APPS));
/* Configure legacy modem bits */
__raw_writel(LEGACY_MODEM_SMSM_MASK,
SMSM_INTR_MASK_ADDR(SMSM_MODEM_STATE,
SMSM_APPS));
}
}
if (!smsm_info.intr_mux)
smsm_info.intr_mux = smem_alloc2(SMEM_SMD_SMSM_INTR_MUX,
SMSM_NUM_INTR_MUX *
sizeof(uint32_t));
i = smsm_cb_init();
if (i)
return i;
wmb();
smsm_pm_notifier(&smsm_pm_nb, PM_POST_SUSPEND, NULL);
i = register_pm_notifier(&smsm_pm_nb);
if (i)
pr_err("%s: power state notif error %d\n", __func__, i);
return 0;
}
void smsm_reset_modem(unsigned mode)
{
if (mode == SMSM_SYSTEM_DOWNLOAD) {
mode = SMSM_RESET | SMSM_SYSTEM_DOWNLOAD;
} else if (mode == SMSM_MODEM_WAIT) {
mode = SMSM_RESET | SMSM_MODEM_WAIT;
} else { /* reset_mode is SMSM_RESET or default */
mode = SMSM_RESET;
}
smsm_change_state(SMSM_APPS_STATE, mode, mode);
}
EXPORT_SYMBOL(smsm_reset_modem);
void smsm_reset_modem_cont(void)
{
unsigned long flags;
uint32_t state;
if (!smsm_info.state)
return;
spin_lock_irqsave(&smem_lock, flags);
state = __raw_readl(SMSM_STATE_ADDR(SMSM_APPS_STATE)) \
& ~SMSM_MODEM_WAIT;
__raw_writel(state, SMSM_STATE_ADDR(SMSM_APPS_STATE));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
}
EXPORT_SYMBOL(smsm_reset_modem_cont);
static void smsm_cb_snapshot(uint32_t use_wakelock)
{
int n;
uint32_t new_state;
unsigned long flags;
int ret;
ret = kfifo_avail(&smsm_snapshot_fifo);
if (ret < SMSM_SNAPSHOT_SIZE) {
pr_err("%s: SMSM snapshot full %d\n", __func__, ret);
return;
}
/*
* To avoid a race condition with notify_smsm_cb_clients_worker, the
* following sequence must be followed:
* 1) increment snapshot count
* 2) insert data into FIFO
*
* Potentially in parallel, the worker:
* a) verifies >= 1 snapshots are in FIFO
* b) processes snapshot
* c) decrements reference count
*
* This order ensures that 1 will always occur before abc.
*/
if (use_wakelock) {
spin_lock_irqsave(&smsm_snapshot_count_lock, flags);
if (smsm_snapshot_count == 0) {
SMx_POWER_INFO("SMSM snapshot wake lock\n");
wake_lock(&smsm_snapshot_wakelock);
}
++smsm_snapshot_count;
spin_unlock_irqrestore(&smsm_snapshot_count_lock, flags);
}
/* queue state entries */
for (n = 0; n < SMSM_NUM_ENTRIES; n++) {
new_state = __raw_readl(SMSM_STATE_ADDR(n));
ret = kfifo_in(&smsm_snapshot_fifo,
&new_state, sizeof(new_state));
if (ret != sizeof(new_state)) {
pr_err("%s: SMSM snapshot failure %d\n", __func__, ret);
goto restore_snapshot_count;
}
}
/* queue wakelock usage flag */
ret = kfifo_in(&smsm_snapshot_fifo,
&use_wakelock, sizeof(use_wakelock));
if (ret != sizeof(use_wakelock)) {
pr_err("%s: SMSM snapshot failure %d\n", __func__, ret);
goto restore_snapshot_count;
}
queue_work(smsm_cb_wq, &smsm_cb_work);
return;
restore_snapshot_count:
if (use_wakelock) {
spin_lock_irqsave(&smsm_snapshot_count_lock, flags);
if (smsm_snapshot_count) {
--smsm_snapshot_count;
if (smsm_snapshot_count == 0) {
SMx_POWER_INFO("SMSM snapshot wake unlock\n");
wake_unlock(&smsm_snapshot_wakelock);
}
} else {
pr_err("%s: invalid snapshot count\n", __func__);
}
spin_unlock_irqrestore(&smsm_snapshot_count_lock, flags);
}
}
static irqreturn_t smsm_irq_handler(int irq, void *data)
{
unsigned long flags;
if (irq == INT_ADSP_A11_SMSM) {
uint32_t mux_val;
static uint32_t prev_smem_q6_apps_smsm;
if (smsm_info.intr_mux && cpu_is_qsd8x50()) {
mux_val = __raw_readl(
SMSM_INTR_MUX_ADDR(SMEM_Q6_APPS_SMSM));
if (mux_val != prev_smem_q6_apps_smsm)
prev_smem_q6_apps_smsm = mux_val;
}
spin_lock_irqsave(&smem_lock, flags);
smsm_cb_snapshot(1);
spin_unlock_irqrestore(&smem_lock, flags);
return IRQ_HANDLED;
}
spin_lock_irqsave(&smem_lock, flags);
if (!smsm_info.state) {
SMSM_INFO("<SM NO STATE>\n");
} else {
unsigned old_apps, apps;
unsigned modm = __raw_readl(SMSM_STATE_ADDR(SMSM_MODEM_STATE));
old_apps = apps = __raw_readl(SMSM_STATE_ADDR(SMSM_APPS_STATE));
SMSM_DBG("<SM %08x %08x>\n", apps, modm);
if (apps & SMSM_RESET) {
/* If we get an interrupt and the apps SMSM_RESET
bit is already set, the modem is acking the
app's reset ack. */
if (!disable_smsm_reset_handshake)
apps &= ~SMSM_RESET;
/* Issue a fake irq to handle any
* smd state changes during reset
*/
smd_fake_irq_handler(0);
/* queue modem restart notify chain */
modem_queue_start_reset_notify();
} else if (modm & SMSM_RESET) {
pr_err("\nSMSM: Modem SMSM state changed to SMSM_RESET.");
if (!disable_smsm_reset_handshake) {
apps |= SMSM_RESET;
flush_cache_all();
outer_flush_all();
}
modem_queue_start_reset_notify();
} else if (modm & SMSM_INIT) {
if (!(apps & SMSM_INIT)) {
apps |= SMSM_INIT;
modem_queue_smsm_init_notify();
}
if (modm & SMSM_SMDINIT)
apps |= SMSM_SMDINIT;
if ((apps & (SMSM_INIT | SMSM_SMDINIT | SMSM_RPCINIT)) ==
(SMSM_INIT | SMSM_SMDINIT | SMSM_RPCINIT))
apps |= SMSM_RUN;
} else if (modm & SMSM_SYSTEM_DOWNLOAD) {
pr_err("\nSMSM: Modem SMSM state changed to SMSM_SYSTEM_DOWNLOAD.");
modem_queue_start_reset_notify();
}
if (old_apps != apps) {
SMSM_DBG("<SM %08x NOTIFY>\n", apps);
__raw_writel(apps, SMSM_STATE_ADDR(SMSM_APPS_STATE));
do_smd_probe();
notify_other_smsm(SMSM_APPS_STATE, (old_apps ^ apps));
}
smsm_cb_snapshot(1);
}
spin_unlock_irqrestore(&smem_lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t smsm_modem_irq_handler(int irq, void *data)
{
SMx_POWER_INFO("SMSM Int Modem->Apps\n");
++interrupt_stats[SMD_MODEM].smsm_in_count;
return smsm_irq_handler(irq, data);
}
static irqreturn_t smsm_dsp_irq_handler(int irq, void *data)
{
SMx_POWER_INFO("SMSM Int LPASS->Apps\n");
++interrupt_stats[SMD_Q6].smsm_in_count;
return smsm_irq_handler(irq, data);
}
static irqreturn_t smsm_dsps_irq_handler(int irq, void *data)
{
SMx_POWER_INFO("SMSM Int DSPS->Apps\n");
++interrupt_stats[SMD_DSPS].smsm_in_count;
return smsm_irq_handler(irq, data);
}
static irqreturn_t smsm_wcnss_irq_handler(int irq, void *data)
{
SMx_POWER_INFO("SMSM Int WCNSS->Apps\n");
++interrupt_stats[SMD_WCNSS].smsm_in_count;
return smsm_irq_handler(irq, data);
}
/*
* Changes the global interrupt mask. The set and clear masks are re-applied
* every time the global interrupt mask is updated for callback registration
* and de-registration.
*
* The clear mask is applied first, so if a bit is set to 1 in both the clear
* mask and the set mask, the result will be that the interrupt is set.
*
* @smsm_entry SMSM entry to change
* @clear_mask 1 = clear bit, 0 = no-op
* @set_mask 1 = set bit, 0 = no-op
*
* @returns 0 for success, < 0 for error
*/
int smsm_change_intr_mask(uint32_t smsm_entry,
uint32_t clear_mask, uint32_t set_mask)
{
uint32_t old_mask, new_mask;
unsigned long flags;
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d\n",
smsm_entry);
return -EINVAL;
}
if (!smsm_info.intr_mask) {
pr_err("smsm_change_intr_mask <SM NO STATE>\n");
return -EIO;
}
spin_lock_irqsave(&smem_lock, flags);
smsm_states[smsm_entry].intr_mask_clear = clear_mask;
smsm_states[smsm_entry].intr_mask_set = set_mask;
old_mask = __raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
new_mask = (old_mask & ~clear_mask) | set_mask;
__raw_writel(new_mask, SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
return 0;
}
EXPORT_SYMBOL(smsm_change_intr_mask);
int smsm_get_intr_mask(uint32_t smsm_entry, uint32_t *intr_mask)
{
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d\n",
smsm_entry);
return -EINVAL;
}
if (!smsm_info.intr_mask) {
pr_err("smsm_change_intr_mask <SM NO STATE>\n");
return -EIO;
}
*intr_mask = __raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
return 0;
}
EXPORT_SYMBOL(smsm_get_intr_mask);
int smsm_change_state(uint32_t smsm_entry,
uint32_t clear_mask, uint32_t set_mask)
{
unsigned long flags;
uint32_t old_state, new_state;
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d",
smsm_entry);
return -EINVAL;
}
if (!smsm_info.state) {
pr_err("smsm_change_state <SM NO STATE>\n");
return -EIO;
}
spin_lock_irqsave(&smem_lock, flags);
old_state = __raw_readl(SMSM_STATE_ADDR(smsm_entry));
new_state = (old_state & ~clear_mask) | set_mask;
__raw_writel(new_state, SMSM_STATE_ADDR(smsm_entry));
SMSM_DBG("smsm_change_state %x\n", new_state);
notify_other_smsm(SMSM_APPS_STATE, (old_state ^ new_state));
spin_unlock_irqrestore(&smem_lock, flags);
return 0;
}
EXPORT_SYMBOL(smsm_change_state);
uint32_t smsm_get_state(uint32_t smsm_entry)
{
uint32_t rv = 0;
/* needs interface change to return error code */
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d",
smsm_entry);
return 0;
}
if (!smsm_info.state) {
pr_err("smsm_get_state <SM NO STATE>\n");
} else {
rv = __raw_readl(SMSM_STATE_ADDR(smsm_entry));
}
return rv;
}
EXPORT_SYMBOL(smsm_get_state);
/**
* Performs SMSM callback client notifiction.
*/
void notify_smsm_cb_clients_worker(struct work_struct *work)
{
struct smsm_state_cb_info *cb_info;
struct smsm_state_info *state_info;
int n;
uint32_t new_state;
uint32_t state_changes;
uint32_t use_wakelock;
int ret;
unsigned long flags;
if (!smd_initialized)
return;
while (kfifo_len(&smsm_snapshot_fifo) >= SMSM_SNAPSHOT_SIZE) {
mutex_lock(&smsm_lock);
for (n = 0; n < SMSM_NUM_ENTRIES; n++) {
state_info = &smsm_states[n];
ret = kfifo_out(&smsm_snapshot_fifo, &new_state,
sizeof(new_state));
if (ret != sizeof(new_state)) {
pr_err("%s: snapshot underflow %d\n",
__func__, ret);
mutex_unlock(&smsm_lock);
return;
}
state_changes = state_info->last_value ^ new_state;
if (state_changes) {
SMx_POWER_INFO("SMSM Change %d: %08x->%08x\n",
n, state_info->last_value,
new_state);
list_for_each_entry(cb_info,
&state_info->callbacks, cb_list) {
if (cb_info->mask & state_changes)
cb_info->notify(cb_info->data,
state_info->last_value,
new_state);
}
state_info->last_value = new_state;
}
}
/* read wakelock flag */
ret = kfifo_out(&smsm_snapshot_fifo, &use_wakelock,
sizeof(use_wakelock));
if (ret != sizeof(use_wakelock)) {
pr_err("%s: snapshot underflow %d\n",
__func__, ret);
mutex_unlock(&smsm_lock);
return;
}
mutex_unlock(&smsm_lock);
if (use_wakelock) {
spin_lock_irqsave(&smsm_snapshot_count_lock, flags);
if (smsm_snapshot_count) {
--smsm_snapshot_count;
if (smsm_snapshot_count == 0) {
SMx_POWER_INFO("SMSM snapshot"
" wake unlock\n");
wake_unlock(&smsm_snapshot_wakelock);
}
} else {
pr_err("%s: invalid snapshot count\n",
__func__);
}
spin_unlock_irqrestore(&smsm_snapshot_count_lock,
flags);
}
}
}
/**
* Registers callback for SMSM state notifications when the specified
* bits change.
*
* @smsm_entry Processor entry to deregister
* @mask Bits to deregister (if result is 0, callback is removed)
* @notify Notification function to deregister
* @data Opaque data passed in to callback
*
* @returns Status code
* <0 error code
* 0 inserted new entry
* 1 updated mask of existing entry
*/
int smsm_state_cb_register(uint32_t smsm_entry, uint32_t mask,
void (*notify)(void *, uint32_t, uint32_t), void *data)
{
struct smsm_state_info *state;
struct smsm_state_cb_info *cb_info;
struct smsm_state_cb_info *cb_found = 0;
uint32_t new_mask = 0;
int ret = 0;
if (smsm_entry >= SMSM_NUM_ENTRIES)
return -EINVAL;
mutex_lock(&smsm_lock);
if (!smsm_states) {
/* smsm not yet initialized */
ret = -ENODEV;
goto cleanup;
}
state = &smsm_states[smsm_entry];
list_for_each_entry(cb_info,
&state->callbacks, cb_list) {
if (!ret && (cb_info->notify == notify) &&
(cb_info->data == data)) {
cb_info->mask |= mask;
cb_found = cb_info;
ret = 1;
}
new_mask |= cb_info->mask;
}
if (!cb_found) {
cb_info = kmalloc(sizeof(struct smsm_state_cb_info),
GFP_ATOMIC);
if (!cb_info) {
ret = -ENOMEM;
goto cleanup;
}
cb_info->mask = mask;
cb_info->notify = notify;
cb_info->data = data;
INIT_LIST_HEAD(&cb_info->cb_list);
list_add_tail(&cb_info->cb_list,
&state->callbacks);
new_mask |= mask;
}
/* update interrupt notification mask */
if (smsm_entry == SMSM_MODEM_STATE)
new_mask |= LEGACY_MODEM_SMSM_MASK;
if (smsm_info.intr_mask) {
unsigned long flags;
spin_lock_irqsave(&smem_lock, flags);
new_mask = (new_mask & ~state->intr_mask_clear)
| state->intr_mask_set;
__raw_writel(new_mask,
SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
}
cleanup:
mutex_unlock(&smsm_lock);
return ret;
}
EXPORT_SYMBOL(smsm_state_cb_register);
/**
* Deregisters for SMSM state notifications for the specified bits.
*
* @smsm_entry Processor entry to deregister
* @mask Bits to deregister (if result is 0, callback is removed)
* @notify Notification function to deregister
* @data Opaque data passed in to callback
*
* @returns Status code
* <0 error code
* 0 not found
* 1 updated mask
* 2 removed callback
*/
int smsm_state_cb_deregister(uint32_t smsm_entry, uint32_t mask,
void (*notify)(void *, uint32_t, uint32_t), void *data)
{
struct smsm_state_cb_info *cb_info;
struct smsm_state_cb_info *cb_tmp;
struct smsm_state_info *state;
uint32_t new_mask = 0;
int ret = 0;
if (smsm_entry >= SMSM_NUM_ENTRIES)
return -EINVAL;
mutex_lock(&smsm_lock);
if (!smsm_states) {
/* smsm not yet initialized */
mutex_unlock(&smsm_lock);
return -ENODEV;
}
state = &smsm_states[smsm_entry];
list_for_each_entry_safe(cb_info, cb_tmp,
&state->callbacks, cb_list) {
if (!ret && (cb_info->notify == notify) &&
(cb_info->data == data)) {
cb_info->mask &= ~mask;
ret = 1;
if (!cb_info->mask) {
/* no mask bits set, remove callback */
list_del(&cb_info->cb_list);
kfree(cb_info);
ret = 2;
continue;
}
}
new_mask |= cb_info->mask;
}
/* update interrupt notification mask */
if (smsm_entry == SMSM_MODEM_STATE)
new_mask |= LEGACY_MODEM_SMSM_MASK;
if (smsm_info.intr_mask) {
unsigned long flags;
spin_lock_irqsave(&smem_lock, flags);
new_mask = (new_mask & ~state->intr_mask_clear)
| state->intr_mask_set;
__raw_writel(new_mask,
SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
}
mutex_unlock(&smsm_lock);
return ret;
}
EXPORT_SYMBOL(smsm_state_cb_deregister);
/**
* smem_get_remote_spinlock - Remote spinlock pointer for unit testing.
*
* @returns: pointer to SMEM remote spinlock
*/
remote_spinlock_t *smem_get_remote_spinlock(void)
{
return &remote_spinlock;
}
EXPORT_SYMBOL(smem_get_remote_spinlock);
int smd_module_init_notifier_register(struct notifier_block *nb)
{
int ret;
if (!nb)
return -EINVAL;
mutex_lock(&smd_module_init_notifier_lock);
ret = raw_notifier_chain_register(&smd_module_init_notifier_list, nb);
if (smd_module_inited)
nb->notifier_call(nb, 0, NULL);
mutex_unlock(&smd_module_init_notifier_lock);
return ret;
}
EXPORT_SYMBOL(smd_module_init_notifier_register);
int smd_module_init_notifier_unregister(struct notifier_block *nb)
{
int ret;
if (!nb)
return -EINVAL;
mutex_lock(&smd_module_init_notifier_lock);
ret = raw_notifier_chain_unregister(&smd_module_init_notifier_list,
nb);
mutex_unlock(&smd_module_init_notifier_lock);
return ret;
}
EXPORT_SYMBOL(smd_module_init_notifier_unregister);
static void smd_module_init_notify(uint32_t state, void *data)
{
mutex_lock(&smd_module_init_notifier_lock);
smd_module_inited = 1;
raw_notifier_call_chain(&smd_module_init_notifier_list,
state, data);
mutex_unlock(&smd_module_init_notifier_lock);
}
int smd_core_init(void)
{
int r;
unsigned long flags = IRQF_TRIGGER_RISING;
SMD_INFO("smd_core_init()\n");
r = request_irq(INT_A9_M2A_0, smd_modem_irq_handler,
flags, "smd_dev", 0);
if (r < 0)
return r;
interrupt_stats[SMD_MODEM].smd_interrupt_id = INT_A9_M2A_0;
r = enable_irq_wake(INT_A9_M2A_0);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_A9_M2A_0\n");
r = request_irq(INT_A9_M2A_5, smsm_modem_irq_handler,
flags, "smsm_dev", 0);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
return r;
}
interrupt_stats[SMD_MODEM].smsm_interrupt_id = INT_A9_M2A_5;
r = enable_irq_wake(INT_A9_M2A_5);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_A9_M2A_5\n");
#if defined(CONFIG_QDSP6)
#if (INT_ADSP_A11 == INT_ADSP_A11_SMSM)
flags |= IRQF_SHARED;
#endif
r = request_irq(INT_ADSP_A11, smd_dsp_irq_handler,
flags, "smd_dev", smd_dsp_irq_handler);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
free_irq(INT_A9_M2A_5, 0);
return r;
}
interrupt_stats[SMD_Q6].smd_interrupt_id = INT_ADSP_A11;
r = request_irq(INT_ADSP_A11_SMSM, smsm_dsp_irq_handler,
flags, "smsm_dev", smsm_dsp_irq_handler);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
free_irq(INT_A9_M2A_5, 0);
free_irq(INT_ADSP_A11, smd_dsp_irq_handler);
return r;
}
interrupt_stats[SMD_Q6].smsm_interrupt_id = INT_ADSP_A11_SMSM;
r = enable_irq_wake(INT_ADSP_A11);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_ADSP_A11\n");
#if (INT_ADSP_A11 != INT_ADSP_A11_SMSM)
r = enable_irq_wake(INT_ADSP_A11_SMSM);
if (r < 0)
pr_err("smd_core_init: enable_irq_wake "
"failed for INT_ADSP_A11_SMSM\n");
#endif
flags &= ~IRQF_SHARED;
#endif
#if defined(CONFIG_DSPS)
r = request_irq(INT_DSPS_A11, smd_dsps_irq_handler,
flags, "smd_dev", smd_dsps_irq_handler);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
free_irq(INT_A9_M2A_5, 0);
free_irq(INT_ADSP_A11, smd_dsp_irq_handler);
free_irq(INT_ADSP_A11_SMSM, smsm_dsp_irq_handler);
return r;
}
interrupt_stats[SMD_DSPS].smd_interrupt_id = INT_DSPS_A11;
r = enable_irq_wake(INT_DSPS_A11);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_ADSP_A11\n");
#endif
#if defined(CONFIG_WCNSS)
r = request_irq(INT_WCNSS_A11, smd_wcnss_irq_handler,
flags, "smd_dev", smd_wcnss_irq_handler);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
free_irq(INT_A9_M2A_5, 0);
free_irq(INT_ADSP_A11, smd_dsp_irq_handler);
free_irq(INT_ADSP_A11_SMSM, smsm_dsp_irq_handler);
free_irq(INT_DSPS_A11, smd_dsps_irq_handler);
return r;
}
interrupt_stats[SMD_WCNSS].smd_interrupt_id = INT_WCNSS_A11;
r = enable_irq_wake(INT_WCNSS_A11);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_WCNSS_A11\n");
r = request_irq(INT_WCNSS_A11_SMSM, smsm_wcnss_irq_handler,
flags, "smsm_dev", smsm_wcnss_irq_handler);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
free_irq(INT_A9_M2A_5, 0);
free_irq(INT_ADSP_A11, smd_dsp_irq_handler);
free_irq(INT_ADSP_A11_SMSM, smsm_dsp_irq_handler);
free_irq(INT_DSPS_A11, smd_dsps_irq_handler);
free_irq(INT_WCNSS_A11, smd_wcnss_irq_handler);
return r;
}
interrupt_stats[SMD_WCNSS].smsm_interrupt_id = INT_WCNSS_A11_SMSM;
r = enable_irq_wake(INT_WCNSS_A11_SMSM);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_WCNSS_A11_SMSM\n");
#endif
#if defined(CONFIG_DSPS_SMSM)
r = request_irq(INT_DSPS_A11_SMSM, smsm_dsps_irq_handler,
flags, "smsm_dev", smsm_dsps_irq_handler);
if (r < 0) {
free_irq(INT_A9_M2A_0, 0);
free_irq(INT_A9_M2A_5, 0);
free_irq(INT_ADSP_A11, smd_dsp_irq_handler);
free_irq(INT_ADSP_A11_SMSM, smsm_dsp_irq_handler);
free_irq(INT_DSPS_A11, smd_dsps_irq_handler);
free_irq(INT_WCNSS_A11, smd_wcnss_irq_handler);
free_irq(INT_WCNSS_A11_SMSM, smsm_wcnss_irq_handler);
return r;
}
interrupt_stats[SMD_DSPS].smsm_interrupt_id = INT_DSPS_A11_SMSM;
r = enable_irq_wake(INT_DSPS_A11_SMSM);
if (r < 0)
pr_err("smd_core_init: "
"enable_irq_wake failed for INT_DSPS_A11_SMSM\n");
#endif
SMD_INFO("smd_core_init() done\n");
return 0;
}
static int intr_init(struct interrupt_config_item *private_irq,
struct smd_irq_config *platform_irq,
struct platform_device *pdev
)
{
int irq_id;
int ret;
int ret_wake;
private_irq->out_bit_pos = platform_irq->out_bit_pos;
private_irq->out_offset = platform_irq->out_offset;
private_irq->out_base = platform_irq->out_base;
irq_id = platform_get_irq_byname(
pdev,
platform_irq->irq_name
);
SMD_DBG("smd: %s: register irq: %s id: %d\n", __func__,
platform_irq->irq_name, irq_id);
ret = request_irq(irq_id,
private_irq->irq_handler,
platform_irq->flags,
platform_irq->device_name,
(void *)platform_irq->dev_id
);
if (ret < 0) {
platform_irq->irq_id = ret;
private_irq->irq_id = ret;
} else {
platform_irq->irq_id = irq_id;
private_irq->irq_id = irq_id;
ret_wake = enable_irq_wake(irq_id);
if (ret_wake < 0) {
pr_err("smd: enable_irq_wake failed on %s",
platform_irq->irq_name);
}
}
return ret;
}
int sort_cmp_func(const void *a, const void *b)
{
struct smem_area *left = (struct smem_area *)(a);
struct smem_area *right = (struct smem_area *)(b);
return left->phys_addr - right->phys_addr;
}
int smd_core_platform_init(struct platform_device *pdev)
{
int i;
int ret;
uint32_t num_ss;
struct smd_platform *smd_platform_data;
struct smd_subsystem_config *smd_ss_config_list;
struct smd_subsystem_config *cfg;
int err_ret = 0;
struct smd_smem_regions *smd_smem_areas;
int smem_idx = 0;
smd_platform_data = pdev->dev.platform_data;
num_ss = smd_platform_data->num_ss_configs;
smd_ss_config_list = smd_platform_data->smd_ss_configs;
if (smd_platform_data->smd_ssr_config)
disable_smsm_reset_handshake = smd_platform_data->
smd_ssr_config->disable_smsm_reset_handshake;
smd_smem_areas = smd_platform_data->smd_smem_areas;
if (smd_smem_areas) {
num_smem_areas = smd_platform_data->num_smem_areas;
smem_areas = kmalloc(sizeof(struct smem_area) * num_smem_areas,
GFP_KERNEL);
if (!smem_areas) {
pr_err("%s: smem_areas kmalloc failed\n", __func__);
err_ret = -ENOMEM;
goto smem_areas_alloc_fail;
}
for (smem_idx = 0; smem_idx < num_smem_areas; ++smem_idx) {
smem_areas[smem_idx].phys_addr =
smd_smem_areas[smem_idx].phys_addr;
smem_areas[smem_idx].size =
smd_smem_areas[smem_idx].size;
smem_areas[smem_idx].virt_addr = ioremap_nocache(
(unsigned long)(smem_areas[smem_idx].phys_addr),
smem_areas[smem_idx].size);
if (!smem_areas[smem_idx].virt_addr) {
pr_err("%s: ioremap_nocache() of addr: %pa size: %pa\n",
__func__,
&smem_areas[smem_idx].phys_addr,
&smem_areas[smem_idx].size);
err_ret = -ENOMEM;
++smem_idx;
goto smem_failed;
}
}
sort(smem_areas, num_smem_areas,
sizeof(struct smem_area),
sort_cmp_func, NULL);
}
for (i = 0; i < num_ss; i++) {
cfg = &smd_ss_config_list[i];
ret = intr_init(
&private_intr_config[cfg->irq_config_id].smd,
&cfg->smd_int,
pdev
);
if (ret < 0) {
err_ret = ret;
pr_err("smd: register irq failed on %s\n",
cfg->smd_int.irq_name);
goto intr_failed;
}
interrupt_stats[cfg->irq_config_id].smd_interrupt_id
= cfg->smd_int.irq_id;
/* only init smsm structs if this edge supports smsm */
if (cfg->smsm_int.irq_id)
ret = intr_init(
&private_intr_config[cfg->irq_config_id].smsm,
&cfg->smsm_int,
pdev
);
if (ret < 0) {
err_ret = ret;
pr_err("smd: register irq failed on %s\n",
cfg->smsm_int.irq_name);
goto intr_failed;
}
if (cfg->smsm_int.irq_id)
interrupt_stats[cfg->irq_config_id].smsm_interrupt_id
= cfg->smsm_int.irq_id;
if (cfg->subsys_name)
strlcpy(edge_to_pids[cfg->edge].subsys_name,
cfg->subsys_name, SMD_MAX_CH_NAME_LEN);
}
SMD_INFO("smd_core_platform_init() done\n");
return 0;
intr_failed:
pr_err("smd: deregistering IRQs\n");
for (i = 0; i < num_ss; ++i) {
cfg = &smd_ss_config_list[i];
if (cfg->smd_int.irq_id >= 0)
free_irq(cfg->smd_int.irq_id,
(void *)cfg->smd_int.dev_id
);
if (cfg->smsm_int.irq_id >= 0)
free_irq(cfg->smsm_int.irq_id,
(void *)cfg->smsm_int.dev_id
);
}
smem_failed:
for (smem_idx = smem_idx - 1; smem_idx >= 0; --smem_idx)
iounmap(smem_areas[smem_idx].virt_addr);
kfree(smem_areas);
smem_areas_alloc_fail:
return err_ret;
}
static int __devinit parse_smd_devicetree(struct device_node *node,
void *irq_out_base)
{
uint32_t edge;
char *key;
int ret;
uint32_t irq_offset;
uint32_t irq_bitmask;
uint32_t irq_line;
unsigned long irq_flags = IRQF_TRIGGER_RISING;
const char *pilstr;
struct interrupt_config_item *private_irq;
key = "qcom,smd-edge";
ret = of_property_read_u32(node, key, &edge);
if (ret)
goto missing_key;
SMD_DBG("%s: %s = %d", __func__, key, edge);
key = "qcom,smd-irq-offset";
ret = of_property_read_u32(node, key, &irq_offset);
if (ret)
goto missing_key;
SMD_DBG("%s: %s = %x", __func__, key, irq_offset);
key = "qcom,smd-irq-bitmask";
ret = of_property_read_u32(node, key, &irq_bitmask);
if (ret)
goto missing_key;
SMD_DBG("%s: %s = %x", __func__, key, irq_bitmask);
key = "interrupts";
irq_line = irq_of_parse_and_map(node, 0);
if (!irq_line)
goto missing_key;
SMD_DBG("%s: %s = %d", __func__, key, irq_line);
key = "qcom,pil-string";
pilstr = of_get_property(node, key, NULL);
if (pilstr)
SMD_DBG("%s: %s = %s", __func__, key, pilstr);
key = "qcom,irq-no-suspend";
ret = of_property_read_bool(node, key);
if (ret)
irq_flags |= IRQF_NO_SUSPEND;
private_irq = &private_intr_config[edge_to_pids[edge].remote_pid].smd;
private_irq->out_bit_pos = irq_bitmask;
private_irq->out_offset = irq_offset;
private_irq->out_base = irq_out_base;
private_irq->irq_id = irq_line;
ret = request_irq(irq_line,
private_irq->irq_handler,
irq_flags,
"smd_dev",
NULL);
if (ret < 0) {
pr_err("%s: request_irq() failed on %d\n", __func__, irq_line);
return ret;
} else {
ret = enable_irq_wake(irq_line);
if (ret < 0)
pr_err("%s: enable_irq_wake() failed on %d\n", __func__,
irq_line);
}
if (pilstr)
strlcpy(edge_to_pids[edge].subsys_name, pilstr,
SMD_MAX_CH_NAME_LEN);
return 0;
missing_key:
pr_err("%s: missing key: %s", __func__, key);
return -ENODEV;
}
static int __devinit parse_smsm_devicetree(struct device_node *node,
void *irq_out_base)
{
uint32_t edge;
char *key;
int ret;
uint32_t irq_offset;
uint32_t irq_bitmask;
uint32_t irq_line;
struct interrupt_config_item *private_irq;
key = "qcom,smsm-edge";
ret = of_property_read_u32(node, key, &edge);
if (ret)
goto missing_key;
SMD_DBG("%s: %s = %d", __func__, key, edge);
key = "qcom,smsm-irq-offset";
ret = of_property_read_u32(node, key, &irq_offset);
if (ret)
goto missing_key;
SMD_DBG("%s: %s = %x", __func__, key, irq_offset);
key = "qcom,smsm-irq-bitmask";
ret = of_property_read_u32(node, key, &irq_bitmask);
if (ret)
goto missing_key;
SMD_DBG("%s: %s = %x", __func__, key, irq_bitmask);
key = "interrupts";
irq_line = irq_of_parse_and_map(node, 0);
if (!irq_line)
goto missing_key;
SMD_DBG("%s: %s = %d", __func__, key, irq_line);
private_irq = &private_intr_config[edge_to_pids[edge].remote_pid].smsm;
private_irq->out_bit_pos = irq_bitmask;
private_irq->out_offset = irq_offset;
private_irq->out_base = irq_out_base;
private_irq->irq_id = irq_line;
ret = request_irq(irq_line,
private_irq->irq_handler,
IRQF_TRIGGER_RISING,
"smsm_dev",
NULL);
if (ret < 0) {
pr_err("%s: request_irq() failed on %d\n", __func__, irq_line);
return ret;
} else {
ret = enable_irq_wake(irq_line);
if (ret < 0)
pr_err("%s: enable_irq_wake() failed on %d\n", __func__,
irq_line);
}
return 0;
missing_key:
pr_err("%s: missing key: %s", __func__, key);
return -ENODEV;
}
static void __devinit unparse_smd_devicetree(struct device_node *node)
{
uint32_t irq_line;
irq_line = irq_of_parse_and_map(node, 0);
free_irq(irq_line, NULL);
}
static void __devinit unparse_smsm_devicetree(struct device_node *node)
{
uint32_t irq_line;
irq_line = irq_of_parse_and_map(node, 0);
free_irq(irq_line, NULL);
}
static int __devinit smd_core_devicetree_init(struct platform_device *pdev)
{
char *key;
struct resource *r;
void *irq_out_base;
phys_addr_t aux_mem_base;
resource_size_t aux_mem_size;
int temp_string_size = 11; /* max 3 digit count */
char temp_string[temp_string_size];
int count;
struct device_node *node;
int ret;
const char *compatible;
struct ramdump_segment *ramdump_segments_tmp;
int subnode_num = 0;
resource_size_t irq_out_size;
disable_smsm_reset_handshake = 1;
key = "irq-reg-base";
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!r) {
pr_err("%s: missing '%s'\n", __func__, key);
return -ENODEV;
}
irq_out_size = resource_size(r);
irq_out_base = ioremap_nocache(r->start, irq_out_size);
if (!irq_out_base) {
pr_err("%s: ioremap_nocache() of irq_out_base addr:%pr size:%pr\n",
__func__, &r->start, &irq_out_size);
return -ENOMEM;
}
SMD_DBG("%s: %s = %p", __func__, key, irq_out_base);
count = 1;
while (1) {
scnprintf(temp_string, temp_string_size, "aux-mem%d", count);
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
temp_string);
if (!r)
break;
++num_smem_areas;
++count;
if (count > 999) {
pr_err("%s: max num aux mem regions reached\n",
__func__);
break;
}
}
/* initialize SSR ramdump regions */
key = "smem";
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key);
if (!r) {
pr_err("%s: missing '%s'\n", __func__, key);
return -ENODEV;
}
ramdump_segments_tmp = kmalloc_array(num_smem_areas + 1,
sizeof(struct ramdump_segment), GFP_KERNEL);
if (!ramdump_segments_tmp) {
pr_err("%s: ramdump segment kmalloc failed\n", __func__);
ret = -ENOMEM;
goto free_smem_areas;
}
ramdump_segments_tmp[0].address = r->start;
ramdump_segments_tmp[0].size = resource_size(r);
if (num_smem_areas) {
smem_areas = kmalloc(sizeof(struct smem_area) * num_smem_areas,
GFP_KERNEL);
if (!smem_areas) {
pr_err("%s: smem areas kmalloc failed\n", __func__);
ret = -ENOMEM;
goto free_smem_areas;
}
count = 1;
while (1) {
scnprintf(temp_string, temp_string_size, "aux-mem%d",
count);
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
temp_string);
if (!r)
break;
aux_mem_base = r->start;
aux_mem_size = resource_size(r);
/*
* Add to ram-dumps segments.
* ramdump_segments_tmp[0] is the main SMEM region,
* so auxiliary segments are indexed by count
* instead of count - 1.
*/
ramdump_segments_tmp[count].address = aux_mem_base;
ramdump_segments_tmp[count].size = aux_mem_size;
SMD_DBG("%s: %s = %pa %pa", __func__, temp_string,
&aux_mem_base, &aux_mem_size);
smem_areas[count - 1].phys_addr = aux_mem_base;
smem_areas[count - 1].size = aux_mem_size;
smem_areas[count - 1].virt_addr = ioremap_nocache(
(unsigned long)(smem_areas[count-1].phys_addr),
smem_areas[count - 1].size);
if (!smem_areas[count - 1].virt_addr) {
pr_err("%s: ioremap_nocache() of addr:%pa size: %pa\n",
__func__,
&smem_areas[count - 1].phys_addr,
&smem_areas[count - 1].size);
ret = -ENOMEM;
goto free_smem_areas;
}
++count;
if (count > 999) {
pr_err("%s: max num aux mem regions reached\n",
__func__);
break;
}
}
sort(smem_areas, num_smem_areas,
sizeof(struct smem_area),
sort_cmp_func, NULL);
}
for_each_child_of_node(pdev->dev.of_node, node) {
compatible = of_get_property(node, "compatible", NULL);
if (!strcmp(compatible, "qcom,smd")) {
ret = parse_smd_devicetree(node, irq_out_base);
if (ret)
goto rollback_subnodes;
} else if (!strcmp(compatible, "qcom,smsm")) {
ret = parse_smsm_devicetree(node, irq_out_base);
if (ret)
goto rollback_subnodes;
} else {
pr_err("%s: invalid child node named: %s\n", __func__,
compatible);
ret = -ENODEV;
goto rollback_subnodes;
}
++subnode_num;
}
smem_ramdump_segments = ramdump_segments_tmp;
return 0;
rollback_subnodes:
count = 0;
for_each_child_of_node(pdev->dev.of_node, node) {
if (count >= subnode_num)
break;
++count;
compatible = of_get_property(node, "compatible", NULL);
if (!strcmp(compatible, "qcom,smd"))
unparse_smd_devicetree(node);
else
unparse_smsm_devicetree(node);
}
free_smem_areas:
num_smem_areas = 0;
kfree(ramdump_segments_tmp);
kfree(smem_areas);
smem_areas = NULL;
return ret;
}
static int __devinit msm_smd_probe(struct platform_device *pdev)
{
int ret;
SMD_INFO("smd probe\n");
INIT_WORK(&probe_work, smd_channel_probe_worker);
channel_close_wq = create_singlethread_workqueue("smd_channel_close");
if (IS_ERR(channel_close_wq)) {
pr_err("%s: create_singlethread_workqueue ENOMEM\n", __func__);
return -ENOMEM;
}
if (smsm_init()) {
pr_err("smsm_init() failed\n");
return -1;
}
if (pdev) {
if (pdev->dev.of_node) {
ret = smd_core_devicetree_init(pdev);
if (ret) {
pr_err("%s: device tree init failed\n",
__func__);
return ret;
}
smd_dev = &pdev->dev;
} else if (pdev->dev.platform_data) {
ret = smd_core_platform_init(pdev);
if (ret) {
pr_err(
"SMD: smd_core_platform_init() failed\n");
return -ENODEV;
}
} else {
ret = smd_core_init();
if (ret) {
pr_err("smd_core_init() failed\n");
return -ENODEV;
}
}
} else {
pr_err("SMD: PDEV not found\n");
return -ENODEV;
}
smd_initialized = 1;
smd_alloc_loopback_channel();
smsm_irq_handler(0, 0);
tasklet_schedule(&smd_fake_irq_tasklet);
return 0;
}
static int restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *data);
static struct restart_notifier_block restart_notifiers[] = {
{SMD_MODEM, "modem", .nb.notifier_call = restart_notifier_cb},
{SMD_Q6, "lpass", .nb.notifier_call = restart_notifier_cb},
{SMD_WCNSS, "wcnss", .nb.notifier_call = restart_notifier_cb},
{SMD_DSPS, "dsps", .nb.notifier_call = restart_notifier_cb},
{SMD_MODEM, "gss", .nb.notifier_call = restart_notifier_cb},
{SMD_Q6, "adsp", .nb.notifier_call = restart_notifier_cb},
};
static int restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *data)
{
/*
* Some SMD or SMSM clients assume SMD/SMSM SSR handling will be
* done in the AFTER_SHUTDOWN level. If this ever changes, extra
* care should be taken to verify no clients are broken.
*/
if (code == SUBSYS_AFTER_SHUTDOWN) {
struct restart_notifier_block *notifier;
notifier = container_of(this,
struct restart_notifier_block, nb);
SMD_INFO("%s: ssrestart for processor %d ('%s')\n",
__func__, notifier->processor,
notifier->name);
remote_spin_release(&remote_spinlock, notifier->processor);
remote_spin_release_all(notifier->processor);
if (smem_ramdump_dev) {
int ret;
SMD_INFO("%s: saving ramdump\n", __func__);
/*
* XPU protection does not currently allow the
* auxiliary memory regions to be dumped. If this
* changes, then num_smem_areas + 1 should be passed
* into do_elf_ramdump() to dump all regions.
*/
ret = do_elf_ramdump(smem_ramdump_dev,
smem_ramdump_segments, 1);
if (ret < 0)
pr_err("%s: unable to dump smem %d\n", __func__,
ret);
}
smd_channel_reset(notifier->processor);
}
return NOTIFY_DONE;
}
static __init int modem_restart_late_init(void)
{
int i;
void *handle;
struct restart_notifier_block *nb;
smem_ramdump_dev = create_ramdump_device("smem-smd", smd_dev);
if (IS_ERR_OR_NULL(smem_ramdump_dev)) {
pr_err("%s: Unable to create smem ramdump device.\n",
__func__);
smem_ramdump_dev = NULL;
}
for (i = 0; i < ARRAY_SIZE(restart_notifiers); i++) {
nb = &restart_notifiers[i];
handle = subsys_notif_register_notifier(nb->name, &nb->nb);
SMD_DBG("%s: registering notif for '%s', handle=%p\n",
__func__, nb->name, handle);
}
return 0;
}
late_initcall(modem_restart_late_init);
static struct of_device_id msm_smem_match_table[] = {
{ .compatible = "qcom,smem" },
{},
};
static struct platform_driver msm_smd_driver = {
.probe = msm_smd_probe,
.driver = {
.name = MODULE_NAME,
.owner = THIS_MODULE,
.of_match_table = msm_smem_match_table,
},
};
int __init msm_smd_init(void)
{
static bool registered;
int rc;
if (registered)
return 0;
smd_log_ctx = ipc_log_context_create(NUM_LOG_PAGES, "smd");
if (!smd_log_ctx) {
pr_err("%s: unable to create logging context\n", __func__);
msm_smd_debug_mask = 0;
}
registered = true;
rc = remote_spin_lock_init(&remote_spinlock, SMEM_SPINLOCK_SMEM_ALLOC);
if (rc) {
pr_err("%s: remote spinlock init failed %d\n", __func__, rc);
return rc;
}
spinlocks_initialized = 1;
rc = platform_driver_register(&msm_smd_driver);
if (rc) {
pr_err("%s: msm_smd_driver register failed %d\n",
__func__, rc);
return rc;
}
smd_module_init_notify(0, NULL);
return 0;
}
module_init(msm_smd_init);
MODULE_DESCRIPTION("MSM Shared Memory Core");
MODULE_AUTHOR("Brian Swetland <swetland@google.com>");
MODULE_LICENSE("GPL");