blob: f03c06d583e6232355abdbee79285e121e8b99d9 [file] [log] [blame]
/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
* Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
* Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*********************************\
* Protocol Control Unit Functions *
\*********************************/
#include <asm/unaligned.h>
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
#include "base.h"
/*******************\
* Generic functions *
\*******************/
/**
* ath5k_hw_set_opmode - Set PCU operating mode
*
* @ah: The &struct ath5k_hw
*
* Initialize PCU for the various operating modes (AP/STA etc)
*
* NOTE: ah->ah_op_mode must be set before calling this.
*/
int ath5k_hw_set_opmode(struct ath5k_hw *ah)
{
struct ath_common *common = ath5k_hw_common(ah);
u32 pcu_reg, beacon_reg, low_id, high_id;
/* Preserve rest settings */
pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
| AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
beacon_reg = 0;
ATH5K_TRACE(ah->ah_sc);
switch (ah->ah_op_mode) {
case NL80211_IFTYPE_ADHOC:
pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
beacon_reg |= AR5K_BCR_ADHOC;
if (ah->ah_version == AR5K_AR5210)
pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
else
AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_MESH_POINT:
pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
beacon_reg |= AR5K_BCR_AP;
if (ah->ah_version == AR5K_AR5210)
pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
else
AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
break;
case NL80211_IFTYPE_STATION:
pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_PWR_SV : 0);
case NL80211_IFTYPE_MONITOR:
pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
| (ah->ah_version == AR5K_AR5210 ?
AR5K_STA_ID1_NO_PSPOLL : 0);
break;
default:
return -EINVAL;
}
/*
* Set PCU registers
*/
low_id = get_unaligned_le32(common->macaddr);
high_id = get_unaligned_le16(common->macaddr + 4);
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
/*
* Set Beacon Control Register on 5210
*/
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
return 0;
}
/**
* ath5k_hw_update - Update mib counters (mac layer statistics)
*
* @ah: The &struct ath5k_hw
* @stats: The &struct ieee80211_low_level_stats we use to track
* statistics on the driver
*
* Reads MIB counters from PCU and updates sw statistics. Must be
* called after a MIB interrupt.
*/
void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
struct ieee80211_low_level_stats *stats)
{
ATH5K_TRACE(ah->ah_sc);
/* Read-And-Clear */
stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
/* XXX: Should we use this to track beacon count ?
* -we read it anyway to clear the register */
ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
/* Reset profile count registers on 5212*/
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
}
/* TODO: Handle ANI stats */
}
/**
* ath5k_hw_set_ack_bitrate - set bitrate for ACKs
*
* @ah: The &struct ath5k_hw
* @high: Flag to determine if we want to use high transmition rate
* for ACKs or not
*
* If high flag is set, we tell hw to use a set of control rates based on
* the current transmition rate (check out control_rates array inside reset.c).
* If not hw just uses the lowest rate available for the current modulation
* scheme being used (1Mbit for CCK and 6Mbits for OFDM).
*/
void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
{
if (ah->ah_version != AR5K_AR5212)
return;
else {
u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
if (high)
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
}
}
/******************\
* ACK/CTS Timeouts *
\******************/
/**
* ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
*
* @ah: The &struct ath5k_hw
*/
unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
}
/**
* ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
*
* @ah: The &struct ath5k_hw
* @timeout: Timeout in usec
*/
int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
{
ATH5K_TRACE(ah->ah_sc);
if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
ah->ah_turbo) <= timeout)
return -EINVAL;
AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
ath5k_hw_htoclock(timeout, ah->ah_turbo));
return 0;
}
/**
* ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
*
* @ah: The &struct ath5k_hw
*/
unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
}
/**
* ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
*
* @ah: The &struct ath5k_hw
* @timeout: Timeout in usec
*/
int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
{
ATH5K_TRACE(ah->ah_sc);
if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
ah->ah_turbo) <= timeout)
return -EINVAL;
AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
ath5k_hw_htoclock(timeout, ah->ah_turbo));
return 0;
}
/**
* ath5k_hw_set_lladdr - Set station id
*
* @ah: The &struct ath5k_hw
* @mac: The card's mac address
*
* Set station id on hw using the provided mac address
*/
int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
{
struct ath_common *common = ath5k_hw_common(ah);
u32 low_id, high_id;
u32 pcu_reg;
ATH5K_TRACE(ah->ah_sc);
/* Set new station ID */
memcpy(common->macaddr, mac, ETH_ALEN);
pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
low_id = get_unaligned_le32(mac);
high_id = get_unaligned_le16(mac + 4);
ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
return 0;
}
/**
* ath5k_hw_set_associd - Set BSSID for association
*
* @ah: The &struct ath5k_hw
* @bssid: BSSID
* @assoc_id: Assoc id
*
* Sets the BSSID which trigers the "SME Join" operation
*/
void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
{
struct ath_common *common = ath5k_hw_common(ah);
u32 low_id, high_id;
u16 tim_offset = 0;
/*
* Set simple BSSID mask on 5212
*/
if (ah->ah_version == AR5K_AR5212) {
ath5k_hw_reg_write(ah, get_unaligned_le32(common->bssidmask),
AR5K_BSS_IDM0);
ath5k_hw_reg_write(ah,
get_unaligned_le16(common->curbssid + 4),
AR5K_BSS_IDM1);
}
/*
* Set BSSID which triggers the "SME Join" operation
*/
low_id = get_unaligned_le32(bssid);
high_id = get_unaligned_le16(bssid);
ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
if (assoc_id == 0) {
ath5k_hw_disable_pspoll(ah);
return;
}
AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
tim_offset ? tim_offset + 4 : 0);
ath5k_hw_enable_pspoll(ah, NULL, 0);
}
/**
* ath5k_hw_set_bssid_mask - filter out bssids we listen
*
* @ah: the &struct ath5k_hw
* @mask: the bssid_mask, a u8 array of size ETH_ALEN
*
* BSSID masking is a method used by AR5212 and newer hardware to inform PCU
* which bits of the interface's MAC address should be looked at when trying
* to decide which packets to ACK. In station mode and AP mode with a single
* BSS every bit matters since we lock to only one BSS. In AP mode with
* multiple BSSes (virtual interfaces) not every bit matters because hw must
* accept frames for all BSSes and so we tweak some bits of our mac address
* in order to have multiple BSSes.
*
* NOTE: This is a simple filter and does *not* filter out all
* relevant frames. Some frames that are not for us might get ACKed from us
* by PCU because they just match the mask.
*
* When handling multiple BSSes you can get the BSSID mask by computing the
* set of ~ ( MAC XOR BSSID ) for all bssids we handle.
*
* When you do this you are essentially computing the common bits of all your
* BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
* the MAC address to obtain the relevant bits and compare the result with
* (frame's BSSID & mask) to see if they match.
*/
/*
* Simple example: on your card you have have two BSSes you have created with
* BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
* There is another BSSID-03 but you are not part of it. For simplicity's sake,
* assuming only 4 bits for a mac address and for BSSIDs you can then have:
*
* \
* MAC: 0001 |
* BSSID-01: 0100 | --> Belongs to us
* BSSID-02: 1001 |
* /
* -------------------
* BSSID-03: 0110 | --> External
* -------------------
*
* Our bssid_mask would then be:
*
* On loop iteration for BSSID-01:
* ~(0001 ^ 0100) -> ~(0101)
* -> 1010
* bssid_mask = 1010
*
* On loop iteration for BSSID-02:
* bssid_mask &= ~(0001 ^ 1001)
* bssid_mask = (1010) & ~(0001 ^ 1001)
* bssid_mask = (1010) & ~(1001)
* bssid_mask = (1010) & (0110)
* bssid_mask = 0010
*
* A bssid_mask of 0010 means "only pay attention to the second least
* significant bit". This is because its the only bit common
* amongst the MAC and all BSSIDs we support. To findout what the real
* common bit is we can simply "&" the bssid_mask now with any BSSID we have
* or our MAC address (we assume the hardware uses the MAC address).
*
* Now, suppose there's an incoming frame for BSSID-03:
*
* IFRAME-01: 0110
*
* An easy eye-inspeciton of this already should tell you that this frame
* will not pass our check. This is beacuse the bssid_mask tells the
* hardware to only look at the second least significant bit and the
* common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
* as 1, which does not match 0.
*
* So with IFRAME-01 we *assume* the hardware will do:
*
* allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
* --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
* --> allow = (0010) == 0000 ? 1 : 0;
* --> allow = 0
*
* Lets now test a frame that should work:
*
* IFRAME-02: 0001 (we should allow)
*
* allow = (0001 & 1010) == 1010
*
* allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
* --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
* --> allow = (0010) == (0010)
* --> allow = 1
*
* Other examples:
*
* IFRAME-03: 0100 --> allowed
* IFRAME-04: 1001 --> allowed
* IFRAME-05: 1101 --> allowed but its not for us!!!
*
*/
int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
{
struct ath_common *common = ath5k_hw_common(ah);
u32 low_id, high_id;
ATH5K_TRACE(ah->ah_sc);
/* Cache bssid mask so that we can restore it
* on reset */
memcpy(common->bssidmask, mask, ETH_ALEN);
if (ah->ah_version == AR5K_AR5212) {
low_id = get_unaligned_le32(mask);
high_id = get_unaligned_le16(mask + 4);
ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
return 0;
}
return -EIO;
}
/************\
* RX Control *
\************/
/**
* ath5k_hw_start_rx_pcu - Start RX engine
*
* @ah: The &struct ath5k_hw
*
* Starts RX engine on PCU so that hw can process RXed frames
* (ACK etc).
*
* NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
* TODO: Init ANI here
*/
void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/**
* at5k_hw_stop_rx_pcu - Stop RX engine
*
* @ah: The &struct ath5k_hw
*
* Stops RX engine on PCU
*
* TODO: Detach ANI here
*/
void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
}
/*
* Set multicast filter
*/
void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
{
ATH5K_TRACE(ah->ah_sc);
/* Set the multicat filter */
ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
}
/*
* Set multicast filter by index
*/
int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
{
ATH5K_TRACE(ah->ah_sc);
if (index >= 64)
return -EINVAL;
else if (index >= 32)
AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
(1 << (index - 32)));
else
AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
return 0;
}
/*
* Clear Multicast filter by index
*/
int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
{
ATH5K_TRACE(ah->ah_sc);
if (index >= 64)
return -EINVAL;
else if (index >= 32)
AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
(1 << (index - 32)));
else
AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
return 0;
}
/**
* ath5k_hw_get_rx_filter - Get current rx filter
*
* @ah: The &struct ath5k_hw
*
* Returns the RX filter by reading rx filter and
* phy error filter registers. RX filter is used
* to set the allowed frame types that PCU will accept
* and pass to the driver. For a list of frame types
* check out reg.h.
*/
u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
{
u32 data, filter = 0;
ATH5K_TRACE(ah->ah_sc);
filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
/*Radar detection for 5212*/
if (ah->ah_version == AR5K_AR5212) {
data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
if (data & AR5K_PHY_ERR_FIL_RADAR)
filter |= AR5K_RX_FILTER_RADARERR;
if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
filter |= AR5K_RX_FILTER_PHYERR;
}
return filter;
}
/**
* ath5k_hw_set_rx_filter - Set rx filter
*
* @ah: The &struct ath5k_hw
* @filter: RX filter mask (see reg.h)
*
* Sets RX filter register and also handles PHY error filter
* register on 5212 and newer chips so that we have proper PHY
* error reporting.
*/
void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
{
u32 data = 0;
ATH5K_TRACE(ah->ah_sc);
/* Set PHY error filter register on 5212*/
if (ah->ah_version == AR5K_AR5212) {
if (filter & AR5K_RX_FILTER_RADARERR)
data |= AR5K_PHY_ERR_FIL_RADAR;
if (filter & AR5K_RX_FILTER_PHYERR)
data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
}
/*
* The AR5210 uses promiscous mode to detect radar activity
*/
if (ah->ah_version == AR5K_AR5210 &&
(filter & AR5K_RX_FILTER_RADARERR)) {
filter &= ~AR5K_RX_FILTER_RADARERR;
filter |= AR5K_RX_FILTER_PROM;
}
/*Zero length DMA (phy error reporting) */
if (data)
AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
/*Write RX Filter register*/
ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
/*Write PHY error filter register on 5212*/
if (ah->ah_version == AR5K_AR5212)
ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
}
/****************\
* Beacon control *
\****************/
/**
* ath5k_hw_get_tsf32 - Get a 32bit TSF
*
* @ah: The &struct ath5k_hw
*
* Returns lower 32 bits of current TSF
*/
u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
}
/**
* ath5k_hw_get_tsf64 - Get the full 64bit TSF
*
* @ah: The &struct ath5k_hw
*
* Returns the current TSF
*/
u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
{
u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
ATH5K_TRACE(ah->ah_sc);
return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
}
/**
* ath5k_hw_set_tsf64 - Set a new 64bit TSF
*
* @ah: The &struct ath5k_hw
* @tsf64: The new 64bit TSF
*
* Sets the new TSF
*/
void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
{
ATH5K_TRACE(ah->ah_sc);
ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
}
/**
* ath5k_hw_reset_tsf - Force a TSF reset
*
* @ah: The &struct ath5k_hw
*
* Forces a TSF reset on PCU
*/
void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
{
u32 val;
ATH5K_TRACE(ah->ah_sc);
val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
/*
* Each write to the RESET_TSF bit toggles a hardware internal
* signal to reset TSF, but if left high it will cause a TSF reset
* on the next chip reset as well. Thus we always write the value
* twice to clear the signal.
*/
ath5k_hw_reg_write(ah, val, AR5K_BEACON);
ath5k_hw_reg_write(ah, val, AR5K_BEACON);
}
/*
* Initialize beacon timers
*/
void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
{
u32 timer1, timer2, timer3;
ATH5K_TRACE(ah->ah_sc);
/*
* Set the additional timers by mode
*/
switch (ah->ah_op_mode) {
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_STATION:
/* In STA mode timer1 is used as next wakeup
* timer and timer2 as next CFP duration start
* timer. Both in 1/8TUs. */
/* TODO: PCF handling */
if (ah->ah_version == AR5K_AR5210) {
timer1 = 0xffffffff;
timer2 = 0xffffffff;
} else {
timer1 = 0x0000ffff;
timer2 = 0x0007ffff;
}
/* Mark associated AP as PCF incapable for now */
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
break;
case NL80211_IFTYPE_ADHOC:
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
default:
/* On non-STA modes timer1 is used as next DMA
* beacon alert (DBA) timer and timer2 as next
* software beacon alert. Both in 1/8TUs. */
timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
break;
}
/* Timer3 marks the end of our ATIM window
* a zero length window is not allowed because
* we 'll get no beacons */
timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
/*
* Set the beacon register and enable all timers.
*/
/* When in AP or Mesh Point mode zero timer0 to start TSF */
if (ah->ah_op_mode == NL80211_IFTYPE_AP ||
ah->ah_op_mode == NL80211_IFTYPE_MESH_POINT)
ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
/* Force a TSF reset if requested and enable beacons */
if (interval & AR5K_BEACON_RESET_TSF)
ath5k_hw_reset_tsf(ah);
ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
AR5K_BEACON_ENABLE),
AR5K_BEACON);
/* Flush any pending BMISS interrupts on ISR by
* performing a clear-on-write operation on PISR
* register for the BMISS bit (writing a bit on
* ISR togles a reset for that bit and leaves
* the rest bits intact) */
if (ah->ah_version == AR5K_AR5210)
ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
else
ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
/* TODO: Set enchanced sleep registers on AR5212
* based on vif->bss_conf params, until then
* disable power save reporting.*/
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
}
#if 0
/*
* Set beacon timers
*/
int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
const struct ath5k_beacon_state *state)
{
u32 cfp_period, next_cfp, dtim, interval, next_beacon;
/*
* TODO: should be changed through *state
* review struct ath5k_beacon_state struct
*
* XXX: These are used for cfp period bellow, are they
* ok ? Is it O.K. for tsf here to be 0 or should we use
* get_tsf ?
*/
u32 dtim_count = 0; /* XXX */
u32 cfp_count = 0; /* XXX */
u32 tsf = 0; /* XXX */
ATH5K_TRACE(ah->ah_sc);
/* Return on an invalid beacon state */
if (state->bs_interval < 1)
return -EINVAL;
interval = state->bs_interval;
dtim = state->bs_dtim_period;
/*
* PCF support?
*/
if (state->bs_cfp_period > 0) {
/*
* Enable PCF mode and set the CFP
* (Contention Free Period) and timer registers
*/
cfp_period = state->bs_cfp_period * state->bs_dtim_period *
state->bs_interval;
next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
state->bs_interval;
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_DEFAULT_ANTENNA |
AR5K_STA_ID1_PCF);
ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
AR5K_CFP_DUR);
ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
next_cfp)) << 3, AR5K_TIMER2);
} else {
/* Disable PCF mode */
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_DEFAULT_ANTENNA |
AR5K_STA_ID1_PCF);
}
/*
* Enable the beacon timer register
*/
ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
/*
* Start the beacon timers
*/
ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
AR5K_BEACON_PERIOD), AR5K_BEACON);
/*
* Write new beacon miss threshold, if it appears to be valid
* XXX: Figure out right values for min <= bs_bmiss_threshold <= max
* and return if its not in range. We can test this by reading value and
* setting value to a largest value and seeing which values register.
*/
AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
state->bs_bmiss_threshold);
/*
* Set sleep control register
* XXX: Didn't find this in 5210 code but since this register
* exists also in ar5k's 5210 headers i leave it as common code.
*/
AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
(state->bs_sleep_duration - 3) << 3);
/*
* Set enhanced sleep registers on 5212
*/
if (ah->ah_version == AR5K_AR5212) {
if (state->bs_sleep_duration > state->bs_interval &&
roundup(state->bs_sleep_duration, interval) ==
state->bs_sleep_duration)
interval = state->bs_sleep_duration;
if (state->bs_sleep_duration > dtim && (dtim == 0 ||
roundup(state->bs_sleep_duration, dtim) ==
state->bs_sleep_duration))
dtim = state->bs_sleep_duration;
if (interval > dtim)
return -EINVAL;
next_beacon = interval == dtim ? state->bs_next_dtim :
state->bs_next_beacon;
ath5k_hw_reg_write(ah,
AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
AR5K_SLEEP0_NEXT_DTIM) |
AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
AR5K_SLEEP0_ENH_SLEEP_EN |
AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
AR5K_SLEEP1_NEXT_TIM) |
AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
ath5k_hw_reg_write(ah,
AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
}
return 0;
}
/*
* Reset beacon timers
*/
void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
{
ATH5K_TRACE(ah->ah_sc);
/*
* Disable beacon timer
*/
ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
/*
* Disable some beacon register values
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
}
/*
* Wait for beacon queue to finish
*/
int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
{
unsigned int i;
int ret;
ATH5K_TRACE(ah->ah_sc);
/* 5210 doesn't have QCU*/
if (ah->ah_version == AR5K_AR5210) {
/*
* Wait for beaconn queue to finish by checking
* Control Register and Beacon Status Register.
*/
for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
||
!(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
break;
udelay(10);
}
/* Timeout... */
if (i <= 0) {
/*
* Re-schedule the beacon queue
*/
ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
AR5K_BCR);
return -EIO;
}
ret = 0;
} else {
/*5211/5212*/
ret = ath5k_hw_register_timeout(ah,
AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
AR5K_QCU_STS_FRMPENDCNT, 0, false);
if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
return -EIO;
}
return ret;
}
#endif
/*********************\
* Key table functions *
\*********************/
/*
* Reset a key entry on the table
*/
int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
{
unsigned int i, type;
u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
/* Reset associated MIC entry if TKIP
* is enabled located at offset (entry + 64) */
if (type == AR5K_KEYTABLE_TYPE_TKIP) {
AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
ath5k_hw_reg_write(ah, 0,
AR5K_KEYTABLE_OFF(micentry, i));
}
/*
* Set NULL encryption on AR5212+
*
* Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
* AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
*
* Note2: Windows driver (ndiswrapper) sets this to
* 0x00000714 instead of 0x00000007
*/
if (ah->ah_version >= AR5K_AR5211) {
ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
AR5K_KEYTABLE_TYPE(entry));
if (type == AR5K_KEYTABLE_TYPE_TKIP) {
ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
AR5K_KEYTABLE_TYPE(micentry));
}
}
return 0;
}
/*
* Check if a table entry is valid
*/
int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
{
ATH5K_TRACE(ah->ah_sc);
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
/* Check the validation flag at the end of the entry */
return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
AR5K_KEYTABLE_VALID;
}
static
int ath5k_keycache_type(const struct ieee80211_key_conf *key)
{
switch (key->alg) {
case ALG_TKIP:
return AR5K_KEYTABLE_TYPE_TKIP;
case ALG_CCMP:
return AR5K_KEYTABLE_TYPE_CCM;
case ALG_WEP:
if (key->keylen == WLAN_KEY_LEN_WEP40)
return AR5K_KEYTABLE_TYPE_40;
else if (key->keylen == WLAN_KEY_LEN_WEP104)
return AR5K_KEYTABLE_TYPE_104;
return -EINVAL;
default:
return -EINVAL;
}
return -EINVAL;
}
/*
* Set a key entry on the table
*/
int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
const struct ieee80211_key_conf *key, const u8 *mac)
{
unsigned int i;
int keylen;
__le32 key_v[5] = {};
__le32 key0 = 0, key1 = 0;
__le32 *rxmic, *txmic;
int keytype;
u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
bool is_tkip;
const u8 *key_ptr;
ATH5K_TRACE(ah->ah_sc);
is_tkip = (key->alg == ALG_TKIP);
/*
* key->keylen comes in from mac80211 in bytes.
* TKIP is 128 bit + 128 bit mic
*/
keylen = (is_tkip) ? (128 / 8) : key->keylen;
if (entry > AR5K_KEYTABLE_SIZE ||
(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
return -EOPNOTSUPP;
if (unlikely(keylen > 16))
return -EOPNOTSUPP;
keytype = ath5k_keycache_type(key);
if (keytype < 0)
return keytype;
/*
* each key block is 6 bytes wide, written as pairs of
* alternating 32 and 16 bit le values.
*/
key_ptr = key->key;
for (i = 0; keylen >= 6; keylen -= 6) {
memcpy(&key_v[i], key_ptr, 6);
i += 2;
key_ptr += 6;
}
if (keylen)
memcpy(&key_v[i], key_ptr, keylen);
/* intentionally corrupt key until mic is installed */
if (is_tkip) {
key0 = key_v[0] = ~key_v[0];
key1 = key_v[1] = ~key_v[1];
}
for (i = 0; i < ARRAY_SIZE(key_v); i++)
ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
AR5K_KEYTABLE_OFF(entry, i));
ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
if (is_tkip) {
/* Install rx/tx MIC */
rxmic = (__le32 *) &key->key[16];
txmic = (__le32 *) &key->key[24];
if (ah->ah_combined_mic) {
key_v[0] = rxmic[0];
key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
key_v[2] = rxmic[1];
key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
key_v[4] = txmic[1];
} else {
key_v[0] = rxmic[0];
key_v[1] = 0;
key_v[2] = rxmic[1];
key_v[3] = 0;
key_v[4] = 0;
}
for (i = 0; i < ARRAY_SIZE(key_v); i++)
ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
AR5K_KEYTABLE_OFF(micentry, i));
ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
AR5K_KEYTABLE_TYPE(micentry));
ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
/* restore first 2 words of key */
ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
AR5K_KEYTABLE_OFF(entry, 0));
ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
AR5K_KEYTABLE_OFF(entry, 1));
}
return ath5k_hw_set_key_lladdr(ah, entry, mac);
}
int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
{
u32 low_id, high_id;
ATH5K_TRACE(ah->ah_sc);
/* Invalid entry (key table overflow) */
AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
/*
* MAC may be NULL if it's a broadcast key. In this case no need to
* to compute get_unaligned_le32 and get_unaligned_le16 as we
* already know it.
*/
if (!mac) {
low_id = 0xffffffff;
high_id = 0xffff | AR5K_KEYTABLE_VALID;
} else {
low_id = get_unaligned_le32(mac);
high_id = get_unaligned_le16(mac + 4) | AR5K_KEYTABLE_VALID;
}
ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
return 0;
}