blob: b00d4a0acf508231404dcea522f09731003526e8 [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/regulator/consumer.h>
#include <asm/mach-types.h>
#include <asm/cpu.h>
#include <mach/board.h>
#include <mach/msm_iomap.h>
#include <mach/rpm-regulator.h>
#include <mach/msm_bus.h>
#include <mach/msm_bus_board.h>
#include <mach/socinfo.h>
#include <mach/msm-krait-l2-accessors.h>
#include <mach/rpm-regulator.h>
#include "acpuclock.h"
/*
* Source IDs.
* These must be negative to not overlap with the source IDs
* used by the 8x60 local clock driver.
*/
#define PLL_8 0
#define HFPLL -1
#define QSB -2
/* Mux source selects. */
#define PRI_SRC_SEL_SEC_SRC 0
#define PRI_SRC_SEL_HFPLL 1
#define PRI_SRC_SEL_HFPLL_DIV2 2
#define SEC_SRC_SEL_QSB 0
#define SEC_SRC_SEL_AUX 2
/* HFPLL registers offsets. */
#define HFPLL_MODE 0x00
#define HFPLL_CONFIG_CTL 0x04
#define HFPLL_L_VAL 0x08
#define HFPLL_M_VAL 0x0C
#define HFPLL_N_VAL 0x10
#define HFPLL_DROOP_CTL 0x14
/* CP15 L2 indirect addresses. */
#define L2CPMR_IADDR 0x500
#define L2CPUCPMR_IADDR 0x501
#define STBY_KHZ 1
#define HFPLL_NOMINAL_VDD 1050000
#define HFPLL_LOW_VDD 850000
#define HFPLL_LOW_VDD_PLL_L_MAX 0x28
#define SECCLKAGD BIT(4)
/* PTE EFUSE register. */
#define QFPROM_PTE_EFUSE_ADDR (MSM_QFPROM_BASE + 0x00C0)
enum scalables {
CPU0 = 0,
CPU1,
CPU2,
CPU3,
L2,
NUM_SCALABLES
};
enum vregs {
VREG_CORE,
VREG_MEM,
VREG_DIG,
VREG_HFPLL_A,
VREG_HFPLL_B,
NUM_VREG
};
struct vreg {
const char name[15];
const unsigned int max_vdd;
const int rpm_vreg_voter;
const int rpm_vreg_id;
struct regulator *reg;
unsigned int cur_vdd;
};
struct core_speed {
unsigned int khz;
int src;
unsigned int pri_src_sel;
unsigned int sec_src_sel;
unsigned int pll_l_val;
};
struct l2_level {
struct core_speed speed;
unsigned int vdd_dig;
unsigned int vdd_mem;
unsigned int bw_level;
};
struct acpu_level {
unsigned int use_for_scaling;
struct core_speed speed;
struct l2_level *l2_level;
unsigned int vdd_core;
};
struct scalable {
void * __iomem const hfpll_base;
void * __iomem const aux_clk_sel;
const uint32_t l2cpmr_iaddr;
struct core_speed *current_speed;
struct l2_level *l2_vote;
struct vreg vreg[NUM_VREG];
bool first_set_call;
};
static struct scalable scalable_8960[] = {
[CPU0] = {
.hfpll_base = MSM_HFPLL_BASE + 0x200,
.aux_clk_sel = MSM_ACC0_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait0", 1300000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S3 },
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L23 },
},
[CPU1] = {
.hfpll_base = MSM_HFPLL_BASE + 0x300,
.aux_clk_sel = MSM_ACC1_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait1", 1300000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S3 },
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L23 },
},
[L2] = {
.hfpll_base = MSM_HFPLL_BASE + 0x400,
.aux_clk_sel = MSM_APCS_GCC_BASE + 0x028,
.l2cpmr_iaddr = L2CPMR_IADDR,
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER6,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER6,
RPM_VREG_ID_PM8921_L23 },
},
};
static DEFINE_MUTEX(driver_lock);
static DEFINE_SPINLOCK(l2_lock);
static struct scalable scalable_8064[] = {
[CPU0] = {
.hfpll_base = MSM_HFPLL_BASE + 0x200,
.aux_clk_sel = MSM_ACC0_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait0", 1150000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S3 },
},
[CPU1] = {
.hfpll_base = MSM_HFPLL_BASE + 0x240,
.aux_clk_sel = MSM_ACC1_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait1", 1150000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S3 },
},
[CPU2] = {
.hfpll_base = MSM_HFPLL_BASE + 0x280,
.aux_clk_sel = MSM_ACC2_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait2", 1150000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER4,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER4,
RPM_VREG_ID_PM8921_S3 },
},
[CPU3] = {
.hfpll_base = MSM_HFPLL_BASE + 0x2C0,
.aux_clk_sel = MSM_ACC3_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait3", 1150000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER5,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER5,
RPM_VREG_ID_PM8921_S3 },
},
[L2] = {
.hfpll_base = MSM_HFPLL_BASE + 0x300,
.aux_clk_sel = MSM_APCS_GCC_BASE + 0x028,
.l2cpmr_iaddr = L2CPMR_IADDR,
},
};
/*TODO: Update the rpm vreg id when the rpm driver is ready */
static struct scalable scalable_8930[] = {
[CPU0] = {
.hfpll_base = MSM_HFPLL_BASE + 0x200,
.aux_clk_sel = MSM_ACC0_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait0", 1300000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S3 },
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L23 },
},
[CPU1] = {
.hfpll_base = MSM_HFPLL_BASE + 0x300,
.aux_clk_sel = MSM_ACC1_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait1", 1300000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S3 },
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L23 },
},
[L2] = {
.hfpll_base = MSM_HFPLL_BASE + 0x400,
.aux_clk_sel = MSM_APCS_GCC_BASE + 0x028,
.l2cpmr_iaddr = L2CPMR_IADDR,
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER6,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER6,
RPM_VREG_ID_PM8921_L23 },
},
};
/*TODO: Update the rpm vreg id when the rpm driver is ready */
static struct scalable scalable_8627[] = {
[CPU0] = {
.hfpll_base = MSM_HFPLL_BASE + 0x200,
.aux_clk_sel = MSM_ACC0_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait0", 1300000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S3 },
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER1,
RPM_VREG_ID_PM8921_L23 },
},
[CPU1] = {
.hfpll_base = MSM_HFPLL_BASE + 0x300,
.aux_clk_sel = MSM_ACC1_BASE + 0x014,
.l2cpmr_iaddr = L2CPUCPMR_IADDR,
.vreg[VREG_CORE] = { "krait1", 1300000 },
.vreg[VREG_MEM] = { "krait0_mem", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L24 },
.vreg[VREG_DIG] = { "krait0_dig", 1150000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S3 },
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER2,
RPM_VREG_ID_PM8921_L23 },
},
[L2] = {
.hfpll_base = MSM_HFPLL_BASE + 0x400,
.aux_clk_sel = MSM_APCS_GCC_BASE + 0x028,
.l2cpmr_iaddr = L2CPMR_IADDR,
.vreg[VREG_HFPLL_A] = { "hfpll", 2100000,
RPM_VREG_VOTER6,
RPM_VREG_ID_PM8921_S8 },
.vreg[VREG_HFPLL_B] = { "hfpll", 1800000,
RPM_VREG_VOTER6,
RPM_VREG_ID_PM8921_L23 },
},
};
static struct scalable *scalable;
static struct l2_level *l2_freq_tbl;
static struct acpu_level *acpu_freq_tbl;
static int l2_freq_tbl_size;
/* Instantaneous bandwidth requests in MB/s. */
#define BW_MBPS(_bw) \
{ \
.vectors = (struct msm_bus_vectors[]){ \
{\
.src = MSM_BUS_MASTER_AMPSS_M0, \
.dst = MSM_BUS_SLAVE_EBI_CH0, \
.ib = (_bw) * 1000000UL, \
.ab = (_bw) * 100000UL, \
}, \
{ \
.src = MSM_BUS_MASTER_AMPSS_M1, \
.dst = MSM_BUS_SLAVE_EBI_CH0, \
.ib = (_bw) * 1000000UL, \
.ab = (_bw) * 100000UL, \
}, \
}, \
.num_paths = 2, \
}
static struct msm_bus_paths bw_level_tbl[] = {
[0] = BW_MBPS(640), /* At least 80 MHz on bus. */
[1] = BW_MBPS(1064), /* At least 133 MHz on bus. */
[2] = BW_MBPS(1600), /* At least 200 MHz on bus. */
[3] = BW_MBPS(2128), /* At least 266 MHz on bus. */
[4] = BW_MBPS(3200), /* At least 400 MHz on bus. */
[5] = BW_MBPS(3600), /* At least 450 MHz on bus. */
[6] = BW_MBPS(3936), /* At least 492 MHz on bus. */
};
static struct msm_bus_scale_pdata bus_client_pdata = {
.usecase = bw_level_tbl,
.num_usecases = ARRAY_SIZE(bw_level_tbl),
.active_only = 1,
.name = "acpuclock",
};
static uint32_t bus_perf_client;
/* TODO: Update vdd_dig and vdd_mem when voltage data is available. */
#define L2(x) (&l2_freq_tbl_8960_kraitv1[(x)])
static struct l2_level l2_freq_tbl_8960_kraitv1[] = {
[0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 },
[1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 1 },
[2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 },
[3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 },
[4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 1 },
[5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 },
[6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 },
[7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 2 },
[8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 2 },
[9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 },
[10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 3 },
[11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 3 },
};
static struct acpu_level acpu_freq_tbl_8960_kraitv1_slow[] = {
{ 0, {STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 900000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 900000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 925000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 925000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 937500 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 962500 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 987500 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 1000000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(11), 1025000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(11), 1062500 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(11), 1062500 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1087500 },
{ 0, { 0 } }
};
static struct acpu_level acpu_freq_tbl_8960_kraitv1_nom_fast[] = {
{ 0, {STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 862500 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 862500 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 862500 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 887500 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 900000 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 925000 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 925000 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 937500 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(11), 962500 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(11), 1012500 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(11), 1025000 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1025000 },
{ 0, { 0 } }
};
#undef L2
#define L2(x) (&l2_freq_tbl_8960_kraitv2[(x)])
static struct l2_level l2_freq_tbl_8960_kraitv2[] = {
[0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 },
[1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 1 },
[2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 2 },
[3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 2 },
[4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 2 },
[5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 },
[6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 4 },
[7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 4 },
[8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 4 },
[9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 4 },
[10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 4 },
[11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 6 },
[12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 6 },
[13] = { { 1026000, HFPLL, 1, 0, 0x26 }, 1150000, 1150000, 6 },
[14] = { { 1080000, HFPLL, 1, 0, 0x28 }, 1150000, 1150000, 6 },
[15] = { { 1134000, HFPLL, 1, 0, 0x2A }, 1150000, 1150000, 6 },
[16] = { { 1188000, HFPLL, 1, 0, 0x2C }, 1150000, 1150000, 6 },
};
static struct acpu_level acpu_freq_tbl_8960_kraitv2_slow[] = {
{ 0, { STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 975000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 975000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 1000000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 1000000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 1025000 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 1025000 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 1050000 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 1050000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(11), 1075000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(11), 1075000 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(11), 1100000 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1100000 },
{ 1, { 972000, HFPLL, 1, 0, 0x24 }, L2(16), 1125000 },
{ 1, { 1026000, HFPLL, 1, 0, 0x26 }, L2(16), 1125000 },
{ 1, { 1080000, HFPLL, 1, 0, 0x28 }, L2(16), 1225000 },
{ 1, { 1134000, HFPLL, 1, 0, 0x2A }, L2(16), 1225000 },
{ 1, { 1188000, HFPLL, 1, 0, 0x2C }, L2(16), 1250000 },
{ 1, { 1242000, HFPLL, 1, 0, 0x2E }, L2(16), 1250000 },
{ 1, { 1296000, HFPLL, 1, 0, 0x30 }, L2(16), 1275000 },
{ 1, { 1350000, HFPLL, 1, 0, 0x32 }, L2(16), 1275000 },
{ 1, { 1404000, HFPLL, 1, 0, 0x34 }, L2(16), 1287500 },
{ 1, { 1458000, HFPLL, 1, 0, 0x36 }, L2(16), 1287500 },
{ 1, { 1512000, HFPLL, 1, 0, 0x38 }, L2(16), 1300000 },
{ 0, { 0 } }
};
static struct acpu_level acpu_freq_tbl_8960_kraitv2_nom[] = {
{ 0, { STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 925000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 925000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 950000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 950000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 975000 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 975000 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 1000000 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 1000000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(11), 1025000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(11), 1025000 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(11), 1050000 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1050000 },
{ 1, { 972000, HFPLL, 1, 0, 0x24 }, L2(16), 1075000 },
{ 1, { 1026000, HFPLL, 1, 0, 0x26 }, L2(16), 1075000 },
{ 1, { 1080000, HFPLL, 1, 0, 0x28 }, L2(16), 1175000 },
{ 1, { 1134000, HFPLL, 1, 0, 0x2A }, L2(16), 1175000 },
{ 1, { 1188000, HFPLL, 1, 0, 0x2C }, L2(16), 1200000 },
{ 1, { 1242000, HFPLL, 1, 0, 0x2E }, L2(16), 1200000 },
{ 1, { 1296000, HFPLL, 1, 0, 0x30 }, L2(16), 1225000 },
{ 1, { 1350000, HFPLL, 1, 0, 0x32 }, L2(16), 1225000 },
{ 1, { 1404000, HFPLL, 1, 0, 0x34 }, L2(16), 1237500 },
{ 1, { 1458000, HFPLL, 1, 0, 0x36 }, L2(16), 1237500 },
{ 1, { 1512000, HFPLL, 1, 0, 0x38 }, L2(16), 1250000 },
{ 0, { 0 } }
};
static struct acpu_level acpu_freq_tbl_8960_kraitv2_fast[] = {
{ 0, { STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 875000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 875000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 900000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 900000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 925000 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 925000 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 950000 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 950000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(11), 975000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(11), 975000 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(11), 1000000 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1000000 },
{ 1, { 972000, HFPLL, 1, 0, 0x24 }, L2(16), 1025000 },
{ 1, { 1026000, HFPLL, 1, 0, 0x26 }, L2(16), 1025000 },
{ 1, { 1080000, HFPLL, 1, 0, 0x28 }, L2(16), 1125000 },
{ 1, { 1134000, HFPLL, 1, 0, 0x2A }, L2(16), 1125000 },
{ 1, { 1188000, HFPLL, 1, 0, 0x2C }, L2(16), 1150000 },
{ 1, { 1242000, HFPLL, 1, 0, 0x2E }, L2(16), 1150000 },
{ 1, { 1296000, HFPLL, 1, 0, 0x30 }, L2(16), 1175000 },
{ 1, { 1350000, HFPLL, 1, 0, 0x32 }, L2(16), 1175000 },
{ 1, { 1404000, HFPLL, 1, 0, 0x34 }, L2(16), 1187500 },
{ 1, { 1458000, HFPLL, 1, 0, 0x36 }, L2(16), 1187500 },
{ 1, { 1512000, HFPLL, 1, 0, 0x38 }, L2(16), 1200000 },
{ 0, { 0 } }
};
/* TODO: Update vdd_dig and vdd_mem when voltage data is available. */
#undef L2
#define L2(x) (&l2_freq_tbl_8064[(x)])
static struct l2_level l2_freq_tbl_8064[] = {
[0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 },
[1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 0 },
[2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 },
[3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 },
[4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 1 },
[5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 },
[6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 },
[7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 2 },
[8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 3 },
[9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 },
[10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 3 },
[11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 3 },
[12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 3 },
[13] = { { 1026000, HFPLL, 1, 0, 0x26 }, 1150000, 1150000, 3 },
[14] = { { 1080000, HFPLL, 1, 0, 0x28 }, 1150000, 1150000, 4 },
[15] = { { 1134000, HFPLL, 1, 0, 0x2A }, 1150000, 1150000, 4 },
[16] = { { 1188000, HFPLL, 1, 0, 0x2C }, 1150000, 1150000, 4 },
[17] = { { 1242000, HFPLL, 1, 0, 0x2E }, 1150000, 1150000, 4 },
[18] = { { 1296000, HFPLL, 1, 0, 0x30 }, 1150000, 1150000, 4 },
[19] = { { 1350000, HFPLL, 1, 0, 0x32 }, 1150000, 1150000, 4 },
[20] = { { 1404000, HFPLL, 1, 0, 0x34 }, 1150000, 1150000, 4 },
[21] = { { 1458000, HFPLL, 1, 0, 0x36 }, 1150000, 1150000, 5 },
[22] = { { 1512000, HFPLL, 1, 0, 0x38 }, 1150000, 1150000, 5 },
[23] = { { 1566000, HFPLL, 1, 0, 0x3A }, 1150000, 1150000, 5 },
[24] = { { 1620000, HFPLL, 1, 0, 0x3C }, 1150000, 1150000, 5 },
[25] = { { 1674000, HFPLL, 1, 0, 0x3E }, 1150000, 1150000, 5 },
};
/* TODO: Update core voltages when data is available. */
static struct acpu_level acpu_freq_tbl_8064[] = {
{ 0, {STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 1050000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 1050000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(2), 1050000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(3), 1050000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(4), 1050000 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(5), 1050000 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 1050000 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(7), 1050000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(8), 1150000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(9), 1150000 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(10), 1150000 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1150000 },
{ 0, { 0 } }
};
/* TODO: Update vdd_dig, vdd_mem and bw when data is available. */
#undef L2
#define L2(x) (&l2_freq_tbl_8930[(x)])
static struct l2_level l2_freq_tbl_8930[] = {
[0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 },
[1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 1 },
[2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 },
[3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 },
[4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 1 },
[5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 },
[6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 },
[7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 2 },
[8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 2 },
[9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 },
[10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 3 },
[11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 3 },
[12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 3 },
[13] = { { 1026000, HFPLL, 1, 0, 0x26 }, 1150000, 1150000, 4 },
[14] = { { 1080000, HFPLL, 1, 0, 0x28 }, 1150000, 1150000, 4 },
[15] = { { 1134000, HFPLL, 1, 0, 0x2A }, 1150000, 1150000, 4 },
[16] = { { 1188000, HFPLL, 1, 0, 0x2C }, 1150000, 1150000, 4 },
};
/* TODO: Update core voltages when data is available. */
static struct acpu_level acpu_freq_tbl_8930[] = {
{ 0, { STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 900000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 900000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 925000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 925000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 937500 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 962500 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 987500 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 1000000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(11), 1025000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(11), 1062500 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(11), 1062500 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1087500 },
{ 1, { 972000, HFPLL, 1, 0, 0x24 }, L2(16), 1100000 },
{ 1, { 1026000, HFPLL, 1, 0, 0x26 }, L2(16), 1100000 },
{ 1, { 1080000, HFPLL, 1, 0, 0x28 }, L2(16), 1100000 },
{ 1, { 1134000, HFPLL, 1, 0, 0x2A }, L2(16), 1100000 },
{ 1, { 1188000, HFPLL, 1, 0, 0x2C }, L2(16), 1125000 },
{ 0, { 0 } }
};
/* TODO: Update vdd_dig, vdd_mem and bw when data is available. */
#undef L2
#define L2(x) (&l2_freq_tbl_8627[(x)])
static struct l2_level l2_freq_tbl_8627[] = {
[0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 },
[1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 1 },
[2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 },
[3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 },
[4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 2 },
[5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 },
[6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 },
[7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 3 },
[8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 3 },
[9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 },
[10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 4 },
[11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 4 },
[12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 4 },
};
/* TODO: Update core voltages when data is available. */
static struct acpu_level acpu_freq_tbl_8627[] = {
{ 0, { STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 900000 },
{ 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 900000 },
{ 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(5), 925000 },
{ 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(5), 925000 },
{ 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(5), 937500 },
{ 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(5), 962500 },
{ 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(9), 987500 },
{ 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(9), 1000000 },
{ 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(9), 1025000 },
{ 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(9), 1062500 },
{ 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(12), 1062500 },
{ 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(12), 1087500 },
{ 1, { 972000, HFPLL, 1, 0, 0x24 }, L2(12), 1100000 },
{ 0, { 0 } }
};
static unsigned long acpuclk_8960_get_rate(int cpu)
{
return scalable[cpu].current_speed->khz;
}
/* Get the selected source on primary MUX. */
static int get_pri_clk_src(struct scalable *sc)
{
uint32_t regval;
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
return regval & 0x3;
}
/* Set the selected source on primary MUX. */
static void set_pri_clk_src(struct scalable *sc, uint32_t pri_src_sel)
{
uint32_t regval;
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
regval &= ~0x3;
regval |= (pri_src_sel & 0x3);
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Wait for switch to complete. */
mb();
udelay(1);
}
/* Get the selected source on secondary MUX. */
static int get_sec_clk_src(struct scalable *sc)
{
uint32_t regval;
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
return (regval >> 2) & 0x3;
}
/* Set the selected source on secondary MUX. */
static void set_sec_clk_src(struct scalable *sc, uint32_t sec_src_sel)
{
uint32_t regval;
/* Disable secondary source clock gating during switch. */
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
regval |= SECCLKAGD;
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Program the MUX. */
regval &= ~(0x3 << 2);
regval |= ((sec_src_sel & 0x3) << 2);
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Wait for switch to complete. */
mb();
udelay(1);
/* Re-enable secondary source clock gating. */
regval &= ~SECCLKAGD;
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
}
/* Enable an already-configured HFPLL. */
static void hfpll_enable(struct scalable *sc)
{
int rc;
if (cpu_is_msm8960() || cpu_is_msm8930() || cpu_is_msm8627()) {
rc = rpm_vreg_set_voltage(sc->vreg[VREG_HFPLL_A].rpm_vreg_id,
sc->vreg[VREG_HFPLL_A].rpm_vreg_voter, 2100000,
sc->vreg[VREG_HFPLL_A].max_vdd, 0);
if (rc)
pr_err("%s regulator enable failed (%d)\n",
sc->vreg[VREG_HFPLL_A].name, rc);
rc = rpm_vreg_set_voltage(sc->vreg[VREG_HFPLL_B].rpm_vreg_id,
sc->vreg[VREG_HFPLL_B].rpm_vreg_voter, 1800000,
sc->vreg[VREG_HFPLL_B].max_vdd, 0);
if (rc)
pr_err("%s regulator enable failed (%d)\n",
sc->vreg[VREG_HFPLL_B].name, rc);
}
/* Disable PLL bypass mode. */
writel_relaxed(0x2, sc->hfpll_base + HFPLL_MODE);
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset. Delay 10us just to be safe.
*/
mb();
udelay(10);
/* De-assert active-low PLL reset. */
writel_relaxed(0x6, sc->hfpll_base + HFPLL_MODE);
/* Wait for PLL to lock. */
mb();
udelay(60);
/* Enable PLL output. */
writel_relaxed(0x7, sc->hfpll_base + HFPLL_MODE);
}
/* Disable a HFPLL for power-savings or while its being reprogrammed. */
static void hfpll_disable(struct scalable *sc)
{
int rc;
/*
* Disable the PLL output, disable test mode, enable
* the bypass mode, and assert the reset.
*/
writel_relaxed(0, sc->hfpll_base + HFPLL_MODE);
if (cpu_is_msm8960() || cpu_is_msm8930() || cpu_is_msm8627()) {
rc = rpm_vreg_set_voltage(sc->vreg[VREG_HFPLL_B].rpm_vreg_id,
sc->vreg[VREG_HFPLL_B].rpm_vreg_voter, 0,
0, 0);
if (rc)
pr_err("%s regulator enable failed (%d)\n",
sc->vreg[VREG_HFPLL_B].name, rc);
rc = rpm_vreg_set_voltage(sc->vreg[VREG_HFPLL_A].rpm_vreg_id,
sc->vreg[VREG_HFPLL_A].rpm_vreg_voter, 0,
0, 0);
if (rc)
pr_err("%s regulator enable failed (%d)\n",
sc->vreg[VREG_HFPLL_A].name, rc);
}
}
/* Program the HFPLL rate. Assumes HFPLL is already disabled. */
static void hfpll_set_rate(struct scalable *sc, struct core_speed *tgt_s)
{
writel_relaxed(tgt_s->pll_l_val, sc->hfpll_base + HFPLL_L_VAL);
}
/* Return the L2 speed that should be applied. */
static struct l2_level *compute_l2_level(struct scalable *sc,
struct l2_level *vote_l)
{
struct l2_level *new_l;
int cpu;
/* Bounds check. */
BUG_ON(vote_l >= (l2_freq_tbl + l2_freq_tbl_size));
/* Find max L2 speed vote. */
sc->l2_vote = vote_l;
new_l = l2_freq_tbl;
for_each_present_cpu(cpu)
new_l = max(new_l, scalable[cpu].l2_vote);
return new_l;
}
/* Update the bus bandwidth request. */
static void set_bus_bw(unsigned int bw)
{
int ret;
/* Bounds check. */
if (bw >= ARRAY_SIZE(bw_level_tbl)) {
pr_err("invalid bandwidth request (%d)\n", bw);
return;
}
/* Update bandwidth if request has changed. This may sleep. */
ret = msm_bus_scale_client_update_request(bus_perf_client, bw);
if (ret)
pr_err("bandwidth request failed (%d)\n", ret);
}
/* Set the CPU or L2 clock speed. */
static void set_speed(struct scalable *sc, struct core_speed *tgt_s,
enum setrate_reason reason)
{
struct core_speed *strt_s = sc->current_speed;
if (tgt_s == strt_s)
return;
if (strt_s->src == HFPLL && tgt_s->src == HFPLL) {
/*
* Move to an always-on source running at a frequency that does
* not require an elevated CPU voltage. PLL8 is used here.
*/
set_sec_clk_src(sc, SEC_SRC_SEL_AUX);
set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC);
/* Program CPU HFPLL. */
hfpll_disable(sc);
hfpll_set_rate(sc, tgt_s);
hfpll_enable(sc);
/* Move CPU to HFPLL source. */
set_pri_clk_src(sc, tgt_s->pri_src_sel);
} else if (strt_s->src == HFPLL && tgt_s->src != HFPLL) {
/*
* If responding to CPU_DEAD we must be running on another
* CPU. Therefore, we can't access the downed CPU's CP15
* clock MUX registers from here and can't change clock sources.
* Just turn off the PLL- since the CPU is down already, halting
* its clock should be safe.
*/
if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) {
set_sec_clk_src(sc, tgt_s->sec_src_sel);
set_pri_clk_src(sc, tgt_s->pri_src_sel);
}
hfpll_disable(sc);
} else if (strt_s->src != HFPLL && tgt_s->src == HFPLL) {
hfpll_set_rate(sc, tgt_s);
hfpll_enable(sc);
/*
* If responding to CPU_UP_PREPARE, we can't change CP15
* registers for the CPU that's coming up since we're not
* running on that CPU. That's okay though, since the MUX
* source was not changed on the way down, either.
*/
if (reason != SETRATE_HOTPLUG || sc == &scalable[L2])
set_pri_clk_src(sc, tgt_s->pri_src_sel);
} else {
if (reason != SETRATE_HOTPLUG || sc == &scalable[L2])
set_sec_clk_src(sc, tgt_s->sec_src_sel);
}
sc->current_speed = tgt_s;
}
/* Apply any per-cpu voltage increases. */
static int increase_vdd(int cpu, unsigned int vdd_core, unsigned int vdd_mem,
unsigned int vdd_dig, enum setrate_reason reason)
{
struct scalable *sc = &scalable[cpu];
int rc = 0;
/*
* Increase vdd_mem active-set before vdd_dig.
* vdd_mem should be >= vdd_dig.
*/
if (vdd_mem > sc->vreg[VREG_MEM].cur_vdd) {
rc = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id,
sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem,
sc->vreg[VREG_MEM].max_vdd, 0);
if (rc) {
pr_err("%s: vdd_mem (cpu%d) increase failed (%d)\n",
__func__, cpu, rc);
return rc;
}
sc->vreg[VREG_MEM].cur_vdd = vdd_mem;
}
/* Increase vdd_dig active-set vote. */
if (vdd_dig > sc->vreg[VREG_DIG].cur_vdd) {
rc = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id,
sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig,
sc->vreg[VREG_DIG].max_vdd, 0);
if (rc) {
pr_err("%s: vdd_dig (cpu%d) increase failed (%d)\n",
__func__, cpu, rc);
return rc;
}
sc->vreg[VREG_DIG].cur_vdd = vdd_dig;
}
/*
* Update per-CPU core voltage. Don't do this for the hotplug path for
* which it should already be correct. Attempting to set it is bad
* because we don't know what CPU we are running on at this point, but
* the CPU regulator API requires we call it from the affected CPU.
*/
if (vdd_core > sc->vreg[VREG_CORE].cur_vdd
&& reason != SETRATE_HOTPLUG) {
rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core,
sc->vreg[VREG_CORE].max_vdd);
if (rc) {
pr_err("%s: vdd_core (cpu%d) increase failed (%d)\n",
__func__, cpu, rc);
return rc;
}
sc->vreg[VREG_CORE].cur_vdd = vdd_core;
}
return rc;
}
/* Apply any per-cpu voltage decreases. */
static void decrease_vdd(int cpu, unsigned int vdd_core, unsigned int vdd_mem,
unsigned int vdd_dig, enum setrate_reason reason)
{
struct scalable *sc = &scalable[cpu];
int ret;
/*
* Update per-CPU core voltage. This must be called on the CPU
* that's being affected. Don't do this in the hotplug remove path,
* where the rail is off and we're executing on the other CPU.
*/
if (vdd_core < sc->vreg[VREG_CORE].cur_vdd
&& reason != SETRATE_HOTPLUG) {
ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core,
sc->vreg[VREG_CORE].max_vdd);
if (ret) {
pr_err("%s: vdd_core (cpu%d) decrease failed (%d)\n",
__func__, cpu, ret);
return;
}
sc->vreg[VREG_CORE].cur_vdd = vdd_core;
}
/* Decrease vdd_dig active-set vote. */
if (vdd_dig < sc->vreg[VREG_DIG].cur_vdd) {
ret = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id,
sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig,
sc->vreg[VREG_DIG].max_vdd, 0);
if (ret) {
pr_err("%s: vdd_dig (cpu%d) decrease failed (%d)\n",
__func__, cpu, ret);
return;
}
sc->vreg[VREG_DIG].cur_vdd = vdd_dig;
}
/*
* Decrease vdd_mem active-set after vdd_dig.
* vdd_mem should be >= vdd_dig.
*/
if (vdd_mem < sc->vreg[VREG_MEM].cur_vdd) {
ret = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id,
sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem,
sc->vreg[VREG_MEM].max_vdd, 0);
if (ret) {
pr_err("%s: vdd_mem (cpu%d) decrease failed (%d)\n",
__func__, cpu, ret);
return;
}
sc->vreg[VREG_MEM].cur_vdd = vdd_mem;
}
}
static unsigned int calculate_vdd_mem(struct acpu_level *tgt)
{
return tgt->l2_level->vdd_mem;
}
static unsigned int calculate_vdd_dig(struct acpu_level *tgt)
{
unsigned int pll_vdd_dig;
if (tgt->l2_level->speed.src != HFPLL)
pll_vdd_dig = 0;
else if (tgt->l2_level->speed.pll_l_val > HFPLL_LOW_VDD_PLL_L_MAX)
pll_vdd_dig = HFPLL_NOMINAL_VDD;
else
pll_vdd_dig = HFPLL_LOW_VDD;
return max(tgt->l2_level->vdd_dig, pll_vdd_dig);
}
static unsigned int calculate_vdd_core(struct acpu_level *tgt)
{
unsigned int pll_vdd_core;
if (tgt->speed.src != HFPLL)
pll_vdd_core = 0;
else if (tgt->speed.pll_l_val > HFPLL_LOW_VDD_PLL_L_MAX)
pll_vdd_core = HFPLL_NOMINAL_VDD;
else
pll_vdd_core = HFPLL_LOW_VDD;
return max(tgt->vdd_core, pll_vdd_core);
}
/* Set the CPU's clock rate and adjust the L2 rate, if appropriate. */
static int acpuclk_8960_set_rate(int cpu, unsigned long rate,
enum setrate_reason reason)
{
struct core_speed *strt_acpu_s, *tgt_acpu_s;
struct l2_level *tgt_l2_l;
struct acpu_level *tgt;
unsigned int vdd_mem, vdd_dig, vdd_core;
unsigned long flags;
int rc = 0;
if (cpu > num_possible_cpus()) {
rc = -EINVAL;
goto out;
}
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG)
mutex_lock(&driver_lock);
strt_acpu_s = scalable[cpu].current_speed;
/* Return early if rate didn't change. */
if (rate == strt_acpu_s->khz && scalable[cpu].first_set_call == false)
goto out;
/* Find target frequency. */
for (tgt = acpu_freq_tbl; tgt->speed.khz != 0; tgt++) {
if (tgt->speed.khz == rate) {
tgt_acpu_s = &tgt->speed;
break;
}
}
if (tgt->speed.khz == 0) {
rc = -EINVAL;
goto out;
}
/* Calculate voltage requirements for the current CPU. */
vdd_mem = calculate_vdd_mem(tgt);
vdd_dig = calculate_vdd_dig(tgt);
vdd_core = calculate_vdd_core(tgt);
/* Increase VDD levels if needed. */
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) {
rc = increase_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason);
if (rc)
goto out;
}
pr_debug("Switching from ACPU%d rate %u KHz -> %u KHz\n",
cpu, strt_acpu_s->khz, tgt_acpu_s->khz);
/* Set the CPU speed. */
set_speed(&scalable[cpu], tgt_acpu_s, reason);
/*
* Update the L2 vote and apply the rate change. A spinlock is
* necessary to ensure L2 rate is calulated and set atomically,
* even if acpuclk_8960_set_rate() is called from an atomic context
* and the driver_lock mutex is not acquired.
*/
spin_lock_irqsave(&l2_lock, flags);
tgt_l2_l = compute_l2_level(&scalable[cpu], tgt->l2_level);
set_speed(&scalable[L2], &tgt_l2_l->speed, reason);
spin_unlock_irqrestore(&l2_lock, flags);
/* Nothing else to do for power collapse or SWFI. */
if (reason == SETRATE_PC || reason == SETRATE_SWFI)
goto out;
/* Update bus bandwith request. */
set_bus_bw(tgt_l2_l->bw_level);
/* Drop VDD levels if we can. */
decrease_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason);
scalable[cpu].first_set_call = false;
pr_debug("ACPU%d speed change complete\n", cpu);
out:
if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG)
mutex_unlock(&driver_lock);
return rc;
}
/* Initialize a HFPLL at a given rate and enable it. */
static void __init hfpll_init(struct scalable *sc, struct core_speed *tgt_s)
{
pr_debug("Initializing HFPLL%d\n", sc - scalable);
/* Disable the PLL for re-programming. */
hfpll_disable(sc);
/* Configure PLL parameters for integer mode. */
writel_relaxed(0x7845C665, sc->hfpll_base + HFPLL_CONFIG_CTL);
writel_relaxed(0, sc->hfpll_base + HFPLL_M_VAL);
writel_relaxed(1, sc->hfpll_base + HFPLL_N_VAL);
/* Program droop controller. */
writel_relaxed(0x0108C000, sc->hfpll_base + HFPLL_DROOP_CTL);
/* Set an initial rate and enable the PLL. */
hfpll_set_rate(sc, tgt_s);
hfpll_enable(sc);
}
/* Voltage regulator initialization. */
static void __init regulator_init(void)
{
int cpu, ret;
struct scalable *sc;
for_each_possible_cpu(cpu) {
sc = &scalable[cpu];
sc->vreg[VREG_CORE].reg = regulator_get(NULL,
sc->vreg[VREG_CORE].name);
if (IS_ERR(sc->vreg[VREG_CORE].reg)) {
pr_err("regulator_get(%s) failed (%ld)\n",
sc->vreg[VREG_CORE].name,
PTR_ERR(sc->vreg[VREG_CORE].reg));
BUG();
}
ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg,
sc->vreg[VREG_CORE].max_vdd,
sc->vreg[VREG_CORE].max_vdd);
if (ret)
pr_err("regulator_set_voltage(%s) failed"
" (%d)\n", sc->vreg[VREG_CORE].name, ret);
ret = regulator_enable(sc->vreg[VREG_CORE].reg);
if (ret)
pr_err("regulator_enable(%s) failed (%d)\n",
sc->vreg[VREG_CORE].name, ret);
}
}
/* Set initial rate for a given core. */
static void __init init_clock_sources(struct scalable *sc,
struct core_speed *tgt_s)
{
uint32_t regval;
/* Select PLL8 as AUX source input to the secondary MUX. */
writel_relaxed(0x3, sc->aux_clk_sel);
/* Switch away from the HFPLL while it's re-initialized. */
set_sec_clk_src(sc, SEC_SRC_SEL_AUX);
set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC);
hfpll_init(sc, tgt_s);
/* Set PRI_SRC_SEL_HFPLL_DIV2 divider to div-2. */
regval = get_l2_indirect_reg(sc->l2cpmr_iaddr);
regval &= ~(0x3 << 6);
set_l2_indirect_reg(sc->l2cpmr_iaddr, regval);
/* Switch to the target clock source. */
set_sec_clk_src(sc, tgt_s->sec_src_sel);
set_pri_clk_src(sc, tgt_s->pri_src_sel);
sc->current_speed = tgt_s;
/*
* Set this flag so that the first call to acpuclk_8960_set_rate() can
* drop voltages and set initial bus bandwidth requests.
*/
sc->first_set_call = true;
}
static void __init per_cpu_init(void *data)
{
struct acpu_level *max_acpu_level = data;
int cpu = smp_processor_id();
init_clock_sources(&scalable[cpu], &max_acpu_level->speed);
scalable[cpu].l2_vote = max_acpu_level->l2_level;
}
/* Register with bus driver. */
static void __init bus_init(void)
{
int ret;
bus_perf_client = msm_bus_scale_register_client(&bus_client_pdata);
if (!bus_perf_client) {
pr_err("unable to register bus client\n");
BUG();
}
ret = msm_bus_scale_client_update_request(bus_perf_client,
(ARRAY_SIZE(bw_level_tbl)-1));
if (ret)
pr_err("initial bandwidth request failed (%d)\n", ret);
}
#ifdef CONFIG_CPU_FREQ_MSM
static struct cpufreq_frequency_table freq_table[NR_CPUS][30];
static void __init cpufreq_table_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
int i, freq_cnt = 0;
/* Construct the freq_table tables from acpu_freq_tbl. */
for (i = 0; acpu_freq_tbl[i].speed.khz != 0
&& freq_cnt < ARRAY_SIZE(*freq_table); i++) {
if (acpu_freq_tbl[i].use_for_scaling) {
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency
= acpu_freq_tbl[i].speed.khz;
freq_cnt++;
}
}
/* freq_table not big enough to store all usable freqs. */
BUG_ON(acpu_freq_tbl[i].speed.khz != 0);
freq_table[cpu][freq_cnt].index = freq_cnt;
freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END;
pr_info("CPU%d: %d scaling frequencies supported.\n",
cpu, freq_cnt);
/* Register table with CPUFreq. */
cpufreq_frequency_table_get_attr(freq_table[cpu], cpu);
}
}
#else
static void __init cpufreq_table_init(void) {}
#endif
#define HOT_UNPLUG_KHZ STBY_KHZ
static int __cpuinit acpuclock_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
static int prev_khz[NR_CPUS];
static int prev_pri_src[NR_CPUS];
static int prev_sec_src[NR_CPUS];
int cpu = (int)hcpu;
switch (action) {
case CPU_DYING:
case CPU_DYING_FROZEN:
/*
* On Krait v1, the primary and secondary muxes must be set
* to QSB before L2 power collapse and restored after.
*/
if (cpu_is_krait_v1()) {
prev_sec_src[cpu] = get_sec_clk_src(&scalable[cpu]);
prev_pri_src[cpu] = get_pri_clk_src(&scalable[cpu]);
set_sec_clk_src(&scalable[cpu], SEC_SRC_SEL_QSB);
set_pri_clk_src(&scalable[cpu], PRI_SRC_SEL_SEC_SRC);
}
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
prev_khz[cpu] = acpuclk_8960_get_rate(cpu);
/* Fall through. */
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
acpuclk_8960_set_rate(cpu, HOT_UNPLUG_KHZ, SETRATE_HOTPLUG);
break;
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
if (WARN_ON(!prev_khz[cpu]))
return NOTIFY_BAD;
acpuclk_8960_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG);
break;
case CPU_STARTING:
case CPU_STARTING_FROZEN:
if (cpu_is_krait_v1()) {
set_sec_clk_src(&scalable[cpu], prev_sec_src[cpu]);
set_pri_clk_src(&scalable[cpu], prev_pri_src[cpu]);
}
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata acpuclock_cpu_notifier = {
.notifier_call = acpuclock_cpu_callback,
};
static const int krait_needs_vmin(void)
{
switch (read_cpuid_id()) {
case 0x511F04D0:
case 0x511F04D1:
case 0x510F06F0:
return 1;
default:
return 0;
};
}
static void kraitv2_apply_vmin(struct acpu_level *tbl)
{
for (; tbl->speed.khz != 0; tbl++)
if (tbl->vdd_core < 1150000)
tbl->vdd_core = 1150000;
}
static struct acpu_level * __init select_freq_plan(void)
{
struct acpu_level *l, *max_acpu_level = NULL;
/* Select frequency tables. */
if (cpu_is_msm8960()) {
uint32_t pte_efuse, pvs;
struct acpu_level *v1, *v2;
pte_efuse = readl_relaxed(QFPROM_PTE_EFUSE_ADDR);
pvs = (pte_efuse >> 10) & 0x7;
if (pvs == 0x7)
pvs = (pte_efuse >> 13) & 0x7;
switch (pvs) {
case 0x0:
case 0x7:
pr_info("ACPU PVS: Slow\n");
v1 = acpu_freq_tbl_8960_kraitv1_slow;
v2 = acpu_freq_tbl_8960_kraitv2_slow;
break;
case 0x1:
pr_info("ACPU PVS: Nominal\n");
v1 = acpu_freq_tbl_8960_kraitv1_nom_fast;
v2 = acpu_freq_tbl_8960_kraitv2_nom;
break;
case 0x3:
pr_info("ACPU PVS: Fast\n");
v1 = acpu_freq_tbl_8960_kraitv1_nom_fast;
v2 = acpu_freq_tbl_8960_kraitv2_fast;
break;
default:
pr_warn("ACPU PVS: Unknown. Defaulting to slow.\n");
v1 = acpu_freq_tbl_8960_kraitv1_slow;
v2 = acpu_freq_tbl_8960_kraitv2_slow;
break;
}
scalable = scalable_8960;
if (cpu_is_krait_v1()) {
acpu_freq_tbl = v1;
l2_freq_tbl = l2_freq_tbl_8960_kraitv1;
l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8960_kraitv1);
} else {
acpu_freq_tbl = v2;
l2_freq_tbl = l2_freq_tbl_8960_kraitv2;
l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8960_kraitv2);
}
} else if (cpu_is_apq8064()) {
scalable = scalable_8064;
acpu_freq_tbl = acpu_freq_tbl_8064;
l2_freq_tbl = l2_freq_tbl_8064;
l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8064);
} else if (cpu_is_msm8627()) {
scalable = scalable_8627;
acpu_freq_tbl = acpu_freq_tbl_8627;
l2_freq_tbl = l2_freq_tbl_8627;
l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8627);
} else if (cpu_is_msm8930()) {
scalable = scalable_8930;
acpu_freq_tbl = acpu_freq_tbl_8930;
l2_freq_tbl = l2_freq_tbl_8930;
l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8930);
} else {
BUG();
}
if (krait_needs_vmin())
kraitv2_apply_vmin(acpu_freq_tbl);
/* Find the max supported scaling frequency. */
for (l = acpu_freq_tbl; l->speed.khz != 0; l++)
if (l->use_for_scaling)
max_acpu_level = l;
BUG_ON(!max_acpu_level);
pr_info("Max ACPU freq: %u KHz\n", max_acpu_level->speed.khz);
return max_acpu_level;
}
static struct acpuclk_data acpuclk_8960_data = {
.set_rate = acpuclk_8960_set_rate,
.get_rate = acpuclk_8960_get_rate,
.power_collapse_khz = STBY_KHZ,
.wait_for_irq_khz = STBY_KHZ,
};
static int __init acpuclk_8960_init(struct acpuclk_soc_data *soc_data)
{
struct acpu_level *max_acpu_level = select_freq_plan();
init_clock_sources(&scalable[L2], &max_acpu_level->l2_level->speed);
on_each_cpu(per_cpu_init, max_acpu_level, true);
regulator_init();
bus_init();
cpufreq_table_init();
acpuclk_register(&acpuclk_8960_data);
register_hotcpu_notifier(&acpuclock_cpu_notifier);
return 0;
}
struct acpuclk_soc_data acpuclk_8960_soc_data __initdata = {
.init = acpuclk_8960_init,
};
struct acpuclk_soc_data acpuclk_8930_soc_data __initdata = {
.init = acpuclk_8960_init,
};