| /* |
| * linux/drivers/char/vt_ioctl.c |
| * |
| * Copyright (C) 1992 obz under the linux copyright |
| * |
| * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 |
| * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 |
| * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 |
| * Some code moved for less code duplication - Andi Kleen - Mar 1997 |
| * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/tty.h> |
| #include <linux/timer.h> |
| #include <linux/kernel.h> |
| #include <linux/compat.h> |
| #include <linux/module.h> |
| #include <linux/kd.h> |
| #include <linux/vt.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/major.h> |
| #include <linux/fs.h> |
| #include <linux/console.h> |
| #include <linux/consolemap.h> |
| #include <linux/signal.h> |
| #include <linux/timex.h> |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/kbd_kern.h> |
| #include <linux/vt_kern.h> |
| #include <linux/kbd_diacr.h> |
| #include <linux/selection.h> |
| |
| char vt_dont_switch; |
| extern struct tty_driver *console_driver; |
| |
| #define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count) |
| #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons) |
| |
| /* |
| * Console (vt and kd) routines, as defined by USL SVR4 manual, and by |
| * experimentation and study of X386 SYSV handling. |
| * |
| * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and |
| * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, |
| * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will |
| * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to |
| * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using |
| * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing |
| * to the current console is done by the main ioctl code. |
| */ |
| |
| #ifdef CONFIG_X86 |
| #include <linux/syscalls.h> |
| #endif |
| |
| static void complete_change_console(struct vc_data *vc); |
| |
| /* |
| * User space VT_EVENT handlers |
| */ |
| |
| struct vt_event_wait { |
| struct list_head list; |
| struct vt_event event; |
| int done; |
| }; |
| |
| static LIST_HEAD(vt_events); |
| static DEFINE_SPINLOCK(vt_event_lock); |
| static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue); |
| |
| /** |
| * vt_event_post |
| * @event: the event that occurred |
| * @old: old console |
| * @new: new console |
| * |
| * Post an VT event to interested VT handlers |
| */ |
| |
| void vt_event_post(unsigned int event, unsigned int old, unsigned int new) |
| { |
| struct list_head *pos, *head; |
| unsigned long flags; |
| int wake = 0; |
| |
| spin_lock_irqsave(&vt_event_lock, flags); |
| head = &vt_events; |
| |
| list_for_each(pos, head) { |
| struct vt_event_wait *ve = list_entry(pos, |
| struct vt_event_wait, list); |
| if (!(ve->event.event & event)) |
| continue; |
| ve->event.event = event; |
| /* kernel view is consoles 0..n-1, user space view is |
| console 1..n with 0 meaning current, so we must bias */ |
| ve->event.oldev = old + 1; |
| ve->event.newev = new + 1; |
| wake = 1; |
| ve->done = 1; |
| } |
| spin_unlock_irqrestore(&vt_event_lock, flags); |
| if (wake) |
| wake_up_interruptible(&vt_event_waitqueue); |
| } |
| |
| /** |
| * vt_event_wait - wait for an event |
| * @vw: our event |
| * |
| * Waits for an event to occur which completes our vt_event_wait |
| * structure. On return the structure has wv->done set to 1 for success |
| * or 0 if some event such as a signal ended the wait. |
| */ |
| |
| static void vt_event_wait(struct vt_event_wait *vw) |
| { |
| unsigned long flags; |
| /* Prepare the event */ |
| INIT_LIST_HEAD(&vw->list); |
| vw->done = 0; |
| /* Queue our event */ |
| spin_lock_irqsave(&vt_event_lock, flags); |
| list_add(&vw->list, &vt_events); |
| spin_unlock_irqrestore(&vt_event_lock, flags); |
| /* Wait for it to pass */ |
| wait_event_interruptible_tty(vt_event_waitqueue, vw->done); |
| /* Dequeue it */ |
| spin_lock_irqsave(&vt_event_lock, flags); |
| list_del(&vw->list); |
| spin_unlock_irqrestore(&vt_event_lock, flags); |
| } |
| |
| /** |
| * vt_event_wait_ioctl - event ioctl handler |
| * @arg: argument to ioctl |
| * |
| * Implement the VT_WAITEVENT ioctl using the VT event interface |
| */ |
| |
| static int vt_event_wait_ioctl(struct vt_event __user *event) |
| { |
| struct vt_event_wait vw; |
| |
| if (copy_from_user(&vw.event, event, sizeof(struct vt_event))) |
| return -EFAULT; |
| /* Highest supported event for now */ |
| if (vw.event.event & ~VT_MAX_EVENT) |
| return -EINVAL; |
| |
| vt_event_wait(&vw); |
| /* If it occurred report it */ |
| if (vw.done) { |
| if (copy_to_user(event, &vw.event, sizeof(struct vt_event))) |
| return -EFAULT; |
| return 0; |
| } |
| return -EINTR; |
| } |
| |
| /** |
| * vt_waitactive - active console wait |
| * @event: event code |
| * @n: new console |
| * |
| * Helper for event waits. Used to implement the legacy |
| * event waiting ioctls in terms of events |
| */ |
| |
| int vt_waitactive(int n) |
| { |
| struct vt_event_wait vw; |
| do { |
| if (n == fg_console + 1) |
| break; |
| vw.event.event = VT_EVENT_SWITCH; |
| vt_event_wait(&vw); |
| if (vw.done == 0) |
| return -EINTR; |
| } while (vw.event.newev != n); |
| return 0; |
| } |
| |
| /* |
| * these are the valid i/o ports we're allowed to change. they map all the |
| * video ports |
| */ |
| #define GPFIRST 0x3b4 |
| #define GPLAST 0x3df |
| #define GPNUM (GPLAST - GPFIRST + 1) |
| |
| #define i (tmp.kb_index) |
| #define s (tmp.kb_table) |
| #define v (tmp.kb_value) |
| static inline int |
| do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd) |
| { |
| struct kbentry tmp; |
| ushort *key_map, val, ov; |
| |
| if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) |
| return -EFAULT; |
| |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| perm = 0; |
| |
| switch (cmd) { |
| case KDGKBENT: |
| key_map = key_maps[s]; |
| if (key_map) { |
| val = U(key_map[i]); |
| if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) |
| val = K_HOLE; |
| } else |
| val = (i ? K_HOLE : K_NOSUCHMAP); |
| return put_user(val, &user_kbe->kb_value); |
| case KDSKBENT: |
| if (!perm) |
| return -EPERM; |
| if (!i && v == K_NOSUCHMAP) { |
| /* deallocate map */ |
| key_map = key_maps[s]; |
| if (s && key_map) { |
| key_maps[s] = NULL; |
| if (key_map[0] == U(K_ALLOCATED)) { |
| kfree(key_map); |
| keymap_count--; |
| } |
| } |
| break; |
| } |
| |
| if (KTYP(v) < NR_TYPES) { |
| if (KVAL(v) > max_vals[KTYP(v)]) |
| return -EINVAL; |
| } else |
| if (kbd->kbdmode != VC_UNICODE) |
| return -EINVAL; |
| |
| /* ++Geert: non-PC keyboards may generate keycode zero */ |
| #if !defined(__mc68000__) && !defined(__powerpc__) |
| /* assignment to entry 0 only tests validity of args */ |
| if (!i) |
| break; |
| #endif |
| |
| if (!(key_map = key_maps[s])) { |
| int j; |
| |
| if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && |
| !capable(CAP_SYS_RESOURCE)) |
| return -EPERM; |
| |
| key_map = kmalloc(sizeof(plain_map), |
| GFP_KERNEL); |
| if (!key_map) |
| return -ENOMEM; |
| key_maps[s] = key_map; |
| key_map[0] = U(K_ALLOCATED); |
| for (j = 1; j < NR_KEYS; j++) |
| key_map[j] = U(K_HOLE); |
| keymap_count++; |
| } |
| ov = U(key_map[i]); |
| if (v == ov) |
| break; /* nothing to do */ |
| /* |
| * Attention Key. |
| */ |
| if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| key_map[i] = U(v); |
| if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) |
| compute_shiftstate(); |
| break; |
| } |
| return 0; |
| } |
| #undef i |
| #undef s |
| #undef v |
| |
| static inline int |
| do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm) |
| { |
| struct kbkeycode tmp; |
| int kc = 0; |
| |
| if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) |
| return -EFAULT; |
| switch (cmd) { |
| case KDGETKEYCODE: |
| kc = getkeycode(tmp.scancode); |
| if (kc >= 0) |
| kc = put_user(kc, &user_kbkc->keycode); |
| break; |
| case KDSETKEYCODE: |
| if (!perm) |
| return -EPERM; |
| kc = setkeycode(tmp.scancode, tmp.keycode); |
| break; |
| } |
| return kc; |
| } |
| |
| static inline int |
| do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm) |
| { |
| struct kbsentry *kbs; |
| char *p; |
| u_char *q; |
| u_char __user *up; |
| int sz; |
| int delta; |
| char *first_free, *fj, *fnw; |
| int i, j, k; |
| int ret; |
| |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| perm = 0; |
| |
| kbs = kmalloc(sizeof(*kbs), GFP_KERNEL); |
| if (!kbs) { |
| ret = -ENOMEM; |
| goto reterr; |
| } |
| |
| /* we mostly copy too much here (512bytes), but who cares ;) */ |
| if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) { |
| ret = -EFAULT; |
| goto reterr; |
| } |
| kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0'; |
| i = kbs->kb_func; |
| |
| switch (cmd) { |
| case KDGKBSENT: |
| sz = sizeof(kbs->kb_string) - 1; /* sz should have been |
| a struct member */ |
| up = user_kdgkb->kb_string; |
| p = func_table[i]; |
| if(p) |
| for ( ; *p && sz; p++, sz--) |
| if (put_user(*p, up++)) { |
| ret = -EFAULT; |
| goto reterr; |
| } |
| if (put_user('\0', up)) { |
| ret = -EFAULT; |
| goto reterr; |
| } |
| kfree(kbs); |
| return ((p && *p) ? -EOVERFLOW : 0); |
| case KDSKBSENT: |
| if (!perm) { |
| ret = -EPERM; |
| goto reterr; |
| } |
| |
| q = func_table[i]; |
| first_free = funcbufptr + (funcbufsize - funcbufleft); |
| for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) |
| ; |
| if (j < MAX_NR_FUNC) |
| fj = func_table[j]; |
| else |
| fj = first_free; |
| |
| delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string); |
| if (delta <= funcbufleft) { /* it fits in current buf */ |
| if (j < MAX_NR_FUNC) { |
| memmove(fj + delta, fj, first_free - fj); |
| for (k = j; k < MAX_NR_FUNC; k++) |
| if (func_table[k]) |
| func_table[k] += delta; |
| } |
| if (!q) |
| func_table[i] = fj; |
| funcbufleft -= delta; |
| } else { /* allocate a larger buffer */ |
| sz = 256; |
| while (sz < funcbufsize - funcbufleft + delta) |
| sz <<= 1; |
| fnw = kmalloc(sz, GFP_KERNEL); |
| if(!fnw) { |
| ret = -ENOMEM; |
| goto reterr; |
| } |
| |
| if (!q) |
| func_table[i] = fj; |
| if (fj > funcbufptr) |
| memmove(fnw, funcbufptr, fj - funcbufptr); |
| for (k = 0; k < j; k++) |
| if (func_table[k]) |
| func_table[k] = fnw + (func_table[k] - funcbufptr); |
| |
| if (first_free > fj) { |
| memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); |
| for (k = j; k < MAX_NR_FUNC; k++) |
| if (func_table[k]) |
| func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; |
| } |
| if (funcbufptr != func_buf) |
| kfree(funcbufptr); |
| funcbufptr = fnw; |
| funcbufleft = funcbufleft - delta + sz - funcbufsize; |
| funcbufsize = sz; |
| } |
| strcpy(func_table[i], kbs->kb_string); |
| break; |
| } |
| ret = 0; |
| reterr: |
| kfree(kbs); |
| return ret; |
| } |
| |
| static inline int |
| do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op) |
| { |
| struct consolefontdesc cfdarg; |
| int i; |
| |
| if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) |
| return -EFAULT; |
| |
| switch (cmd) { |
| case PIO_FONTX: |
| if (!perm) |
| return -EPERM; |
| op->op = KD_FONT_OP_SET; |
| op->flags = KD_FONT_FLAG_OLD; |
| op->width = 8; |
| op->height = cfdarg.charheight; |
| op->charcount = cfdarg.charcount; |
| op->data = cfdarg.chardata; |
| return con_font_op(vc_cons[fg_console].d, op); |
| case GIO_FONTX: { |
| op->op = KD_FONT_OP_GET; |
| op->flags = KD_FONT_FLAG_OLD; |
| op->width = 8; |
| op->height = cfdarg.charheight; |
| op->charcount = cfdarg.charcount; |
| op->data = cfdarg.chardata; |
| i = con_font_op(vc_cons[fg_console].d, op); |
| if (i) |
| return i; |
| cfdarg.charheight = op->height; |
| cfdarg.charcount = op->charcount; |
| if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) |
| return -EFAULT; |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static inline int |
| do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc) |
| { |
| struct unimapdesc tmp; |
| |
| if (copy_from_user(&tmp, user_ud, sizeof tmp)) |
| return -EFAULT; |
| if (tmp.entries) |
| if (!access_ok(VERIFY_WRITE, tmp.entries, |
| tmp.entry_ct*sizeof(struct unipair))) |
| return -EFAULT; |
| switch (cmd) { |
| case PIO_UNIMAP: |
| if (!perm) |
| return -EPERM; |
| return con_set_unimap(vc, tmp.entry_ct, tmp.entries); |
| case GIO_UNIMAP: |
| if (!perm && fg_console != vc->vc_num) |
| return -EPERM; |
| return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); |
| } |
| return 0; |
| } |
| |
| |
| |
| /* |
| * We handle the console-specific ioctl's here. We allow the |
| * capability to modify any console, not just the fg_console. |
| */ |
| int vt_ioctl(struct tty_struct *tty, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct vc_data *vc = tty->driver_data; |
| struct console_font_op op; /* used in multiple places here */ |
| struct kbd_struct * kbd; |
| unsigned int console; |
| unsigned char ucval; |
| unsigned int uival; |
| void __user *up = (void __user *)arg; |
| int i, perm; |
| int ret = 0; |
| |
| console = vc->vc_num; |
| |
| tty_lock(); |
| |
| if (!vc_cons_allocated(console)) { /* impossible? */ |
| ret = -ENOIOCTLCMD; |
| goto out; |
| } |
| |
| |
| /* |
| * To have permissions to do most of the vt ioctls, we either have |
| * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. |
| */ |
| perm = 0; |
| if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) |
| perm = 1; |
| |
| kbd = kbd_table + console; |
| switch (cmd) { |
| case TIOCLINUX: |
| ret = tioclinux(tty, arg); |
| break; |
| case KIOCSOUND: |
| if (!perm) |
| goto eperm; |
| /* |
| * The use of PIT_TICK_RATE is historic, it used to be |
| * the platform-dependent CLOCK_TICK_RATE between 2.6.12 |
| * and 2.6.36, which was a minor but unfortunate ABI |
| * change. |
| */ |
| if (arg) |
| arg = PIT_TICK_RATE / arg; |
| kd_mksound(arg, 0); |
| break; |
| |
| case KDMKTONE: |
| if (!perm) |
| goto eperm; |
| { |
| unsigned int ticks, count; |
| |
| /* |
| * Generate the tone for the appropriate number of ticks. |
| * If the time is zero, turn off sound ourselves. |
| */ |
| ticks = HZ * ((arg >> 16) & 0xffff) / 1000; |
| count = ticks ? (arg & 0xffff) : 0; |
| if (count) |
| count = PIT_TICK_RATE / count; |
| kd_mksound(count, ticks); |
| break; |
| } |
| |
| case KDGKBTYPE: |
| /* |
| * this is naive. |
| */ |
| ucval = KB_101; |
| goto setchar; |
| |
| /* |
| * These cannot be implemented on any machine that implements |
| * ioperm() in user level (such as Alpha PCs) or not at all. |
| * |
| * XXX: you should never use these, just call ioperm directly.. |
| */ |
| #ifdef CONFIG_X86 |
| case KDADDIO: |
| case KDDELIO: |
| /* |
| * KDADDIO and KDDELIO may be able to add ports beyond what |
| * we reject here, but to be safe... |
| */ |
| if (arg < GPFIRST || arg > GPLAST) { |
| ret = -EINVAL; |
| break; |
| } |
| ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0; |
| break; |
| |
| case KDENABIO: |
| case KDDISABIO: |
| ret = sys_ioperm(GPFIRST, GPNUM, |
| (cmd == KDENABIO)) ? -ENXIO : 0; |
| break; |
| #endif |
| |
| /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ |
| |
| case KDKBDREP: |
| { |
| struct kbd_repeat kbrep; |
| |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| goto eperm; |
| |
| if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) { |
| ret = -EFAULT; |
| break; |
| } |
| ret = kbd_rate(&kbrep); |
| if (ret) |
| break; |
| if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat))) |
| ret = -EFAULT; |
| break; |
| } |
| |
| case KDSETMODE: |
| /* |
| * currently, setting the mode from KD_TEXT to KD_GRAPHICS |
| * doesn't do a whole lot. i'm not sure if it should do any |
| * restoration of modes or what... |
| * |
| * XXX It should at least call into the driver, fbdev's definitely |
| * need to restore their engine state. --BenH |
| */ |
| if (!perm) |
| goto eperm; |
| switch (arg) { |
| case KD_GRAPHICS: |
| break; |
| case KD_TEXT0: |
| case KD_TEXT1: |
| arg = KD_TEXT; |
| case KD_TEXT: |
| break; |
| default: |
| ret = -EINVAL; |
| goto out; |
| } |
| if (vc->vc_mode == (unsigned char) arg) |
| break; |
| vc->vc_mode = (unsigned char) arg; |
| if (console != fg_console) |
| break; |
| /* |
| * explicitly blank/unblank the screen if switching modes |
| */ |
| console_lock(); |
| if (arg == KD_TEXT) |
| do_unblank_screen(1); |
| else |
| do_blank_screen(1); |
| console_unlock(); |
| break; |
| |
| case KDGETMODE: |
| uival = vc->vc_mode; |
| goto setint; |
| |
| case KDMAPDISP: |
| case KDUNMAPDISP: |
| /* |
| * these work like a combination of mmap and KDENABIO. |
| * this could be easily finished. |
| */ |
| ret = -EINVAL; |
| break; |
| |
| case KDSKBMODE: |
| if (!perm) |
| goto eperm; |
| switch(arg) { |
| case K_RAW: |
| kbd->kbdmode = VC_RAW; |
| break; |
| case K_MEDIUMRAW: |
| kbd->kbdmode = VC_MEDIUMRAW; |
| break; |
| case K_XLATE: |
| kbd->kbdmode = VC_XLATE; |
| compute_shiftstate(); |
| break; |
| case K_UNICODE: |
| kbd->kbdmode = VC_UNICODE; |
| compute_shiftstate(); |
| break; |
| case K_OFF: |
| kbd->kbdmode = VC_OFF; |
| break; |
| default: |
| ret = -EINVAL; |
| goto out; |
| } |
| tty_ldisc_flush(tty); |
| break; |
| |
| case KDGKBMODE: |
| uival = ((kbd->kbdmode == VC_RAW) ? K_RAW : |
| (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : |
| (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : |
| K_XLATE); |
| goto setint; |
| |
| /* this could be folded into KDSKBMODE, but for compatibility |
| reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ |
| case KDSKBMETA: |
| switch(arg) { |
| case K_METABIT: |
| clr_vc_kbd_mode(kbd, VC_META); |
| break; |
| case K_ESCPREFIX: |
| set_vc_kbd_mode(kbd, VC_META); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| break; |
| |
| case KDGKBMETA: |
| uival = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); |
| setint: |
| ret = put_user(uival, (int __user *)arg); |
| break; |
| |
| case KDGETKEYCODE: |
| case KDSETKEYCODE: |
| if(!capable(CAP_SYS_TTY_CONFIG)) |
| perm = 0; |
| ret = do_kbkeycode_ioctl(cmd, up, perm); |
| break; |
| |
| case KDGKBENT: |
| case KDSKBENT: |
| ret = do_kdsk_ioctl(cmd, up, perm, kbd); |
| break; |
| |
| case KDGKBSENT: |
| case KDSKBSENT: |
| ret = do_kdgkb_ioctl(cmd, up, perm); |
| break; |
| |
| case KDGKBDIACR: |
| { |
| struct kbdiacrs __user *a = up; |
| struct kbdiacr diacr; |
| int i; |
| |
| if (put_user(accent_table_size, &a->kb_cnt)) { |
| ret = -EFAULT; |
| break; |
| } |
| for (i = 0; i < accent_table_size; i++) { |
| diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr); |
| diacr.base = conv_uni_to_8bit(accent_table[i].base); |
| diacr.result = conv_uni_to_8bit(accent_table[i].result); |
| if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) { |
| ret = -EFAULT; |
| break; |
| } |
| } |
| break; |
| } |
| case KDGKBDIACRUC: |
| { |
| struct kbdiacrsuc __user *a = up; |
| |
| if (put_user(accent_table_size, &a->kb_cnt)) |
| ret = -EFAULT; |
| else if (copy_to_user(a->kbdiacruc, accent_table, |
| accent_table_size*sizeof(struct kbdiacruc))) |
| ret = -EFAULT; |
| break; |
| } |
| |
| case KDSKBDIACR: |
| { |
| struct kbdiacrs __user *a = up; |
| struct kbdiacr diacr; |
| unsigned int ct; |
| int i; |
| |
| if (!perm) |
| goto eperm; |
| if (get_user(ct,&a->kb_cnt)) { |
| ret = -EFAULT; |
| break; |
| } |
| if (ct >= MAX_DIACR) { |
| ret = -EINVAL; |
| break; |
| } |
| accent_table_size = ct; |
| for (i = 0; i < ct; i++) { |
| if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) { |
| ret = -EFAULT; |
| break; |
| } |
| accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr); |
| accent_table[i].base = conv_8bit_to_uni(diacr.base); |
| accent_table[i].result = conv_8bit_to_uni(diacr.result); |
| } |
| break; |
| } |
| |
| case KDSKBDIACRUC: |
| { |
| struct kbdiacrsuc __user *a = up; |
| unsigned int ct; |
| |
| if (!perm) |
| goto eperm; |
| if (get_user(ct,&a->kb_cnt)) { |
| ret = -EFAULT; |
| break; |
| } |
| if (ct >= MAX_DIACR) { |
| ret = -EINVAL; |
| break; |
| } |
| accent_table_size = ct; |
| if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc))) |
| ret = -EFAULT; |
| break; |
| } |
| |
| /* the ioctls below read/set the flags usually shown in the leds */ |
| /* don't use them - they will go away without warning */ |
| case KDGKBLED: |
| ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); |
| goto setchar; |
| |
| case KDSKBLED: |
| if (!perm) |
| goto eperm; |
| if (arg & ~0x77) { |
| ret = -EINVAL; |
| break; |
| } |
| kbd->ledflagstate = (arg & 7); |
| kbd->default_ledflagstate = ((arg >> 4) & 7); |
| set_leds(); |
| break; |
| |
| /* the ioctls below only set the lights, not the functions */ |
| /* for those, see KDGKBLED and KDSKBLED above */ |
| case KDGETLED: |
| ucval = getledstate(); |
| setchar: |
| ret = put_user(ucval, (char __user *)arg); |
| break; |
| |
| case KDSETLED: |
| if (!perm) |
| goto eperm; |
| setledstate(kbd, arg); |
| break; |
| |
| /* |
| * A process can indicate its willingness to accept signals |
| * generated by pressing an appropriate key combination. |
| * Thus, one can have a daemon that e.g. spawns a new console |
| * upon a keypress and then changes to it. |
| * See also the kbrequest field of inittab(5). |
| */ |
| case KDSIGACCEPT: |
| { |
| if (!perm || !capable(CAP_KILL)) |
| goto eperm; |
| if (!valid_signal(arg) || arg < 1 || arg == SIGKILL) |
| ret = -EINVAL; |
| else { |
| spin_lock_irq(&vt_spawn_con.lock); |
| put_pid(vt_spawn_con.pid); |
| vt_spawn_con.pid = get_pid(task_pid(current)); |
| vt_spawn_con.sig = arg; |
| spin_unlock_irq(&vt_spawn_con.lock); |
| } |
| break; |
| } |
| |
| case VT_SETMODE: |
| { |
| struct vt_mode tmp; |
| |
| if (!perm) |
| goto eperm; |
| if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) { |
| ret = -EINVAL; |
| goto out; |
| } |
| console_lock(); |
| vc->vt_mode = tmp; |
| /* the frsig is ignored, so we set it to 0 */ |
| vc->vt_mode.frsig = 0; |
| put_pid(vc->vt_pid); |
| vc->vt_pid = get_pid(task_pid(current)); |
| /* no switch is required -- saw@shade.msu.ru */ |
| vc->vt_newvt = -1; |
| console_unlock(); |
| break; |
| } |
| |
| case VT_GETMODE: |
| { |
| struct vt_mode tmp; |
| int rc; |
| |
| console_lock(); |
| memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode)); |
| console_unlock(); |
| |
| rc = copy_to_user(up, &tmp, sizeof(struct vt_mode)); |
| if (rc) |
| ret = -EFAULT; |
| break; |
| } |
| |
| /* |
| * Returns global vt state. Note that VT 0 is always open, since |
| * it's an alias for the current VT, and people can't use it here. |
| * We cannot return state for more than 16 VTs, since v_state is short. |
| */ |
| case VT_GETSTATE: |
| { |
| struct vt_stat __user *vtstat = up; |
| unsigned short state, mask; |
| |
| if (put_user(fg_console + 1, &vtstat->v_active)) |
| ret = -EFAULT; |
| else { |
| state = 1; /* /dev/tty0 is always open */ |
| for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; |
| ++i, mask <<= 1) |
| if (VT_IS_IN_USE(i)) |
| state |= mask; |
| ret = put_user(state, &vtstat->v_state); |
| } |
| break; |
| } |
| |
| /* |
| * Returns the first available (non-opened) console. |
| */ |
| case VT_OPENQRY: |
| for (i = 0; i < MAX_NR_CONSOLES; ++i) |
| if (! VT_IS_IN_USE(i)) |
| break; |
| uival = i < MAX_NR_CONSOLES ? (i+1) : -1; |
| goto setint; |
| |
| /* |
| * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, |
| * with num >= 1 (switches to vt 0, our console, are not allowed, just |
| * to preserve sanity). |
| */ |
| case VT_ACTIVATE: |
| if (!perm) |
| goto eperm; |
| if (arg == 0 || arg > MAX_NR_CONSOLES) |
| ret = -ENXIO; |
| else { |
| arg--; |
| console_lock(); |
| ret = vc_allocate(arg); |
| console_unlock(); |
| if (ret) |
| break; |
| set_console(arg); |
| } |
| break; |
| |
| case VT_SETACTIVATE: |
| { |
| struct vt_setactivate vsa; |
| |
| if (!perm) |
| goto eperm; |
| |
| if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg, |
| sizeof(struct vt_setactivate))) { |
| ret = -EFAULT; |
| goto out; |
| } |
| if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES) |
| ret = -ENXIO; |
| else { |
| vsa.console--; |
| console_lock(); |
| ret = vc_allocate(vsa.console); |
| if (ret == 0) { |
| struct vc_data *nvc; |
| /* This is safe providing we don't drop the |
| console sem between vc_allocate and |
| finishing referencing nvc */ |
| nvc = vc_cons[vsa.console].d; |
| nvc->vt_mode = vsa.mode; |
| nvc->vt_mode.frsig = 0; |
| put_pid(nvc->vt_pid); |
| nvc->vt_pid = get_pid(task_pid(current)); |
| } |
| console_unlock(); |
| if (ret) |
| break; |
| /* Commence switch and lock */ |
| set_console(vsa.console); |
| } |
| break; |
| } |
| |
| /* |
| * wait until the specified VT has been activated |
| */ |
| case VT_WAITACTIVE: |
| if (!perm) |
| goto eperm; |
| if (arg == 0 || arg > MAX_NR_CONSOLES) |
| ret = -ENXIO; |
| else |
| ret = vt_waitactive(arg); |
| break; |
| |
| /* |
| * If a vt is under process control, the kernel will not switch to it |
| * immediately, but postpone the operation until the process calls this |
| * ioctl, allowing the switch to complete. |
| * |
| * According to the X sources this is the behavior: |
| * 0: pending switch-from not OK |
| * 1: pending switch-from OK |
| * 2: completed switch-to OK |
| */ |
| case VT_RELDISP: |
| if (!perm) |
| goto eperm; |
| |
| if (vc->vt_mode.mode != VT_PROCESS) { |
| ret = -EINVAL; |
| break; |
| } |
| /* |
| * Switching-from response |
| */ |
| console_lock(); |
| if (vc->vt_newvt >= 0) { |
| if (arg == 0) |
| /* |
| * Switch disallowed, so forget we were trying |
| * to do it. |
| */ |
| vc->vt_newvt = -1; |
| |
| else { |
| /* |
| * The current vt has been released, so |
| * complete the switch. |
| */ |
| int newvt; |
| newvt = vc->vt_newvt; |
| vc->vt_newvt = -1; |
| ret = vc_allocate(newvt); |
| if (ret) { |
| console_unlock(); |
| break; |
| } |
| /* |
| * When we actually do the console switch, |
| * make sure we are atomic with respect to |
| * other console switches.. |
| */ |
| complete_change_console(vc_cons[newvt].d); |
| } |
| } else { |
| /* |
| * Switched-to response |
| */ |
| /* |
| * If it's just an ACK, ignore it |
| */ |
| if (arg != VT_ACKACQ) |
| ret = -EINVAL; |
| } |
| console_unlock(); |
| break; |
| |
| /* |
| * Disallocate memory associated to VT (but leave VT1) |
| */ |
| case VT_DISALLOCATE: |
| if (arg > MAX_NR_CONSOLES) { |
| ret = -ENXIO; |
| break; |
| } |
| if (arg == 0) { |
| /* deallocate all unused consoles, but leave 0 */ |
| console_lock(); |
| for (i=1; i<MAX_NR_CONSOLES; i++) |
| if (! VT_BUSY(i)) |
| vc_deallocate(i); |
| console_unlock(); |
| } else { |
| /* deallocate a single console, if possible */ |
| arg--; |
| if (VT_BUSY(arg)) |
| ret = -EBUSY; |
| else if (arg) { /* leave 0 */ |
| console_lock(); |
| vc_deallocate(arg); |
| console_unlock(); |
| } |
| } |
| break; |
| |
| case VT_RESIZE: |
| { |
| struct vt_sizes __user *vtsizes = up; |
| struct vc_data *vc; |
| |
| ushort ll,cc; |
| if (!perm) |
| goto eperm; |
| if (get_user(ll, &vtsizes->v_rows) || |
| get_user(cc, &vtsizes->v_cols)) |
| ret = -EFAULT; |
| else { |
| console_lock(); |
| for (i = 0; i < MAX_NR_CONSOLES; i++) { |
| vc = vc_cons[i].d; |
| |
| if (vc) { |
| vc->vc_resize_user = 1; |
| vc_resize(vc_cons[i].d, cc, ll); |
| } |
| } |
| console_unlock(); |
| } |
| break; |
| } |
| |
| case VT_RESIZEX: |
| { |
| struct vt_consize __user *vtconsize = up; |
| ushort ll,cc,vlin,clin,vcol,ccol; |
| if (!perm) |
| goto eperm; |
| if (!access_ok(VERIFY_READ, vtconsize, |
| sizeof(struct vt_consize))) { |
| ret = -EFAULT; |
| break; |
| } |
| /* FIXME: Should check the copies properly */ |
| __get_user(ll, &vtconsize->v_rows); |
| __get_user(cc, &vtconsize->v_cols); |
| __get_user(vlin, &vtconsize->v_vlin); |
| __get_user(clin, &vtconsize->v_clin); |
| __get_user(vcol, &vtconsize->v_vcol); |
| __get_user(ccol, &vtconsize->v_ccol); |
| vlin = vlin ? vlin : vc->vc_scan_lines; |
| if (clin) { |
| if (ll) { |
| if (ll != vlin/clin) { |
| /* Parameters don't add up */ |
| ret = -EINVAL; |
| break; |
| } |
| } else |
| ll = vlin/clin; |
| } |
| if (vcol && ccol) { |
| if (cc) { |
| if (cc != vcol/ccol) { |
| ret = -EINVAL; |
| break; |
| } |
| } else |
| cc = vcol/ccol; |
| } |
| |
| if (clin > 32) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| for (i = 0; i < MAX_NR_CONSOLES; i++) { |
| if (!vc_cons[i].d) |
| continue; |
| console_lock(); |
| if (vlin) |
| vc_cons[i].d->vc_scan_lines = vlin; |
| if (clin) |
| vc_cons[i].d->vc_font.height = clin; |
| vc_cons[i].d->vc_resize_user = 1; |
| vc_resize(vc_cons[i].d, cc, ll); |
| console_unlock(); |
| } |
| break; |
| } |
| |
| case PIO_FONT: { |
| if (!perm) |
| goto eperm; |
| op.op = KD_FONT_OP_SET; |
| op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */ |
| op.width = 8; |
| op.height = 0; |
| op.charcount = 256; |
| op.data = up; |
| ret = con_font_op(vc_cons[fg_console].d, &op); |
| break; |
| } |
| |
| case GIO_FONT: { |
| op.op = KD_FONT_OP_GET; |
| op.flags = KD_FONT_FLAG_OLD; |
| op.width = 8; |
| op.height = 32; |
| op.charcount = 256; |
| op.data = up; |
| ret = con_font_op(vc_cons[fg_console].d, &op); |
| break; |
| } |
| |
| case PIO_CMAP: |
| if (!perm) |
| ret = -EPERM; |
| else |
| ret = con_set_cmap(up); |
| break; |
| |
| case GIO_CMAP: |
| ret = con_get_cmap(up); |
| break; |
| |
| case PIO_FONTX: |
| case GIO_FONTX: |
| ret = do_fontx_ioctl(cmd, up, perm, &op); |
| break; |
| |
| case PIO_FONTRESET: |
| { |
| if (!perm) |
| goto eperm; |
| |
| #ifdef BROKEN_GRAPHICS_PROGRAMS |
| /* With BROKEN_GRAPHICS_PROGRAMS defined, the default |
| font is not saved. */ |
| ret = -ENOSYS; |
| break; |
| #else |
| { |
| op.op = KD_FONT_OP_SET_DEFAULT; |
| op.data = NULL; |
| ret = con_font_op(vc_cons[fg_console].d, &op); |
| if (ret) |
| break; |
| con_set_default_unimap(vc_cons[fg_console].d); |
| break; |
| } |
| #endif |
| } |
| |
| case KDFONTOP: { |
| if (copy_from_user(&op, up, sizeof(op))) { |
| ret = -EFAULT; |
| break; |
| } |
| if (!perm && op.op != KD_FONT_OP_GET) |
| goto eperm; |
| ret = con_font_op(vc, &op); |
| if (ret) |
| break; |
| if (copy_to_user(up, &op, sizeof(op))) |
| ret = -EFAULT; |
| break; |
| } |
| |
| case PIO_SCRNMAP: |
| if (!perm) |
| ret = -EPERM; |
| else |
| ret = con_set_trans_old(up); |
| break; |
| |
| case GIO_SCRNMAP: |
| ret = con_get_trans_old(up); |
| break; |
| |
| case PIO_UNISCRNMAP: |
| if (!perm) |
| ret = -EPERM; |
| else |
| ret = con_set_trans_new(up); |
| break; |
| |
| case GIO_UNISCRNMAP: |
| ret = con_get_trans_new(up); |
| break; |
| |
| case PIO_UNIMAPCLR: |
| { struct unimapinit ui; |
| if (!perm) |
| goto eperm; |
| ret = copy_from_user(&ui, up, sizeof(struct unimapinit)); |
| if (ret) |
| ret = -EFAULT; |
| else |
| con_clear_unimap(vc, &ui); |
| break; |
| } |
| |
| case PIO_UNIMAP: |
| case GIO_UNIMAP: |
| ret = do_unimap_ioctl(cmd, up, perm, vc); |
| break; |
| |
| case VT_LOCKSWITCH: |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| goto eperm; |
| vt_dont_switch = 1; |
| break; |
| case VT_UNLOCKSWITCH: |
| if (!capable(CAP_SYS_TTY_CONFIG)) |
| goto eperm; |
| vt_dont_switch = 0; |
| break; |
| case VT_GETHIFONTMASK: |
| ret = put_user(vc->vc_hi_font_mask, |
| (unsigned short __user *)arg); |
| break; |
| case VT_WAITEVENT: |
| ret = vt_event_wait_ioctl((struct vt_event __user *)arg); |
| break; |
| default: |
| ret = -ENOIOCTLCMD; |
| } |
| out: |
| tty_unlock(); |
| return ret; |
| eperm: |
| ret = -EPERM; |
| goto out; |
| } |
| |
| void reset_vc(struct vc_data *vc) |
| { |
| vc->vc_mode = KD_TEXT; |
| kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE; |
| vc->vt_mode.mode = VT_AUTO; |
| vc->vt_mode.waitv = 0; |
| vc->vt_mode.relsig = 0; |
| vc->vt_mode.acqsig = 0; |
| vc->vt_mode.frsig = 0; |
| put_pid(vc->vt_pid); |
| vc->vt_pid = NULL; |
| vc->vt_newvt = -1; |
| if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */ |
| reset_palette(vc); |
| } |
| |
| void vc_SAK(struct work_struct *work) |
| { |
| struct vc *vc_con = |
| container_of(work, struct vc, SAK_work); |
| struct vc_data *vc; |
| struct tty_struct *tty; |
| |
| console_lock(); |
| vc = vc_con->d; |
| if (vc) { |
| tty = vc->port.tty; |
| /* |
| * SAK should also work in all raw modes and reset |
| * them properly. |
| */ |
| if (tty) |
| __do_SAK(tty); |
| reset_vc(vc); |
| } |
| console_unlock(); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| struct compat_consolefontdesc { |
| unsigned short charcount; /* characters in font (256 or 512) */ |
| unsigned short charheight; /* scan lines per character (1-32) */ |
| compat_caddr_t chardata; /* font data in expanded form */ |
| }; |
| |
| static inline int |
| compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd, |
| int perm, struct console_font_op *op) |
| { |
| struct compat_consolefontdesc cfdarg; |
| int i; |
| |
| if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc))) |
| return -EFAULT; |
| |
| switch (cmd) { |
| case PIO_FONTX: |
| if (!perm) |
| return -EPERM; |
| op->op = KD_FONT_OP_SET; |
| op->flags = KD_FONT_FLAG_OLD; |
| op->width = 8; |
| op->height = cfdarg.charheight; |
| op->charcount = cfdarg.charcount; |
| op->data = compat_ptr(cfdarg.chardata); |
| return con_font_op(vc_cons[fg_console].d, op); |
| case GIO_FONTX: |
| op->op = KD_FONT_OP_GET; |
| op->flags = KD_FONT_FLAG_OLD; |
| op->width = 8; |
| op->height = cfdarg.charheight; |
| op->charcount = cfdarg.charcount; |
| op->data = compat_ptr(cfdarg.chardata); |
| i = con_font_op(vc_cons[fg_console].d, op); |
| if (i) |
| return i; |
| cfdarg.charheight = op->height; |
| cfdarg.charcount = op->charcount; |
| if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc))) |
| return -EFAULT; |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| struct compat_console_font_op { |
| compat_uint_t op; /* operation code KD_FONT_OP_* */ |
| compat_uint_t flags; /* KD_FONT_FLAG_* */ |
| compat_uint_t width, height; /* font size */ |
| compat_uint_t charcount; |
| compat_caddr_t data; /* font data with height fixed to 32 */ |
| }; |
| |
| static inline int |
| compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop, |
| int perm, struct console_font_op *op, struct vc_data *vc) |
| { |
| int i; |
| |
| if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op))) |
| return -EFAULT; |
| if (!perm && op->op != KD_FONT_OP_GET) |
| return -EPERM; |
| op->data = compat_ptr(((struct compat_console_font_op *)op)->data); |
| op->flags |= KD_FONT_FLAG_OLD; |
| i = con_font_op(vc, op); |
| if (i) |
| return i; |
| ((struct compat_console_font_op *)op)->data = (unsigned long)op->data; |
| if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| struct compat_unimapdesc { |
| unsigned short entry_ct; |
| compat_caddr_t entries; |
| }; |
| |
| static inline int |
| compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud, |
| int perm, struct vc_data *vc) |
| { |
| struct compat_unimapdesc tmp; |
| struct unipair __user *tmp_entries; |
| |
| if (copy_from_user(&tmp, user_ud, sizeof tmp)) |
| return -EFAULT; |
| tmp_entries = compat_ptr(tmp.entries); |
| if (tmp_entries) |
| if (!access_ok(VERIFY_WRITE, tmp_entries, |
| tmp.entry_ct*sizeof(struct unipair))) |
| return -EFAULT; |
| switch (cmd) { |
| case PIO_UNIMAP: |
| if (!perm) |
| return -EPERM; |
| return con_set_unimap(vc, tmp.entry_ct, tmp_entries); |
| case GIO_UNIMAP: |
| if (!perm && fg_console != vc->vc_num) |
| return -EPERM; |
| return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries); |
| } |
| return 0; |
| } |
| |
| long vt_compat_ioctl(struct tty_struct *tty, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct vc_data *vc = tty->driver_data; |
| struct console_font_op op; /* used in multiple places here */ |
| struct kbd_struct *kbd; |
| unsigned int console; |
| void __user *up = (void __user *)arg; |
| int perm; |
| int ret = 0; |
| |
| console = vc->vc_num; |
| |
| tty_lock(); |
| |
| if (!vc_cons_allocated(console)) { /* impossible? */ |
| ret = -ENOIOCTLCMD; |
| goto out; |
| } |
| |
| /* |
| * To have permissions to do most of the vt ioctls, we either have |
| * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG. |
| */ |
| perm = 0; |
| if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG)) |
| perm = 1; |
| |
| kbd = kbd_table + console; |
| switch (cmd) { |
| /* |
| * these need special handlers for incompatible data structures |
| */ |
| case PIO_FONTX: |
| case GIO_FONTX: |
| ret = compat_fontx_ioctl(cmd, up, perm, &op); |
| break; |
| |
| case KDFONTOP: |
| ret = compat_kdfontop_ioctl(up, perm, &op, vc); |
| break; |
| |
| case PIO_UNIMAP: |
| case GIO_UNIMAP: |
| ret = compat_unimap_ioctl(cmd, up, perm, vc); |
| break; |
| |
| /* |
| * all these treat 'arg' as an integer |
| */ |
| case KIOCSOUND: |
| case KDMKTONE: |
| #ifdef CONFIG_X86 |
| case KDADDIO: |
| case KDDELIO: |
| #endif |
| case KDSETMODE: |
| case KDMAPDISP: |
| case KDUNMAPDISP: |
| case KDSKBMODE: |
| case KDSKBMETA: |
| case KDSKBLED: |
| case KDSETLED: |
| case KDSIGACCEPT: |
| case VT_ACTIVATE: |
| case VT_WAITACTIVE: |
| case VT_RELDISP: |
| case VT_DISALLOCATE: |
| case VT_RESIZE: |
| case VT_RESIZEX: |
| goto fallback; |
| |
| /* |
| * the rest has a compatible data structure behind arg, |
| * but we have to convert it to a proper 64 bit pointer. |
| */ |
| default: |
| arg = (unsigned long)compat_ptr(arg); |
| goto fallback; |
| } |
| out: |
| tty_unlock(); |
| return ret; |
| |
| fallback: |
| tty_unlock(); |
| return vt_ioctl(tty, cmd, arg); |
| } |
| |
| |
| #endif /* CONFIG_COMPAT */ |
| |
| |
| /* |
| * Performs the back end of a vt switch. Called under the console |
| * semaphore. |
| */ |
| static void complete_change_console(struct vc_data *vc) |
| { |
| unsigned char old_vc_mode; |
| int old = fg_console; |
| |
| last_console = fg_console; |
| |
| /* |
| * If we're switching, we could be going from KD_GRAPHICS to |
| * KD_TEXT mode or vice versa, which means we need to blank or |
| * unblank the screen later. |
| */ |
| old_vc_mode = vc_cons[fg_console].d->vc_mode; |
| switch_screen(vc); |
| |
| /* |
| * This can't appear below a successful kill_pid(). If it did, |
| * then the *blank_screen operation could occur while X, having |
| * received acqsig, is waking up on another processor. This |
| * condition can lead to overlapping accesses to the VGA range |
| * and the framebuffer (causing system lockups). |
| * |
| * To account for this we duplicate this code below only if the |
| * controlling process is gone and we've called reset_vc. |
| */ |
| if (old_vc_mode != vc->vc_mode) { |
| if (vc->vc_mode == KD_TEXT) |
| do_unblank_screen(1); |
| else |
| do_blank_screen(1); |
| } |
| |
| /* |
| * If this new console is under process control, send it a signal |
| * telling it that it has acquired. Also check if it has died and |
| * clean up (similar to logic employed in change_console()) |
| */ |
| if (vc->vt_mode.mode == VT_PROCESS) { |
| /* |
| * Send the signal as privileged - kill_pid() will |
| * tell us if the process has gone or something else |
| * is awry |
| */ |
| if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) { |
| /* |
| * The controlling process has died, so we revert back to |
| * normal operation. In this case, we'll also change back |
| * to KD_TEXT mode. I'm not sure if this is strictly correct |
| * but it saves the agony when the X server dies and the screen |
| * remains blanked due to KD_GRAPHICS! It would be nice to do |
| * this outside of VT_PROCESS but there is no single process |
| * to account for and tracking tty count may be undesirable. |
| */ |
| reset_vc(vc); |
| |
| if (old_vc_mode != vc->vc_mode) { |
| if (vc->vc_mode == KD_TEXT) |
| do_unblank_screen(1); |
| else |
| do_blank_screen(1); |
| } |
| } |
| } |
| |
| /* |
| * Wake anyone waiting for their VT to activate |
| */ |
| vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num); |
| return; |
| } |
| |
| /* |
| * Performs the front-end of a vt switch |
| */ |
| void change_console(struct vc_data *new_vc) |
| { |
| struct vc_data *vc; |
| |
| if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch) |
| return; |
| |
| /* |
| * If this vt is in process mode, then we need to handshake with |
| * that process before switching. Essentially, we store where that |
| * vt wants to switch to and wait for it to tell us when it's done |
| * (via VT_RELDISP ioctl). |
| * |
| * We also check to see if the controlling process still exists. |
| * If it doesn't, we reset this vt to auto mode and continue. |
| * This is a cheap way to track process control. The worst thing |
| * that can happen is: we send a signal to a process, it dies, and |
| * the switch gets "lost" waiting for a response; hopefully, the |
| * user will try again, we'll detect the process is gone (unless |
| * the user waits just the right amount of time :-) and revert the |
| * vt to auto control. |
| */ |
| vc = vc_cons[fg_console].d; |
| if (vc->vt_mode.mode == VT_PROCESS) { |
| /* |
| * Send the signal as privileged - kill_pid() will |
| * tell us if the process has gone or something else |
| * is awry. |
| * |
| * We need to set vt_newvt *before* sending the signal or we |
| * have a race. |
| */ |
| vc->vt_newvt = new_vc->vc_num; |
| if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) { |
| /* |
| * It worked. Mark the vt to switch to and |
| * return. The process needs to send us a |
| * VT_RELDISP ioctl to complete the switch. |
| */ |
| return; |
| } |
| |
| /* |
| * The controlling process has died, so we revert back to |
| * normal operation. In this case, we'll also change back |
| * to KD_TEXT mode. I'm not sure if this is strictly correct |
| * but it saves the agony when the X server dies and the screen |
| * remains blanked due to KD_GRAPHICS! It would be nice to do |
| * this outside of VT_PROCESS but there is no single process |
| * to account for and tracking tty count may be undesirable. |
| */ |
| reset_vc(vc); |
| |
| /* |
| * Fall through to normal (VT_AUTO) handling of the switch... |
| */ |
| } |
| |
| /* |
| * Ignore all switches in KD_GRAPHICS+VT_AUTO mode |
| */ |
| if (vc->vc_mode == KD_GRAPHICS) |
| return; |
| |
| complete_change_console(new_vc); |
| } |
| |
| /* Perform a kernel triggered VT switch for suspend/resume */ |
| |
| static int disable_vt_switch; |
| |
| int vt_move_to_console(unsigned int vt, int alloc) |
| { |
| int prev; |
| |
| console_lock(); |
| /* Graphics mode - up to X */ |
| if (disable_vt_switch) { |
| console_unlock(); |
| return 0; |
| } |
| prev = fg_console; |
| |
| if (alloc && vc_allocate(vt)) { |
| /* we can't have a free VC for now. Too bad, |
| * we don't want to mess the screen for now. */ |
| console_unlock(); |
| return -ENOSPC; |
| } |
| |
| if (set_console(vt)) { |
| /* |
| * We're unable to switch to the SUSPEND_CONSOLE. |
| * Let the calling function know so it can decide |
| * what to do. |
| */ |
| console_unlock(); |
| return -EIO; |
| } |
| console_unlock(); |
| tty_lock(); |
| if (vt_waitactive(vt + 1)) { |
| pr_debug("Suspend: Can't switch VCs."); |
| tty_unlock(); |
| return -EINTR; |
| } |
| tty_unlock(); |
| return prev; |
| } |
| |
| /* |
| * Normally during a suspend, we allocate a new console and switch to it. |
| * When we resume, we switch back to the original console. This switch |
| * can be slow, so on systems where the framebuffer can handle restoration |
| * of video registers anyways, there's little point in doing the console |
| * switch. This function allows you to disable it by passing it '0'. |
| */ |
| void pm_set_vt_switch(int do_switch) |
| { |
| console_lock(); |
| disable_vt_switch = !do_switch; |
| console_unlock(); |
| } |
| EXPORT_SYMBOL(pm_set_vt_switch); |