blob: 310197ed9a7c5923fa440bbf77b84c3beeadcc0f [file] [log] [blame]
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/kobject.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stringify.h>
#include <linux/debugfs.h>
#include <linux/msm_tsens.h>
#include <asm/atomic.h>
#include <asm/page.h>
#include <mach/msm_dcvs.h>
#include <trace/events/mpdcvs_trace.h>
#define CORE_HANDLE_OFFSET (0xA0)
#define __err(f, ...) pr_err("MSM_DCVS: %s: " f, __func__, __VA_ARGS__)
#define __info(f, ...) pr_info("MSM_DCVS: %s: " f, __func__, __VA_ARGS__)
#define MAX_PENDING (5)
struct core_attribs {
struct kobj_attribute freq_change_us;
struct kobj_attribute disable_pc_threshold;
struct kobj_attribute em_win_size_min_us;
struct kobj_attribute em_win_size_max_us;
struct kobj_attribute em_max_util_pct;
struct kobj_attribute group_id;
struct kobj_attribute max_freq_chg_time_us;
struct kobj_attribute slack_mode_dynamic;
struct kobj_attribute slack_time_min_us;
struct kobj_attribute slack_time_max_us;
struct kobj_attribute slack_weight_thresh_pct;
struct kobj_attribute ss_iobusy_conv;
struct kobj_attribute ss_win_size_min_us;
struct kobj_attribute ss_win_size_max_us;
struct kobj_attribute ss_util_pct;
struct kobj_attribute active_coeff_a;
struct kobj_attribute active_coeff_b;
struct kobj_attribute active_coeff_c;
struct kobj_attribute leakage_coeff_a;
struct kobj_attribute leakage_coeff_b;
struct kobj_attribute leakage_coeff_c;
struct kobj_attribute leakage_coeff_d;
struct kobj_attribute thermal_poll_ms;
struct attribute_group attrib_group;
};
enum pending_freq_state {
/*
* used by the thread to check if pending_freq was updated while it was
* setting previous frequency - this is written to and used by the
* freq updating thread
*/
NO_OUTSTANDING_FREQ_CHANGE = 0,
/*
* This request is set to indicate that the governor is stopped and no
* more frequency change requests are accepted untill it starts again.
* This is checked/used by the threads that want to change the freq
*/
STOP_FREQ_CHANGE = -1,
/*
* Any other +ve value means that a freq change was requested and the
* thread has not gotten around to update it
*
* Any other -ve value means that this is the last freq change i.e. a
* freq change was requested but the thread has not run yet and
* meanwhile the governor was stopped.
*/
};
struct dcvs_core {
spinlock_t idle_state_change_lock;
/* 0 when not idle (busy) 1 when idle and -1 when governor starts and
* we dont know whether the next call is going to be idle enter or exit
*/
int idle_entered;
enum msm_dcvs_core_type type;
/* this is the number in each type for example cpu 0,1,2 and gpu 0,1 */
int type_core_num;
char core_name[CORE_NAME_MAX];
uint32_t actual_freq;
uint32_t freq_change_us;
uint32_t max_time_us; /* core param */
struct msm_dcvs_algo_param algo_param;
struct msm_dcvs_energy_curve_coeffs coeffs;
/* private */
ktime_t time_start;
struct task_struct *task;
struct core_attribs attrib;
uint32_t dcvs_core_id;
struct msm_dcvs_core_info *info;
int sensor;
wait_queue_head_t wait_q;
int (*set_frequency)(int type_core_num, unsigned int freq);
unsigned int (*get_frequency)(int type_core_num);
int (*idle_enable)(int type_core_num,
enum msm_core_control_event event);
spinlock_t pending_freq_lock;
int pending_freq;
struct hrtimer slack_timer;
struct delayed_work temperature_work;
};
static int msm_dcvs_enabled = 1;
module_param_named(enable, msm_dcvs_enabled, int, S_IRUGO | S_IWUSR | S_IWGRP);
static struct dentry *debugfs_base;
static struct dcvs_core core_list[CORES_MAX];
static struct kobject *cores_kobj;
static void force_stop_slack_timer(struct dcvs_core *core)
{
unsigned long flags;
spin_lock_irqsave(&core->idle_state_change_lock, flags);
hrtimer_cancel(&core->slack_timer);
spin_unlock_irqrestore(&core->idle_state_change_lock, flags);
}
static void force_start_slack_timer(struct dcvs_core *core, int slack_us)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&core->idle_state_change_lock, flags);
/*
* only start the timer if governor is not stopped
*/
if (slack_us != 0) {
ret = hrtimer_start(&core->slack_timer,
ktime_set(0, slack_us * 1000),
HRTIMER_MODE_REL_PINNED);
if (ret) {
pr_err("%s Failed to start timer ret = %d\n",
core->core_name, ret);
}
}
spin_unlock_irqrestore(&core->idle_state_change_lock, flags);
}
static void stop_slack_timer(struct dcvs_core *core)
{
unsigned long flags;
spin_lock_irqsave(&core->idle_state_change_lock, flags);
/* err only for cpu type's GPU's can do idle exit consecutively */
if (core->idle_entered == 1 && !(core->dcvs_core_id >= GPU_OFFSET))
__err("%s trying to reenter idle", core->core_name);
core->idle_entered = 1;
hrtimer_cancel(&core->slack_timer);
core->idle_entered = 1;
spin_unlock_irqrestore(&core->idle_state_change_lock, flags);
}
static void start_slack_timer(struct dcvs_core *core, int slack_us)
{
unsigned long flags1, flags2;
int ret;
spin_lock_irqsave(&core->idle_state_change_lock, flags2);
spin_lock_irqsave(&core->pending_freq_lock, flags1);
/* err only for cpu type's GPU's can do idle enter consecutively */
if (core->idle_entered == 0 && !(core->dcvs_core_id >= GPU_OFFSET))
__err("%s trying to reexit idle", core->core_name);
core->idle_entered = 0;
/*
* only start the timer if governor is not stopped
*/
if (slack_us != 0
&& !(core->pending_freq < NO_OUTSTANDING_FREQ_CHANGE)) {
ret = hrtimer_start(&core->slack_timer,
ktime_set(0, slack_us * 1000),
HRTIMER_MODE_REL_PINNED);
if (ret) {
pr_err("%s Failed to start timer ret = %d\n",
core->core_name, ret);
}
}
spin_unlock_irqrestore(&core->pending_freq_lock, flags1);
spin_unlock_irqrestore(&core->idle_state_change_lock, flags2);
}
static void restart_slack_timer(struct dcvs_core *core, int slack_us)
{
unsigned long flags1, flags2;
int ret;
spin_lock_irqsave(&core->idle_state_change_lock, flags2);
hrtimer_cancel(&core->slack_timer);
spin_lock_irqsave(&core->pending_freq_lock, flags1);
/*
* only start the timer if idle is not entered
* and governor is not stopped
*/
if (slack_us != 0 && (core->idle_entered != 1)
&& !(core->pending_freq < NO_OUTSTANDING_FREQ_CHANGE)) {
ret = hrtimer_start(&core->slack_timer,
ktime_set(0, slack_us * 1000),
HRTIMER_MODE_REL_PINNED);
if (ret) {
pr_err("%s Failed to start timer ret = %d\n",
core->core_name, ret);
}
}
spin_unlock_irqrestore(&core->pending_freq_lock, flags1);
spin_unlock_irqrestore(&core->idle_state_change_lock, flags2);
}
static int __msm_dcvs_change_freq(struct dcvs_core *core)
{
int ret = 0;
unsigned long flags = 0;
int requested_freq = 0;
ktime_t time_start;
uint32_t slack_us = 0;
uint32_t ret1 = 0;
spin_lock_irqsave(&core->pending_freq_lock, flags);
repeat:
BUG_ON(!core->pending_freq);
if (core->pending_freq == STOP_FREQ_CHANGE)
BUG();
requested_freq = core->pending_freq;
time_start = core->time_start;
core->time_start = ns_to_ktime(0);
if (requested_freq < 0) {
requested_freq = -1 * requested_freq;
core->pending_freq = STOP_FREQ_CHANGE;
} else {
core->pending_freq = NO_OUTSTANDING_FREQ_CHANGE;
}
if (requested_freq == core->actual_freq)
goto out;
spin_unlock_irqrestore(&core->pending_freq_lock, flags);
/**
* Call the frequency sink driver to change the frequency
* We will need to get back the actual frequency in KHz and
* the record the time taken to change it.
*/
ret = core->set_frequency(core->type_core_num, requested_freq);
if (ret <= 0)
__err("Core %s failed to set freq %u\n",
core->core_name, requested_freq);
/* continue to call TZ to get updated slack timer */
else
core->actual_freq = ret;
core->freq_change_us = (uint32_t)ktime_to_us(
ktime_sub(ktime_get(), time_start));
/**
* Disable low power modes if the actual frequency is >
* disable_pc_threshold.
*/
if (core->actual_freq > core->algo_param.disable_pc_threshold) {
core->idle_enable(core->type_core_num,
MSM_DCVS_DISABLE_HIGH_LATENCY_MODES);
} else if (core->actual_freq <= core->algo_param.disable_pc_threshold) {
core->idle_enable(core->type_core_num,
MSM_DCVS_ENABLE_HIGH_LATENCY_MODES);
}
/**
* Update algorithm with new freq and time taken to change
* to this frequency and that will get us the new slack
* timer
*/
ret = msm_dcvs_scm_event(core->dcvs_core_id,
MSM_DCVS_SCM_CLOCK_FREQ_UPDATE,
core->actual_freq, core->freq_change_us,
&slack_us, &ret1);
if (ret) {
__err("Error sending core (%s) dcvs_core_id = %d freq change (%u) reqfreq = %d slack_us=%d ret = %d\n",
core->core_name, core->dcvs_core_id,
core->actual_freq, requested_freq,
slack_us, ret);
}
/* TODO confirm that we get a valid freq from SM even when the above
* FREQ_UPDATE fails
*/
restart_slack_timer(core, slack_us);
spin_lock_irqsave(&core->pending_freq_lock, flags);
/**
* By the time we are done with freq changes, we could be asked to
* change again. Check before exiting.
*/
if (core->pending_freq != NO_OUTSTANDING_FREQ_CHANGE
&& core->pending_freq != STOP_FREQ_CHANGE) {
goto repeat;
}
out: /* should always be jumped to with the spin_lock held */
spin_unlock_irqrestore(&core->pending_freq_lock, flags);
return ret;
}
static void msm_dcvs_report_temp_work(struct work_struct *work)
{
struct dcvs_core *core = container_of(work,
struct dcvs_core,
temperature_work.work);
struct msm_dcvs_core_info *info = core->info;
struct tsens_device tsens_dev;
int ret;
unsigned long temp = 0;
int interval_ms;
tsens_dev.sensor_num = core->sensor;
ret = tsens_get_temp(&tsens_dev, &temp);
if (!temp) {
tsens_dev.sensor_num = 0;
ret = tsens_get_temp(&tsens_dev, &temp);
if (!temp)
goto out;
}
if (temp == info->power_param.current_temp)
goto out;
info->power_param.current_temp = temp;
ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id,
&info->power_param,
&info->freq_tbl[0], &core->coeffs);
out:
if (info->thermal_poll_ms == 0)
interval_ms = 60000;
else if (info->thermal_poll_ms < 1000)
interval_ms = 1000;
else
interval_ms = info->thermal_poll_ms;
schedule_delayed_work(&core->temperature_work,
msecs_to_jiffies(interval_ms));
}
static int msm_dcvs_do_freq(void *data)
{
struct dcvs_core *core = (struct dcvs_core *)data;
static struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1};
sched_setscheduler(current, SCHED_FIFO, &param);
while (!kthread_should_stop()) {
wait_event(core->wait_q, !(core->pending_freq == 0 ||
core->pending_freq == -1) ||
kthread_should_stop());
if (kthread_should_stop())
break;
__msm_dcvs_change_freq(core);
}
return 0;
}
/* freq_pending_lock should be held */
static void request_freq_change(struct dcvs_core *core, int new_freq)
{
if (new_freq == NO_OUTSTANDING_FREQ_CHANGE) {
if (core->pending_freq != STOP_FREQ_CHANGE) {
__err("%s gov started with earlier pending freq %d\n",
core->core_name, core->pending_freq);
}
core->pending_freq = NO_OUTSTANDING_FREQ_CHANGE;
return;
}
if (new_freq == STOP_FREQ_CHANGE) {
if (core->pending_freq == NO_OUTSTANDING_FREQ_CHANGE)
core->pending_freq = STOP_FREQ_CHANGE;
else if (core->pending_freq > 0)
core->pending_freq = -1 * core->pending_freq;
return;
}
if (core->pending_freq < 0) {
/* a value less than 0 means that the governor has stopped
* and no more freq changes should be requested
*/
return;
}
if (core->actual_freq != new_freq && core->pending_freq != new_freq) {
core->pending_freq = new_freq;
core->time_start = ktime_get();
wake_up(&core->wait_q);
}
}
static int msm_dcvs_update_freq(struct dcvs_core *core,
enum msm_dcvs_scm_event event, uint32_t param0,
uint32_t *ret1)
{
int ret = 0;
unsigned long flags = 0;
uint32_t new_freq = -EINVAL;
spin_lock_irqsave(&core->pending_freq_lock, flags);
ret = msm_dcvs_scm_event(core->dcvs_core_id, event, param0,
core->actual_freq, &new_freq, ret1);
if (ret) {
if (ret == -13)
ret = 0;
else
__err("Error (%d) sending SCM event %d for core %s\n",
ret, event, core->core_name);
goto out;
}
if (new_freq == 0) {
/*
* sometimes TZ gives us a 0 freq back,
* do not queue up a request
*/
goto out;
}
request_freq_change(core, new_freq);
out:
spin_unlock_irqrestore(&core->pending_freq_lock, flags);
return ret;
}
static enum hrtimer_restart msm_dcvs_core_slack_timer(struct hrtimer *timer)
{
int ret = 0;
struct dcvs_core *core = container_of(timer,
struct dcvs_core, slack_timer);
uint32_t ret1;
trace_printk("dcvs: Slack timer fired for core=%s\n", core->core_name);
/**
* Timer expired, notify TZ
* Dont care about the third arg.
*/
ret = msm_dcvs_update_freq(core, MSM_DCVS_SCM_QOS_TIMER_EXPIRED, 0,
&ret1);
if (ret)
__err("Timer expired for core %s but failed to notify.\n",
core->core_name);
return HRTIMER_NORESTART;
}
/* Helper functions and macros for sysfs nodes for a core */
#define CORE_FROM_ATTRIBS(attr, name) \
container_of(container_of(attr, struct core_attribs, name), \
struct dcvs_core, attrib);
#define DCVS_PARAM_SHOW(_name, v) \
static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
return snprintf(buf, PAGE_SIZE, "%d\n", v); \
}
#define DCVS_PARAM_STORE(_name) \
static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj,\
struct kobj_attribute *attr, char *buf) \
{ \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
return snprintf(buf, PAGE_SIZE, "%d\n", core->info->_name); \
} \
static ssize_t msm_dcvs_attr_##_name##_store(struct kobject *kobj, \
struct kobj_attribute *attr, const char *buf, size_t count) \
{ \
int ret = 0; \
uint32_t val = 0; \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
ret = kstrtouint(buf, 10, &val); \
if (ret) { \
__err("Invalid input %s for %s\n", buf, __stringify(_name));\
} else { \
core->info->_name = val; \
} \
return count; \
}
#define DCVS_ALGO_PARAM(_name) \
static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj,\
struct kobj_attribute *attr, char *buf) \
{ \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
return snprintf(buf, PAGE_SIZE, "%d\n", core->algo_param._name); \
} \
static ssize_t msm_dcvs_attr_##_name##_store(struct kobject *kobj, \
struct kobj_attribute *attr, const char *buf, size_t count) \
{ \
int ret = 0; \
uint32_t val = 0; \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
ret = kstrtouint(buf, 10, &val); \
if (ret) { \
__err("Invalid input %s for %s\n", buf, __stringify(_name));\
} else { \
uint32_t old_val = core->algo_param._name; \
core->algo_param._name = val; \
ret = msm_dcvs_scm_set_algo_params(core->dcvs_core_id, \
&core->algo_param); \
if (ret) { \
core->algo_param._name = old_val; \
__err("Error(%d) in setting %d for algo param %s\n",\
ret, val, __stringify(_name)); \
} \
} \
return count; \
}
#define DCVS_ENERGY_PARAM(_name) \
static ssize_t msm_dcvs_attr_##_name##_show(struct kobject *kobj,\
struct kobj_attribute *attr, char *buf) \
{ \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
return snprintf(buf, PAGE_SIZE, "%d\n", core->coeffs._name); \
} \
static ssize_t msm_dcvs_attr_##_name##_store(struct kobject *kobj, \
struct kobj_attribute *attr, const char *buf, size_t count) \
{ \
int ret = 0; \
int32_t val = 0; \
struct dcvs_core *core = CORE_FROM_ATTRIBS(attr, _name); \
ret = kstrtoint(buf, 10, &val); \
if (ret) { \
__err("Invalid input %s for %s\n", buf, __stringify(_name));\
} else { \
int32_t old_val = core->coeffs._name; \
core->coeffs._name = val; \
ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id, \
&core->info->power_param, &core->info->freq_tbl[0], \
&core->coeffs); \
if (ret) { \
core->coeffs._name = old_val; \
__err("Error(%d) in setting %d for coeffs param %s\n",\
ret, val, __stringify(_name)); \
} \
} \
return count; \
}
#define DCVS_RO_ATTRIB(i, _name) \
core->attrib._name.attr.name = __stringify(_name); \
core->attrib._name.attr.mode = S_IRUGO; \
core->attrib._name.show = msm_dcvs_attr_##_name##_show; \
core->attrib._name.store = NULL; \
core->attrib.attrib_group.attrs[i] = &core->attrib._name.attr;
#define DCVS_RW_ATTRIB(i, _name) \
core->attrib._name.attr.name = __stringify(_name); \
core->attrib._name.attr.mode = S_IRUGO | S_IWUSR; \
core->attrib._name.show = msm_dcvs_attr_##_name##_show; \
core->attrib._name.store = msm_dcvs_attr_##_name##_store; \
core->attrib.attrib_group.attrs[i] = &core->attrib._name.attr;
/**
* Function declarations for different attributes.
* Gets used when setting the attribute show and store parameters.
*/
DCVS_PARAM_SHOW(freq_change_us, (core->freq_change_us))
DCVS_ALGO_PARAM(disable_pc_threshold)
DCVS_ALGO_PARAM(em_win_size_min_us)
DCVS_ALGO_PARAM(em_win_size_max_us)
DCVS_ALGO_PARAM(em_max_util_pct)
DCVS_ALGO_PARAM(group_id)
DCVS_ALGO_PARAM(max_freq_chg_time_us)
DCVS_ALGO_PARAM(slack_mode_dynamic)
DCVS_ALGO_PARAM(slack_time_min_us)
DCVS_ALGO_PARAM(slack_time_max_us)
DCVS_ALGO_PARAM(slack_weight_thresh_pct)
DCVS_ALGO_PARAM(ss_iobusy_conv)
DCVS_ALGO_PARAM(ss_win_size_min_us)
DCVS_ALGO_PARAM(ss_win_size_max_us)
DCVS_ALGO_PARAM(ss_util_pct)
DCVS_ENERGY_PARAM(active_coeff_a)
DCVS_ENERGY_PARAM(active_coeff_b)
DCVS_ENERGY_PARAM(active_coeff_c)
DCVS_ENERGY_PARAM(leakage_coeff_a)
DCVS_ENERGY_PARAM(leakage_coeff_b)
DCVS_ENERGY_PARAM(leakage_coeff_c)
DCVS_ENERGY_PARAM(leakage_coeff_d)
DCVS_PARAM_STORE(thermal_poll_ms)
static int msm_dcvs_setup_core_sysfs(struct dcvs_core *core)
{
int ret = 0;
struct kobject *core_kobj = NULL;
const int attr_count = 24;
BUG_ON(!cores_kobj);
core->attrib.attrib_group.attrs =
kzalloc(attr_count * sizeof(struct attribute *), GFP_KERNEL);
if (!core->attrib.attrib_group.attrs) {
ret = -ENOMEM;
goto done;
}
DCVS_RO_ATTRIB(0, freq_change_us);
DCVS_RW_ATTRIB(1, disable_pc_threshold);
DCVS_RW_ATTRIB(2, em_win_size_min_us);
DCVS_RW_ATTRIB(3, em_win_size_max_us);
DCVS_RW_ATTRIB(4, em_max_util_pct);
DCVS_RW_ATTRIB(5, group_id);
DCVS_RW_ATTRIB(6, max_freq_chg_time_us);
DCVS_RW_ATTRIB(7, slack_mode_dynamic);
DCVS_RW_ATTRIB(8, slack_weight_thresh_pct);
DCVS_RW_ATTRIB(9, slack_time_min_us);
DCVS_RW_ATTRIB(10, slack_time_max_us);
DCVS_RW_ATTRIB(11, ss_iobusy_conv);
DCVS_RW_ATTRIB(12, ss_win_size_min_us);
DCVS_RW_ATTRIB(13, ss_win_size_max_us);
DCVS_RW_ATTRIB(14, ss_util_pct);
DCVS_RW_ATTRIB(15, active_coeff_a);
DCVS_RW_ATTRIB(16, active_coeff_b);
DCVS_RW_ATTRIB(17, active_coeff_c);
DCVS_RW_ATTRIB(18, leakage_coeff_a);
DCVS_RW_ATTRIB(19, leakage_coeff_b);
DCVS_RW_ATTRIB(20, leakage_coeff_c);
DCVS_RW_ATTRIB(21, leakage_coeff_d);
DCVS_RW_ATTRIB(22, thermal_poll_ms);
core->attrib.attrib_group.attrs[23] = NULL;
core_kobj = kobject_create_and_add(core->core_name, cores_kobj);
if (!core_kobj) {
ret = -ENOMEM;
goto done;
}
ret = sysfs_create_group(core_kobj, &core->attrib.attrib_group);
if (ret)
__err("Cannot create core %s attr group\n", core->core_name);
done:
if (ret) {
kfree(core->attrib.attrib_group.attrs);
kobject_del(core_kobj);
}
return ret;
}
static int get_core_offset(enum msm_dcvs_core_type type, int num)
{
int offset = -EINVAL;
switch (type) {
case MSM_DCVS_CORE_TYPE_CPU:
offset = CPU_OFFSET + num;
BUG_ON(offset >= GPU_OFFSET);
break;
case MSM_DCVS_CORE_TYPE_GPU:
offset = GPU_OFFSET + num;
BUG_ON(offset >= CORES_MAX);
break;
default:
BUG();
}
return offset;
}
/* Return the core and initialize non platform data specific numbers in it */
static struct dcvs_core *msm_dcvs_add_core(enum msm_dcvs_core_type type,
int num)
{
struct dcvs_core *core = NULL;
int i;
char name[CORE_NAME_MAX];
i = get_core_offset(type, num);
if (i < 0)
return NULL;
if (type == MSM_DCVS_CORE_TYPE_CPU)
snprintf(name, CORE_NAME_MAX, "cpu%d", num);
else
snprintf(name, CORE_NAME_MAX, "gpu%d", num);
core = &core_list[i];
core->dcvs_core_id = i;
strlcpy(core->core_name, name, CORE_NAME_MAX);
spin_lock_init(&core->pending_freq_lock);
spin_lock_init(&core->idle_state_change_lock);
hrtimer_init(&core->slack_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
core->slack_timer.function = msm_dcvs_core_slack_timer;
return core;
}
/* Return the core if found or add to list if @add_to_list is true */
static struct dcvs_core *msm_dcvs_get_core(int offset)
{
/* if the handle is still not set bug */
BUG_ON(core_list[offset].dcvs_core_id == -1);
return &core_list[offset];
}
int msm_dcvs_register_core(
enum msm_dcvs_core_type type,
int type_core_num,
struct msm_dcvs_core_info *info,
int (*set_frequency)(int type_core_num, unsigned int freq),
unsigned int (*get_frequency)(int type_core_num),
int (*idle_enable)(int type_core_num,
enum msm_core_control_event event),
int sensor)
{
int ret = -EINVAL;
int offset;
struct dcvs_core *core = NULL;
uint32_t ret1;
uint32_t ret2;
offset = get_core_offset(type, type_core_num);
if (offset < 0)
return ret;
if (core_list[offset].dcvs_core_id != -1)
return core_list[offset].dcvs_core_id;
core = msm_dcvs_add_core(type, type_core_num);
if (!core)
return ret;
core->type = type;
core->type_core_num = type_core_num;
core->set_frequency = set_frequency;
core->get_frequency = get_frequency;
core->idle_enable = idle_enable;
core->pending_freq = STOP_FREQ_CHANGE;
core->info = info;
memcpy(&core->algo_param, &info->algo_param,
sizeof(struct msm_dcvs_algo_param));
memcpy(&core->coeffs, &info->energy_coeffs,
sizeof(struct msm_dcvs_energy_curve_coeffs));
/*
* The tz expects cpu0 to represent bit 0 in the mask, however the
* dcvs_core_id needs to start from 1, dcvs_core_id = 0 is used to
* indicate that this request is not associated with any core.
* mpdecision
*/
info->core_param.core_bitmask_id
= 1 << (core->dcvs_core_id - CPU_OFFSET);
core->sensor = sensor;
ret = msm_dcvs_scm_register_core(core->dcvs_core_id, &info->core_param);
if (ret) {
__err("%s: scm register core fail handle = %d ret = %d\n",
__func__, core->dcvs_core_id, ret);
goto bail;
}
ret = msm_dcvs_scm_set_algo_params(core->dcvs_core_id,
&info->algo_param);
if (ret) {
__err("%s: scm algo params failed ret = %d\n", __func__, ret);
goto bail;
}
ret = msm_dcvs_scm_set_power_params(core->dcvs_core_id,
&info->power_param,
&info->freq_tbl[0], &core->coeffs);
if (ret) {
__err("%s: scm power params failed ret = %d\n", __func__, ret);
goto bail;
}
ret = msm_dcvs_scm_event(core->dcvs_core_id, MSM_DCVS_SCM_CORE_ONLINE,
core->actual_freq, 0, &ret1, &ret2);
if (ret)
goto bail;
ret = msm_dcvs_setup_core_sysfs(core);
if (ret) {
__err("Unable to setup core %s sysfs\n", core->core_name);
goto bail;
}
core->idle_entered = -1;
init_waitqueue_head(&core->wait_q);
core->task = kthread_run(msm_dcvs_do_freq, (void *)core,
"msm_dcvs/%d", core->dcvs_core_id);
ret = core->dcvs_core_id;
INIT_DELAYED_WORK(&core->temperature_work, msm_dcvs_report_temp_work);
schedule_delayed_work(&core->temperature_work,
msecs_to_jiffies(info->thermal_poll_ms));
return ret;
bail:
core->dcvs_core_id = -1;
return -EINVAL;
}
EXPORT_SYMBOL(msm_dcvs_register_core);
void msm_dcvs_update_limits(int dcvs_core_id)
{
struct dcvs_core *core;
if (dcvs_core_id < CPU_OFFSET || dcvs_core_id > CORES_MAX) {
__err("%s invalid dcvs_core_id = %d returning -EINVAL\n",
__func__, dcvs_core_id);
return;
}
core = msm_dcvs_get_core(dcvs_core_id);
core->actual_freq = core->get_frequency(core->type_core_num);
}
int msm_dcvs_freq_sink_start(int dcvs_core_id)
{
int ret = -EINVAL;
struct dcvs_core *core = NULL;
uint32_t ret1;
unsigned long flags;
int new_freq;
int timer_interval_us;
if (dcvs_core_id < CPU_OFFSET || dcvs_core_id > CORES_MAX) {
__err("%s invalid dcvs_core_id = %d returning -EINVAL\n",
__func__, dcvs_core_id);
return -EINVAL;
}
core = msm_dcvs_get_core(dcvs_core_id);
if (!core)
return ret;
core->actual_freq = core->get_frequency(core->type_core_num);
spin_lock_irqsave(&core->pending_freq_lock, flags);
/* mark that we are ready to accept new frequencies */
request_freq_change(core, NO_OUTSTANDING_FREQ_CHANGE);
spin_unlock_irqrestore(&core->pending_freq_lock, flags);
spin_lock_irqsave(&core->idle_state_change_lock, flags);
core->idle_entered = -1;
spin_unlock_irqrestore(&core->idle_state_change_lock, flags);
/* Notify TZ to start receiving idle info for the core */
ret = msm_dcvs_update_freq(core, MSM_DCVS_SCM_DCVS_ENABLE, 1, &ret1);
ret = msm_dcvs_scm_event(
core->dcvs_core_id, MSM_DCVS_SCM_CORE_ONLINE, core->actual_freq,
0, &new_freq, &timer_interval_us);
if (ret)
__err("Error (%d) DCVS sending online for %s\n",
ret, core->core_name);
if (new_freq != 0) {
spin_lock_irqsave(&core->pending_freq_lock, flags);
request_freq_change(core, new_freq);
spin_unlock_irqrestore(&core->pending_freq_lock, flags);
}
force_start_slack_timer(core, timer_interval_us);
core->idle_enable(core->type_core_num, MSM_DCVS_ENABLE_IDLE_PULSE);
return 0;
}
EXPORT_SYMBOL(msm_dcvs_freq_sink_start);
int msm_dcvs_freq_sink_stop(int dcvs_core_id)
{
int ret = -EINVAL;
struct dcvs_core *core = NULL;
uint32_t ret1;
uint32_t freq;
unsigned long flags;
if (dcvs_core_id < 0 || dcvs_core_id > CORES_MAX) {
pr_err("%s invalid dcvs_core_id = %d returning -EINVAL\n",
__func__, dcvs_core_id);
return -EINVAL;
}
core = msm_dcvs_get_core(dcvs_core_id);
if (!core) {
__err("couldn't find core for coreid = %d\n", dcvs_core_id);
return ret;
}
core->idle_enable(core->type_core_num, MSM_DCVS_DISABLE_IDLE_PULSE);
/* Notify TZ to stop receiving idle info for the core */
ret = msm_dcvs_scm_event(core->dcvs_core_id, MSM_DCVS_SCM_DCVS_ENABLE,
0, core->actual_freq, &freq, &ret1);
core->idle_enable(core->type_core_num,
MSM_DCVS_ENABLE_HIGH_LATENCY_MODES);
spin_lock_irqsave(&core->pending_freq_lock, flags);
/* flush out all the pending freq changes */
request_freq_change(core, STOP_FREQ_CHANGE);
spin_unlock_irqrestore(&core->pending_freq_lock, flags);
force_stop_slack_timer(core);
return 0;
}
EXPORT_SYMBOL(msm_dcvs_freq_sink_stop);
int msm_dcvs_idle(int dcvs_core_id, enum msm_core_idle_state state,
uint32_t iowaited)
{
int ret = 0;
struct dcvs_core *core = NULL;
uint32_t timer_interval_us = 0;
uint32_t r0, r1;
if (dcvs_core_id < CPU_OFFSET || dcvs_core_id > CORES_MAX) {
pr_err("invalid dcvs_core_id = %d ret -EINVAL\n", dcvs_core_id);
return -EINVAL;
}
core = msm_dcvs_get_core(dcvs_core_id);
switch (state) {
case MSM_DCVS_IDLE_ENTER:
stop_slack_timer(core);
ret = msm_dcvs_scm_event(core->dcvs_core_id,
MSM_DCVS_SCM_IDLE_ENTER, 0, 0, &r0, &r1);
if (ret < 0 && ret != -13)
__err("Error (%d) sending idle enter for %s\n",
ret, core->core_name);
trace_msm_dcvs_idle("idle_enter_exit", core->core_name, 1);
break;
case MSM_DCVS_IDLE_EXIT:
ret = msm_dcvs_update_freq(core, MSM_DCVS_SCM_IDLE_EXIT,
iowaited, &timer_interval_us);
if (ret)
__err("Error (%d) sending idle exit for %s\n",
ret, core->core_name);
start_slack_timer(core, timer_interval_us);
trace_msm_dcvs_idle("idle_enter_exit", core->core_name, 0);
trace_msm_dcvs_iowait("iowait", core->core_name, iowaited);
trace_msm_dcvs_slack_time("slack_timer_dcvs", core->core_name,
timer_interval_us);
break;
}
return ret;
}
EXPORT_SYMBOL(msm_dcvs_idle);
static int __init msm_dcvs_late_init(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module %s\n",
__func__, KBUILD_MODNAME);
ret = -ENOENT;
goto err;
}
cores_kobj = kobject_create_and_add("cores", module_kobj);
if (!cores_kobj) {
__err("Cannot create %s kobject\n", "cores");
ret = -ENOMEM;
goto err;
}
debugfs_base = debugfs_create_dir("msm_dcvs", NULL);
if (!debugfs_base) {
__err("Cannot create debugfs base %s\n", "msm_dcvs");
ret = -ENOENT;
goto err;
}
err:
if (ret) {
kobject_del(cores_kobj);
cores_kobj = NULL;
debugfs_remove(debugfs_base);
}
return ret;
}
late_initcall(msm_dcvs_late_init);
static int __init msm_dcvs_early_init(void)
{
int ret = 0;
int i;
if (!msm_dcvs_enabled) {
__info("Not enabled (%d)\n", msm_dcvs_enabled);
return 0;
}
/* Only need about 32kBytes for normal operation */
ret = msm_dcvs_scm_init(SZ_32K);
if (ret) {
__err("Unable to initialize DCVS err=%d\n", ret);
goto done;
}
for (i = 0; i < CORES_MAX; i++)
core_list[i].dcvs_core_id = -1;
done:
return ret;
}
postcore_initcall(msm_dcvs_early_init);