| /* |
| * linux/drivers/char/keyboard.c |
| * |
| * Written for linux by Johan Myreen as a translation from |
| * the assembly version by Linus (with diacriticals added) |
| * |
| * Some additional features added by Christoph Niemann (ChN), March 1993 |
| * |
| * Loadable keymaps by Risto Kankkunen, May 1993 |
| * |
| * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 |
| * Added decr/incr_console, dynamic keymaps, Unicode support, |
| * dynamic function/string keys, led setting, Sept 1994 |
| * `Sticky' modifier keys, 951006. |
| * |
| * 11-11-96: SAK should now work in the raw mode (Martin Mares) |
| * |
| * Modified to provide 'generic' keyboard support by Hamish Macdonald |
| * Merge with the m68k keyboard driver and split-off of the PC low-level |
| * parts by Geert Uytterhoeven, May 1997 |
| * |
| * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) |
| * 30-07-98: Dead keys redone, aeb@cwi.nl. |
| * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/consolemap.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/irq.h> |
| |
| #include <linux/kbd_kern.h> |
| #include <linux/kbd_diacr.h> |
| #include <linux/vt_kern.h> |
| #include <linux/input.h> |
| #include <linux/reboot.h> |
| #include <linux/notifier.h> |
| #include <linux/jiffies.h> |
| |
| extern void ctrl_alt_del(void); |
| |
| /* |
| * Exported functions/variables |
| */ |
| |
| #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) |
| |
| /* |
| * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on. |
| * This seems a good reason to start with NumLock off. On HIL keyboards |
| * of PARISC machines however there is no NumLock key and everyone expects the keypad |
| * to be used for numbers. |
| */ |
| |
| #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD)) |
| #define KBD_DEFLEDS (1 << VC_NUMLOCK) |
| #else |
| #define KBD_DEFLEDS 0 |
| #endif |
| |
| #define KBD_DEFLOCK 0 |
| |
| void compute_shiftstate(void); |
| |
| /* |
| * Handler Tables. |
| */ |
| |
| #define K_HANDLERS\ |
| k_self, k_fn, k_spec, k_pad,\ |
| k_dead, k_cons, k_cur, k_shift,\ |
| k_meta, k_ascii, k_lock, k_lowercase,\ |
| k_slock, k_dead2, k_brl, k_ignore |
| |
| typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, |
| char up_flag); |
| static k_handler_fn K_HANDLERS; |
| static k_handler_fn *k_handler[16] = { K_HANDLERS }; |
| |
| #define FN_HANDLERS\ |
| fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ |
| fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ |
| fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ |
| fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ |
| fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num |
| |
| typedef void (fn_handler_fn)(struct vc_data *vc); |
| static fn_handler_fn FN_HANDLERS; |
| static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; |
| |
| /* |
| * Variables exported for vt_ioctl.c |
| */ |
| |
| /* maximum values each key_handler can handle */ |
| const int max_vals[] = { |
| 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, |
| NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, |
| 255, NR_LOCK - 1, 255, NR_BRL - 1 |
| }; |
| |
| const int NR_TYPES = ARRAY_SIZE(max_vals); |
| |
| struct kbd_struct kbd_table[MAX_NR_CONSOLES]; |
| EXPORT_SYMBOL_GPL(kbd_table); |
| static struct kbd_struct *kbd = kbd_table; |
| |
| struct vt_spawn_console vt_spawn_con = { |
| .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock), |
| .pid = NULL, |
| .sig = 0, |
| }; |
| |
| /* |
| * Variables exported for vt.c |
| */ |
| |
| int shift_state = 0; |
| |
| /* |
| * Internal Data. |
| */ |
| |
| static struct input_handler kbd_handler; |
| static DEFINE_SPINLOCK(kbd_event_lock); |
| static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */ |
| static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ |
| static bool dead_key_next; |
| static int npadch = -1; /* -1 or number assembled on pad */ |
| static unsigned int diacr; |
| static char rep; /* flag telling character repeat */ |
| |
| static unsigned char ledstate = 0xff; /* undefined */ |
| static unsigned char ledioctl; |
| |
| static struct ledptr { |
| unsigned int *addr; |
| unsigned int mask; |
| unsigned char valid:1; |
| } ledptrs[3]; |
| |
| /* |
| * Notifier list for console keyboard events |
| */ |
| static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list); |
| |
| int register_keyboard_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&keyboard_notifier_list, nb); |
| } |
| EXPORT_SYMBOL_GPL(register_keyboard_notifier); |
| |
| int unregister_keyboard_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb); |
| } |
| EXPORT_SYMBOL_GPL(unregister_keyboard_notifier); |
| |
| /* |
| * Translation of scancodes to keycodes. We set them on only the first |
| * keyboard in the list that accepts the scancode and keycode. |
| * Explanation for not choosing the first attached keyboard anymore: |
| * USB keyboards for example have two event devices: one for all "normal" |
| * keys and one for extra function keys (like "volume up", "make coffee", |
| * etc.). So this means that scancodes for the extra function keys won't |
| * be valid for the first event device, but will be for the second. |
| */ |
| |
| struct getset_keycode_data { |
| struct input_keymap_entry ke; |
| int error; |
| }; |
| |
| static int getkeycode_helper(struct input_handle *handle, void *data) |
| { |
| struct getset_keycode_data *d = data; |
| |
| d->error = input_get_keycode(handle->dev, &d->ke); |
| |
| return d->error == 0; /* stop as soon as we successfully get one */ |
| } |
| |
| int getkeycode(unsigned int scancode) |
| { |
| struct getset_keycode_data d = { |
| .ke = { |
| .flags = 0, |
| .len = sizeof(scancode), |
| .keycode = 0, |
| }, |
| .error = -ENODEV, |
| }; |
| |
| memcpy(d.ke.scancode, &scancode, sizeof(scancode)); |
| |
| input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper); |
| |
| return d.error ?: d.ke.keycode; |
| } |
| |
| static int setkeycode_helper(struct input_handle *handle, void *data) |
| { |
| struct getset_keycode_data *d = data; |
| |
| d->error = input_set_keycode(handle->dev, &d->ke); |
| |
| return d->error == 0; /* stop as soon as we successfully set one */ |
| } |
| |
| int setkeycode(unsigned int scancode, unsigned int keycode) |
| { |
| struct getset_keycode_data d = { |
| .ke = { |
| .flags = 0, |
| .len = sizeof(scancode), |
| .keycode = keycode, |
| }, |
| .error = -ENODEV, |
| }; |
| |
| memcpy(d.ke.scancode, &scancode, sizeof(scancode)); |
| |
| input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper); |
| |
| return d.error; |
| } |
| |
| /* |
| * Making beeps and bells. Note that we prefer beeps to bells, but when |
| * shutting the sound off we do both. |
| */ |
| |
| static int kd_sound_helper(struct input_handle *handle, void *data) |
| { |
| unsigned int *hz = data; |
| struct input_dev *dev = handle->dev; |
| |
| if (test_bit(EV_SND, dev->evbit)) { |
| if (test_bit(SND_TONE, dev->sndbit)) { |
| input_inject_event(handle, EV_SND, SND_TONE, *hz); |
| if (*hz) |
| return 0; |
| } |
| if (test_bit(SND_BELL, dev->sndbit)) |
| input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0); |
| } |
| |
| return 0; |
| } |
| |
| static void kd_nosound(unsigned long ignored) |
| { |
| static unsigned int zero; |
| |
| input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper); |
| } |
| |
| static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0); |
| |
| void kd_mksound(unsigned int hz, unsigned int ticks) |
| { |
| del_timer_sync(&kd_mksound_timer); |
| |
| input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper); |
| |
| if (hz && ticks) |
| mod_timer(&kd_mksound_timer, jiffies + ticks); |
| } |
| EXPORT_SYMBOL(kd_mksound); |
| |
| /* |
| * Setting the keyboard rate. |
| */ |
| |
| static int kbd_rate_helper(struct input_handle *handle, void *data) |
| { |
| struct input_dev *dev = handle->dev; |
| struct kbd_repeat *rep = data; |
| |
| if (test_bit(EV_REP, dev->evbit)) { |
| |
| if (rep[0].delay > 0) |
| input_inject_event(handle, |
| EV_REP, REP_DELAY, rep[0].delay); |
| if (rep[0].period > 0) |
| input_inject_event(handle, |
| EV_REP, REP_PERIOD, rep[0].period); |
| |
| rep[1].delay = dev->rep[REP_DELAY]; |
| rep[1].period = dev->rep[REP_PERIOD]; |
| } |
| |
| return 0; |
| } |
| |
| int kbd_rate(struct kbd_repeat *rep) |
| { |
| struct kbd_repeat data[2] = { *rep }; |
| |
| input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper); |
| *rep = data[1]; /* Copy currently used settings */ |
| |
| return 0; |
| } |
| |
| /* |
| * Helper Functions. |
| */ |
| static void put_queue(struct vc_data *vc, int ch) |
| { |
| struct tty_struct *tty = vc->port.tty; |
| |
| if (tty) { |
| tty_insert_flip_char(tty, ch, 0); |
| con_schedule_flip(tty); |
| } |
| } |
| |
| static void puts_queue(struct vc_data *vc, char *cp) |
| { |
| struct tty_struct *tty = vc->port.tty; |
| |
| if (!tty) |
| return; |
| |
| while (*cp) { |
| tty_insert_flip_char(tty, *cp, 0); |
| cp++; |
| } |
| con_schedule_flip(tty); |
| } |
| |
| static void applkey(struct vc_data *vc, int key, char mode) |
| { |
| static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; |
| |
| buf[1] = (mode ? 'O' : '['); |
| buf[2] = key; |
| puts_queue(vc, buf); |
| } |
| |
| /* |
| * Many other routines do put_queue, but I think either |
| * they produce ASCII, or they produce some user-assigned |
| * string, and in both cases we might assume that it is |
| * in utf-8 already. |
| */ |
| static void to_utf8(struct vc_data *vc, uint c) |
| { |
| if (c < 0x80) |
| /* 0******* */ |
| put_queue(vc, c); |
| else if (c < 0x800) { |
| /* 110***** 10****** */ |
| put_queue(vc, 0xc0 | (c >> 6)); |
| put_queue(vc, 0x80 | (c & 0x3f)); |
| } else if (c < 0x10000) { |
| if (c >= 0xD800 && c < 0xE000) |
| return; |
| if (c == 0xFFFF) |
| return; |
| /* 1110**** 10****** 10****** */ |
| put_queue(vc, 0xe0 | (c >> 12)); |
| put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); |
| put_queue(vc, 0x80 | (c & 0x3f)); |
| } else if (c < 0x110000) { |
| /* 11110*** 10****** 10****** 10****** */ |
| put_queue(vc, 0xf0 | (c >> 18)); |
| put_queue(vc, 0x80 | ((c >> 12) & 0x3f)); |
| put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); |
| put_queue(vc, 0x80 | (c & 0x3f)); |
| } |
| } |
| |
| /* |
| * Called after returning from RAW mode or when changing consoles - recompute |
| * shift_down[] and shift_state from key_down[] maybe called when keymap is |
| * undefined, so that shiftkey release is seen |
| */ |
| void compute_shiftstate(void) |
| { |
| unsigned int i, j, k, sym, val; |
| |
| shift_state = 0; |
| memset(shift_down, 0, sizeof(shift_down)); |
| |
| for (i = 0; i < ARRAY_SIZE(key_down); i++) { |
| |
| if (!key_down[i]) |
| continue; |
| |
| k = i * BITS_PER_LONG; |
| |
| for (j = 0; j < BITS_PER_LONG; j++, k++) { |
| |
| if (!test_bit(k, key_down)) |
| continue; |
| |
| sym = U(key_maps[0][k]); |
| if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) |
| continue; |
| |
| val = KVAL(sym); |
| if (val == KVAL(K_CAPSSHIFT)) |
| val = KVAL(K_SHIFT); |
| |
| shift_down[val]++; |
| shift_state |= (1 << val); |
| } |
| } |
| } |
| |
| /* |
| * We have a combining character DIACR here, followed by the character CH. |
| * If the combination occurs in the table, return the corresponding value. |
| * Otherwise, if CH is a space or equals DIACR, return DIACR. |
| * Otherwise, conclude that DIACR was not combining after all, |
| * queue it and return CH. |
| */ |
| static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch) |
| { |
| unsigned int d = diacr; |
| unsigned int i; |
| |
| diacr = 0; |
| |
| if ((d & ~0xff) == BRL_UC_ROW) { |
| if ((ch & ~0xff) == BRL_UC_ROW) |
| return d | ch; |
| } else { |
| for (i = 0; i < accent_table_size; i++) |
| if (accent_table[i].diacr == d && accent_table[i].base == ch) |
| return accent_table[i].result; |
| } |
| |
| if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d) |
| return d; |
| |
| if (kbd->kbdmode == VC_UNICODE) |
| to_utf8(vc, d); |
| else { |
| int c = conv_uni_to_8bit(d); |
| if (c != -1) |
| put_queue(vc, c); |
| } |
| |
| return ch; |
| } |
| |
| /* |
| * Special function handlers |
| */ |
| static void fn_enter(struct vc_data *vc) |
| { |
| if (diacr) { |
| if (kbd->kbdmode == VC_UNICODE) |
| to_utf8(vc, diacr); |
| else { |
| int c = conv_uni_to_8bit(diacr); |
| if (c != -1) |
| put_queue(vc, c); |
| } |
| diacr = 0; |
| } |
| |
| put_queue(vc, 13); |
| if (vc_kbd_mode(kbd, VC_CRLF)) |
| put_queue(vc, 10); |
| } |
| |
| static void fn_caps_toggle(struct vc_data *vc) |
| { |
| if (rep) |
| return; |
| |
| chg_vc_kbd_led(kbd, VC_CAPSLOCK); |
| } |
| |
| static void fn_caps_on(struct vc_data *vc) |
| { |
| if (rep) |
| return; |
| |
| set_vc_kbd_led(kbd, VC_CAPSLOCK); |
| } |
| |
| static void fn_show_ptregs(struct vc_data *vc) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| |
| if (regs) |
| show_regs(regs); |
| } |
| |
| static void fn_hold(struct vc_data *vc) |
| { |
| struct tty_struct *tty = vc->port.tty; |
| |
| if (rep || !tty) |
| return; |
| |
| /* |
| * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); |
| * these routines are also activated by ^S/^Q. |
| * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) |
| */ |
| if (tty->stopped) |
| start_tty(tty); |
| else |
| stop_tty(tty); |
| } |
| |
| static void fn_num(struct vc_data *vc) |
| { |
| if (vc_kbd_mode(kbd, VC_APPLIC)) |
| applkey(vc, 'P', 1); |
| else |
| fn_bare_num(vc); |
| } |
| |
| /* |
| * Bind this to Shift-NumLock if you work in application keypad mode |
| * but want to be able to change the NumLock flag. |
| * Bind this to NumLock if you prefer that the NumLock key always |
| * changes the NumLock flag. |
| */ |
| static void fn_bare_num(struct vc_data *vc) |
| { |
| if (!rep) |
| chg_vc_kbd_led(kbd, VC_NUMLOCK); |
| } |
| |
| static void fn_lastcons(struct vc_data *vc) |
| { |
| /* switch to the last used console, ChN */ |
| set_console(last_console); |
| } |
| |
| static void fn_dec_console(struct vc_data *vc) |
| { |
| int i, cur = fg_console; |
| |
| /* Currently switching? Queue this next switch relative to that. */ |
| if (want_console != -1) |
| cur = want_console; |
| |
| for (i = cur - 1; i != cur; i--) { |
| if (i == -1) |
| i = MAX_NR_CONSOLES - 1; |
| if (vc_cons_allocated(i)) |
| break; |
| } |
| set_console(i); |
| } |
| |
| static void fn_inc_console(struct vc_data *vc) |
| { |
| int i, cur = fg_console; |
| |
| /* Currently switching? Queue this next switch relative to that. */ |
| if (want_console != -1) |
| cur = want_console; |
| |
| for (i = cur+1; i != cur; i++) { |
| if (i == MAX_NR_CONSOLES) |
| i = 0; |
| if (vc_cons_allocated(i)) |
| break; |
| } |
| set_console(i); |
| } |
| |
| static void fn_send_intr(struct vc_data *vc) |
| { |
| struct tty_struct *tty = vc->port.tty; |
| |
| if (!tty) |
| return; |
| tty_insert_flip_char(tty, 0, TTY_BREAK); |
| con_schedule_flip(tty); |
| } |
| |
| static void fn_scroll_forw(struct vc_data *vc) |
| { |
| scrollfront(vc, 0); |
| } |
| |
| static void fn_scroll_back(struct vc_data *vc) |
| { |
| scrollback(vc, 0); |
| } |
| |
| static void fn_show_mem(struct vc_data *vc) |
| { |
| show_mem(); |
| } |
| |
| static void fn_show_state(struct vc_data *vc) |
| { |
| show_state(); |
| } |
| |
| static void fn_boot_it(struct vc_data *vc) |
| { |
| ctrl_alt_del(); |
| } |
| |
| static void fn_compose(struct vc_data *vc) |
| { |
| dead_key_next = true; |
| } |
| |
| static void fn_spawn_con(struct vc_data *vc) |
| { |
| spin_lock(&vt_spawn_con.lock); |
| if (vt_spawn_con.pid) |
| if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) { |
| put_pid(vt_spawn_con.pid); |
| vt_spawn_con.pid = NULL; |
| } |
| spin_unlock(&vt_spawn_con.lock); |
| } |
| |
| static void fn_SAK(struct vc_data *vc) |
| { |
| struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work; |
| schedule_work(SAK_work); |
| } |
| |
| static void fn_null(struct vc_data *vc) |
| { |
| compute_shiftstate(); |
| } |
| |
| /* |
| * Special key handlers |
| */ |
| static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| } |
| |
| static void k_spec(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| if (up_flag) |
| return; |
| if (value >= ARRAY_SIZE(fn_handler)) |
| return; |
| if ((kbd->kbdmode == VC_RAW || |
| kbd->kbdmode == VC_MEDIUMRAW || |
| kbd->kbdmode == VC_OFF) && |
| value != KVAL(K_SAK)) |
| return; /* SAK is allowed even in raw mode */ |
| fn_handler[value](vc); |
| } |
| |
| static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| pr_err("k_lowercase was called - impossible\n"); |
| } |
| |
| static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag) |
| { |
| if (up_flag) |
| return; /* no action, if this is a key release */ |
| |
| if (diacr) |
| value = handle_diacr(vc, value); |
| |
| if (dead_key_next) { |
| dead_key_next = false; |
| diacr = value; |
| return; |
| } |
| if (kbd->kbdmode == VC_UNICODE) |
| to_utf8(vc, value); |
| else { |
| int c = conv_uni_to_8bit(value); |
| if (c != -1) |
| put_queue(vc, c); |
| } |
| } |
| |
| /* |
| * Handle dead key. Note that we now may have several |
| * dead keys modifying the same character. Very useful |
| * for Vietnamese. |
| */ |
| static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag) |
| { |
| if (up_flag) |
| return; |
| |
| diacr = (diacr ? handle_diacr(vc, value) : value); |
| } |
| |
| static void k_self(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| k_unicode(vc, conv_8bit_to_uni(value), up_flag); |
| } |
| |
| static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| k_deadunicode(vc, value, up_flag); |
| } |
| |
| /* |
| * Obsolete - for backwards compatibility only |
| */ |
| static void k_dead(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; |
| |
| k_deadunicode(vc, ret_diacr[value], up_flag); |
| } |
| |
| static void k_cons(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| if (up_flag) |
| return; |
| |
| set_console(value); |
| } |
| |
| static void k_fn(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| if (up_flag) |
| return; |
| |
| if ((unsigned)value < ARRAY_SIZE(func_table)) { |
| if (func_table[value]) |
| puts_queue(vc, func_table[value]); |
| } else |
| pr_err("k_fn called with value=%d\n", value); |
| } |
| |
| static void k_cur(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| static const char cur_chars[] = "BDCA"; |
| |
| if (up_flag) |
| return; |
| |
| applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); |
| } |
| |
| static void k_pad(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| static const char pad_chars[] = "0123456789+-*/\015,.?()#"; |
| static const char app_map[] = "pqrstuvwxylSRQMnnmPQS"; |
| |
| if (up_flag) |
| return; /* no action, if this is a key release */ |
| |
| /* kludge... shift forces cursor/number keys */ |
| if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { |
| applkey(vc, app_map[value], 1); |
| return; |
| } |
| |
| if (!vc_kbd_led(kbd, VC_NUMLOCK)) { |
| |
| switch (value) { |
| case KVAL(K_PCOMMA): |
| case KVAL(K_PDOT): |
| k_fn(vc, KVAL(K_REMOVE), 0); |
| return; |
| case KVAL(K_P0): |
| k_fn(vc, KVAL(K_INSERT), 0); |
| return; |
| case KVAL(K_P1): |
| k_fn(vc, KVAL(K_SELECT), 0); |
| return; |
| case KVAL(K_P2): |
| k_cur(vc, KVAL(K_DOWN), 0); |
| return; |
| case KVAL(K_P3): |
| k_fn(vc, KVAL(K_PGDN), 0); |
| return; |
| case KVAL(K_P4): |
| k_cur(vc, KVAL(K_LEFT), 0); |
| return; |
| case KVAL(K_P6): |
| k_cur(vc, KVAL(K_RIGHT), 0); |
| return; |
| case KVAL(K_P7): |
| k_fn(vc, KVAL(K_FIND), 0); |
| return; |
| case KVAL(K_P8): |
| k_cur(vc, KVAL(K_UP), 0); |
| return; |
| case KVAL(K_P9): |
| k_fn(vc, KVAL(K_PGUP), 0); |
| return; |
| case KVAL(K_P5): |
| applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); |
| return; |
| } |
| } |
| |
| put_queue(vc, pad_chars[value]); |
| if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) |
| put_queue(vc, 10); |
| } |
| |
| static void k_shift(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| int old_state = shift_state; |
| |
| if (rep) |
| return; |
| /* |
| * Mimic typewriter: |
| * a CapsShift key acts like Shift but undoes CapsLock |
| */ |
| if (value == KVAL(K_CAPSSHIFT)) { |
| value = KVAL(K_SHIFT); |
| if (!up_flag) |
| clr_vc_kbd_led(kbd, VC_CAPSLOCK); |
| } |
| |
| if (up_flag) { |
| /* |
| * handle the case that two shift or control |
| * keys are depressed simultaneously |
| */ |
| if (shift_down[value]) |
| shift_down[value]--; |
| } else |
| shift_down[value]++; |
| |
| if (shift_down[value]) |
| shift_state |= (1 << value); |
| else |
| shift_state &= ~(1 << value); |
| |
| /* kludge */ |
| if (up_flag && shift_state != old_state && npadch != -1) { |
| if (kbd->kbdmode == VC_UNICODE) |
| to_utf8(vc, npadch); |
| else |
| put_queue(vc, npadch & 0xff); |
| npadch = -1; |
| } |
| } |
| |
| static void k_meta(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| if (up_flag) |
| return; |
| |
| if (vc_kbd_mode(kbd, VC_META)) { |
| put_queue(vc, '\033'); |
| put_queue(vc, value); |
| } else |
| put_queue(vc, value | 0x80); |
| } |
| |
| static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| int base; |
| |
| if (up_flag) |
| return; |
| |
| if (value < 10) { |
| /* decimal input of code, while Alt depressed */ |
| base = 10; |
| } else { |
| /* hexadecimal input of code, while AltGr depressed */ |
| value -= 10; |
| base = 16; |
| } |
| |
| if (npadch == -1) |
| npadch = value; |
| else |
| npadch = npadch * base + value; |
| } |
| |
| static void k_lock(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| if (up_flag || rep) |
| return; |
| |
| chg_vc_kbd_lock(kbd, value); |
| } |
| |
| static void k_slock(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| k_shift(vc, value, up_flag); |
| if (up_flag || rep) |
| return; |
| |
| chg_vc_kbd_slock(kbd, value); |
| /* try to make Alt, oops, AltGr and such work */ |
| if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { |
| kbd->slockstate = 0; |
| chg_vc_kbd_slock(kbd, value); |
| } |
| } |
| |
| /* by default, 300ms interval for combination release */ |
| static unsigned brl_timeout = 300; |
| MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)"); |
| module_param(brl_timeout, uint, 0644); |
| |
| static unsigned brl_nbchords = 1; |
| MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)"); |
| module_param(brl_nbchords, uint, 0644); |
| |
| static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag) |
| { |
| static unsigned long chords; |
| static unsigned committed; |
| |
| if (!brl_nbchords) |
| k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag); |
| else { |
| committed |= pattern; |
| chords++; |
| if (chords == brl_nbchords) { |
| k_unicode(vc, BRL_UC_ROW | committed, up_flag); |
| chords = 0; |
| committed = 0; |
| } |
| } |
| } |
| |
| static void k_brl(struct vc_data *vc, unsigned char value, char up_flag) |
| { |
| static unsigned pressed, committing; |
| static unsigned long releasestart; |
| |
| if (kbd->kbdmode != VC_UNICODE) { |
| if (!up_flag) |
| pr_warning("keyboard mode must be unicode for braille patterns\n"); |
| return; |
| } |
| |
| if (!value) { |
| k_unicode(vc, BRL_UC_ROW, up_flag); |
| return; |
| } |
| |
| if (value > 8) |
| return; |
| |
| if (!up_flag) { |
| pressed |= 1 << (value - 1); |
| if (!brl_timeout) |
| committing = pressed; |
| } else if (brl_timeout) { |
| if (!committing || |
| time_after(jiffies, |
| releasestart + msecs_to_jiffies(brl_timeout))) { |
| committing = pressed; |
| releasestart = jiffies; |
| } |
| pressed &= ~(1 << (value - 1)); |
| if (!pressed && committing) { |
| k_brlcommit(vc, committing, 0); |
| committing = 0; |
| } |
| } else { |
| if (committing) { |
| k_brlcommit(vc, committing, 0); |
| committing = 0; |
| } |
| pressed &= ~(1 << (value - 1)); |
| } |
| } |
| |
| /* |
| * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, |
| * or (ii) whatever pattern of lights people want to show using KDSETLED, |
| * or (iii) specified bits of specified words in kernel memory. |
| */ |
| unsigned char getledstate(void) |
| { |
| return ledstate; |
| } |
| |
| void setledstate(struct kbd_struct *kbd, unsigned int led) |
| { |
| if (!(led & ~7)) { |
| ledioctl = led; |
| kbd->ledmode = LED_SHOW_IOCTL; |
| } else |
| kbd->ledmode = LED_SHOW_FLAGS; |
| |
| set_leds(); |
| } |
| |
| static inline unsigned char getleds(void) |
| { |
| struct kbd_struct *kbd = kbd_table + fg_console; |
| unsigned char leds; |
| int i; |
| |
| if (kbd->ledmode == LED_SHOW_IOCTL) |
| return ledioctl; |
| |
| leds = kbd->ledflagstate; |
| |
| if (kbd->ledmode == LED_SHOW_MEM) { |
| for (i = 0; i < 3; i++) |
| if (ledptrs[i].valid) { |
| if (*ledptrs[i].addr & ledptrs[i].mask) |
| leds |= (1 << i); |
| else |
| leds &= ~(1 << i); |
| } |
| } |
| return leds; |
| } |
| |
| static int kbd_update_leds_helper(struct input_handle *handle, void *data) |
| { |
| unsigned char leds = *(unsigned char *)data; |
| |
| if (test_bit(EV_LED, handle->dev->evbit)) { |
| input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01)); |
| input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02)); |
| input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04)); |
| input_inject_event(handle, EV_SYN, SYN_REPORT, 0); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This is the tasklet that updates LED state on all keyboards |
| * attached to the box. The reason we use tasklet is that we |
| * need to handle the scenario when keyboard handler is not |
| * registered yet but we already getting updates form VT to |
| * update led state. |
| */ |
| static void kbd_bh(unsigned long dummy) |
| { |
| unsigned char leds = getleds(); |
| |
| if (leds != ledstate) { |
| input_handler_for_each_handle(&kbd_handler, &leds, |
| kbd_update_leds_helper); |
| ledstate = leds; |
| } |
| } |
| |
| DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); |
| |
| #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ |
| defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\ |
| defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ |
| (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\ |
| defined(CONFIG_AVR32) |
| |
| #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ |
| ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) |
| |
| static const unsigned short x86_keycodes[256] = |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, |
| 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339, |
| 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, |
| 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, |
| 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361, |
| 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114, |
| 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, |
| 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, |
| 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, |
| 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; |
| |
| #ifdef CONFIG_SPARC |
| static int sparc_l1_a_state; |
| extern void sun_do_break(void); |
| #endif |
| |
| static int emulate_raw(struct vc_data *vc, unsigned int keycode, |
| unsigned char up_flag) |
| { |
| int code; |
| |
| switch (keycode) { |
| |
| case KEY_PAUSE: |
| put_queue(vc, 0xe1); |
| put_queue(vc, 0x1d | up_flag); |
| put_queue(vc, 0x45 | up_flag); |
| break; |
| |
| case KEY_HANGEUL: |
| if (!up_flag) |
| put_queue(vc, 0xf2); |
| break; |
| |
| case KEY_HANJA: |
| if (!up_flag) |
| put_queue(vc, 0xf1); |
| break; |
| |
| case KEY_SYSRQ: |
| /* |
| * Real AT keyboards (that's what we're trying |
| * to emulate here emit 0xe0 0x2a 0xe0 0x37 when |
| * pressing PrtSc/SysRq alone, but simply 0x54 |
| * when pressing Alt+PrtSc/SysRq. |
| */ |
| if (test_bit(KEY_LEFTALT, key_down) || |
| test_bit(KEY_RIGHTALT, key_down)) { |
| put_queue(vc, 0x54 | up_flag); |
| } else { |
| put_queue(vc, 0xe0); |
| put_queue(vc, 0x2a | up_flag); |
| put_queue(vc, 0xe0); |
| put_queue(vc, 0x37 | up_flag); |
| } |
| break; |
| |
| default: |
| if (keycode > 255) |
| return -1; |
| |
| code = x86_keycodes[keycode]; |
| if (!code) |
| return -1; |
| |
| if (code & 0x100) |
| put_queue(vc, 0xe0); |
| put_queue(vc, (code & 0x7f) | up_flag); |
| |
| break; |
| } |
| |
| return 0; |
| } |
| |
| #else |
| |
| #define HW_RAW(dev) 0 |
| |
| static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) |
| { |
| if (keycode > 127) |
| return -1; |
| |
| put_queue(vc, keycode | up_flag); |
| return 0; |
| } |
| #endif |
| |
| static void kbd_rawcode(unsigned char data) |
| { |
| struct vc_data *vc = vc_cons[fg_console].d; |
| |
| kbd = kbd_table + vc->vc_num; |
| if (kbd->kbdmode == VC_RAW) |
| put_queue(vc, data); |
| } |
| |
| static void kbd_keycode(unsigned int keycode, int down, int hw_raw) |
| { |
| struct vc_data *vc = vc_cons[fg_console].d; |
| unsigned short keysym, *key_map; |
| unsigned char type; |
| bool raw_mode; |
| struct tty_struct *tty; |
| int shift_final; |
| struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down }; |
| int rc; |
| |
| tty = vc->port.tty; |
| |
| if (tty && (!tty->driver_data)) { |
| /* No driver data? Strange. Okay we fix it then. */ |
| tty->driver_data = vc; |
| } |
| |
| kbd = kbd_table + vc->vc_num; |
| |
| #ifdef CONFIG_SPARC |
| if (keycode == KEY_STOP) |
| sparc_l1_a_state = down; |
| #endif |
| |
| rep = (down == 2); |
| |
| raw_mode = (kbd->kbdmode == VC_RAW); |
| if (raw_mode && !hw_raw) |
| if (emulate_raw(vc, keycode, !down << 7)) |
| if (keycode < BTN_MISC && printk_ratelimit()) |
| pr_warning("can't emulate rawmode for keycode %d\n", |
| keycode); |
| |
| #ifdef CONFIG_SPARC |
| if (keycode == KEY_A && sparc_l1_a_state) { |
| sparc_l1_a_state = false; |
| sun_do_break(); |
| } |
| #endif |
| |
| if (kbd->kbdmode == VC_MEDIUMRAW) { |
| /* |
| * This is extended medium raw mode, with keys above 127 |
| * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing |
| * the 'up' flag if needed. 0 is reserved, so this shouldn't |
| * interfere with anything else. The two bytes after 0 will |
| * always have the up flag set not to interfere with older |
| * applications. This allows for 16384 different keycodes, |
| * which should be enough. |
| */ |
| if (keycode < 128) { |
| put_queue(vc, keycode | (!down << 7)); |
| } else { |
| put_queue(vc, !down << 7); |
| put_queue(vc, (keycode >> 7) | 0x80); |
| put_queue(vc, keycode | 0x80); |
| } |
| raw_mode = true; |
| } |
| |
| if (down) |
| set_bit(keycode, key_down); |
| else |
| clear_bit(keycode, key_down); |
| |
| if (rep && |
| (!vc_kbd_mode(kbd, VC_REPEAT) || |
| (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) { |
| /* |
| * Don't repeat a key if the input buffers are not empty and the |
| * characters get aren't echoed locally. This makes key repeat |
| * usable with slow applications and under heavy loads. |
| */ |
| return; |
| } |
| |
| param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; |
| param.ledstate = kbd->ledflagstate; |
| key_map = key_maps[shift_final]; |
| |
| rc = atomic_notifier_call_chain(&keyboard_notifier_list, |
| KBD_KEYCODE, ¶m); |
| if (rc == NOTIFY_STOP || !key_map) { |
| atomic_notifier_call_chain(&keyboard_notifier_list, |
| KBD_UNBOUND_KEYCODE, ¶m); |
| compute_shiftstate(); |
| kbd->slockstate = 0; |
| return; |
| } |
| |
| if (keycode < NR_KEYS) |
| keysym = key_map[keycode]; |
| else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8) |
| keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1)); |
| else |
| return; |
| |
| type = KTYP(keysym); |
| |
| if (type < 0xf0) { |
| param.value = keysym; |
| rc = atomic_notifier_call_chain(&keyboard_notifier_list, |
| KBD_UNICODE, ¶m); |
| if (rc != NOTIFY_STOP) |
| if (down && !raw_mode) |
| to_utf8(vc, keysym); |
| return; |
| } |
| |
| type -= 0xf0; |
| |
| if (type == KT_LETTER) { |
| type = KT_LATIN; |
| if (vc_kbd_led(kbd, VC_CAPSLOCK)) { |
| key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; |
| if (key_map) |
| keysym = key_map[keycode]; |
| } |
| } |
| |
| param.value = keysym; |
| rc = atomic_notifier_call_chain(&keyboard_notifier_list, |
| KBD_KEYSYM, ¶m); |
| if (rc == NOTIFY_STOP) |
| return; |
| |
| if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT) |
| return; |
| |
| (*k_handler[type])(vc, keysym & 0xff, !down); |
| |
| param.ledstate = kbd->ledflagstate; |
| atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m); |
| |
| if (type != KT_SLOCK) |
| kbd->slockstate = 0; |
| } |
| |
| static void kbd_event(struct input_handle *handle, unsigned int event_type, |
| unsigned int event_code, int value) |
| { |
| /* We are called with interrupts disabled, just take the lock */ |
| spin_lock(&kbd_event_lock); |
| |
| if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) |
| kbd_rawcode(value); |
| if (event_type == EV_KEY) |
| kbd_keycode(event_code, value, HW_RAW(handle->dev)); |
| |
| spin_unlock(&kbd_event_lock); |
| |
| tasklet_schedule(&keyboard_tasklet); |
| do_poke_blanked_console = 1; |
| schedule_console_callback(); |
| } |
| |
| static bool kbd_match(struct input_handler *handler, struct input_dev *dev) |
| { |
| int i; |
| |
| if (test_bit(EV_SND, dev->evbit)) |
| return true; |
| |
| if (test_bit(EV_KEY, dev->evbit)) { |
| for (i = KEY_RESERVED; i < BTN_MISC; i++) |
| if (test_bit(i, dev->keybit)) |
| return true; |
| for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++) |
| if (test_bit(i, dev->keybit)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * When a keyboard (or other input device) is found, the kbd_connect |
| * function is called. The function then looks at the device, and if it |
| * likes it, it can open it and get events from it. In this (kbd_connect) |
| * function, we should decide which VT to bind that keyboard to initially. |
| */ |
| static int kbd_connect(struct input_handler *handler, struct input_dev *dev, |
| const struct input_device_id *id) |
| { |
| struct input_handle *handle; |
| int error; |
| |
| handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); |
| if (!handle) |
| return -ENOMEM; |
| |
| handle->dev = dev; |
| handle->handler = handler; |
| handle->name = "kbd"; |
| |
| error = input_register_handle(handle); |
| if (error) |
| goto err_free_handle; |
| |
| error = input_open_device(handle); |
| if (error) |
| goto err_unregister_handle; |
| |
| return 0; |
| |
| err_unregister_handle: |
| input_unregister_handle(handle); |
| err_free_handle: |
| kfree(handle); |
| return error; |
| } |
| |
| static void kbd_disconnect(struct input_handle *handle) |
| { |
| input_close_device(handle); |
| input_unregister_handle(handle); |
| kfree(handle); |
| } |
| |
| /* |
| * Start keyboard handler on the new keyboard by refreshing LED state to |
| * match the rest of the system. |
| */ |
| static void kbd_start(struct input_handle *handle) |
| { |
| tasklet_disable(&keyboard_tasklet); |
| |
| if (ledstate != 0xff) |
| kbd_update_leds_helper(handle, &ledstate); |
| |
| tasklet_enable(&keyboard_tasklet); |
| } |
| |
| static const struct input_device_id kbd_ids[] = { |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT, |
| .evbit = { BIT_MASK(EV_KEY) }, |
| }, |
| |
| { |
| .flags = INPUT_DEVICE_ID_MATCH_EVBIT, |
| .evbit = { BIT_MASK(EV_SND) }, |
| }, |
| |
| { }, /* Terminating entry */ |
| }; |
| |
| MODULE_DEVICE_TABLE(input, kbd_ids); |
| |
| static struct input_handler kbd_handler = { |
| .event = kbd_event, |
| .match = kbd_match, |
| .connect = kbd_connect, |
| .disconnect = kbd_disconnect, |
| .start = kbd_start, |
| .name = "kbd", |
| .id_table = kbd_ids, |
| }; |
| |
| int __init kbd_init(void) |
| { |
| int i; |
| int error; |
| |
| for (i = 0; i < MAX_NR_CONSOLES; i++) { |
| kbd_table[i].ledflagstate = KBD_DEFLEDS; |
| kbd_table[i].default_ledflagstate = KBD_DEFLEDS; |
| kbd_table[i].ledmode = LED_SHOW_FLAGS; |
| kbd_table[i].lockstate = KBD_DEFLOCK; |
| kbd_table[i].slockstate = 0; |
| kbd_table[i].modeflags = KBD_DEFMODE; |
| kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; |
| } |
| |
| error = input_register_handler(&kbd_handler); |
| if (error) |
| return error; |
| |
| tasklet_enable(&keyboard_tasklet); |
| tasklet_schedule(&keyboard_tasklet); |
| |
| return 0; |
| } |