| /* |
| * A Remote Heap. Remote means that we don't touch the memory that the |
| * heap points to. Normal heap implementations use the memory they manage |
| * to place their list. We cannot do that because the memory we manage may |
| * have special properties, for example it is uncachable or of different |
| * endianess. |
| * |
| * Author: Pantelis Antoniou <panto@intracom.gr> |
| * |
| * 2004 (c) INTRACOM S.A. Greece. This file is licensed under |
| * the terms of the GNU General Public License version 2. This program |
| * is licensed "as is" without any warranty of any kind, whether express |
| * or implied. |
| */ |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| |
| #include <asm/rheap.h> |
| |
| /* |
| * Fixup a list_head, needed when copying lists. If the pointers fall |
| * between s and e, apply the delta. This assumes that |
| * sizeof(struct list_head *) == sizeof(unsigned long *). |
| */ |
| static inline void fixup(unsigned long s, unsigned long e, int d, |
| struct list_head *l) |
| { |
| unsigned long *pp; |
| |
| pp = (unsigned long *)&l->next; |
| if (*pp >= s && *pp < e) |
| *pp += d; |
| |
| pp = (unsigned long *)&l->prev; |
| if (*pp >= s && *pp < e) |
| *pp += d; |
| } |
| |
| /* Grow the allocated blocks */ |
| static int grow(rh_info_t * info, int max_blocks) |
| { |
| rh_block_t *block, *blk; |
| int i, new_blocks; |
| int delta; |
| unsigned long blks, blke; |
| |
| if (max_blocks <= info->max_blocks) |
| return -EINVAL; |
| |
| new_blocks = max_blocks - info->max_blocks; |
| |
| block = kmalloc(sizeof(rh_block_t) * max_blocks, GFP_KERNEL); |
| if (block == NULL) |
| return -ENOMEM; |
| |
| if (info->max_blocks > 0) { |
| |
| /* copy old block area */ |
| memcpy(block, info->block, |
| sizeof(rh_block_t) * info->max_blocks); |
| |
| delta = (char *)block - (char *)info->block; |
| |
| /* and fixup list pointers */ |
| blks = (unsigned long)info->block; |
| blke = (unsigned long)(info->block + info->max_blocks); |
| |
| for (i = 0, blk = block; i < info->max_blocks; i++, blk++) |
| fixup(blks, blke, delta, &blk->list); |
| |
| fixup(blks, blke, delta, &info->empty_list); |
| fixup(blks, blke, delta, &info->free_list); |
| fixup(blks, blke, delta, &info->taken_list); |
| |
| /* free the old allocated memory */ |
| if ((info->flags & RHIF_STATIC_BLOCK) == 0) |
| kfree(info->block); |
| } |
| |
| info->block = block; |
| info->empty_slots += new_blocks; |
| info->max_blocks = max_blocks; |
| info->flags &= ~RHIF_STATIC_BLOCK; |
| |
| /* add all new blocks to the free list */ |
| blk = block + info->max_blocks - new_blocks; |
| for (i = 0; i < new_blocks; i++, blk++) |
| list_add(&blk->list, &info->empty_list); |
| |
| return 0; |
| } |
| |
| /* |
| * Assure at least the required amount of empty slots. If this function |
| * causes a grow in the block area then all pointers kept to the block |
| * area are invalid! |
| */ |
| static int assure_empty(rh_info_t * info, int slots) |
| { |
| int max_blocks; |
| |
| /* This function is not meant to be used to grow uncontrollably */ |
| if (slots >= 4) |
| return -EINVAL; |
| |
| /* Enough space */ |
| if (info->empty_slots >= slots) |
| return 0; |
| |
| /* Next 16 sized block */ |
| max_blocks = ((info->max_blocks + slots) + 15) & ~15; |
| |
| return grow(info, max_blocks); |
| } |
| |
| static rh_block_t *get_slot(rh_info_t * info) |
| { |
| rh_block_t *blk; |
| |
| /* If no more free slots, and failure to extend. */ |
| /* XXX: You should have called assure_empty before */ |
| if (info->empty_slots == 0) { |
| printk(KERN_ERR "rh: out of slots; crash is imminent.\n"); |
| return NULL; |
| } |
| |
| /* Get empty slot to use */ |
| blk = list_entry(info->empty_list.next, rh_block_t, list); |
| list_del_init(&blk->list); |
| info->empty_slots--; |
| |
| /* Initialize */ |
| blk->start = NULL; |
| blk->size = 0; |
| blk->owner = NULL; |
| |
| return blk; |
| } |
| |
| static inline void release_slot(rh_info_t * info, rh_block_t * blk) |
| { |
| list_add(&blk->list, &info->empty_list); |
| info->empty_slots++; |
| } |
| |
| static void attach_free_block(rh_info_t * info, rh_block_t * blkn) |
| { |
| rh_block_t *blk; |
| rh_block_t *before; |
| rh_block_t *after; |
| rh_block_t *next; |
| int size; |
| unsigned long s, e, bs, be; |
| struct list_head *l; |
| |
| /* We assume that they are aligned properly */ |
| size = blkn->size; |
| s = (unsigned long)blkn->start; |
| e = s + size; |
| |
| /* Find the blocks immediately before and after the given one |
| * (if any) */ |
| before = NULL; |
| after = NULL; |
| next = NULL; |
| |
| list_for_each(l, &info->free_list) { |
| blk = list_entry(l, rh_block_t, list); |
| |
| bs = (unsigned long)blk->start; |
| be = bs + blk->size; |
| |
| if (next == NULL && s >= bs) |
| next = blk; |
| |
| if (be == s) |
| before = blk; |
| |
| if (e == bs) |
| after = blk; |
| |
| /* If both are not null, break now */ |
| if (before != NULL && after != NULL) |
| break; |
| } |
| |
| /* Now check if they are really adjacent */ |
| if (before != NULL && s != (unsigned long)before->start + before->size) |
| before = NULL; |
| |
| if (after != NULL && e != (unsigned long)after->start) |
| after = NULL; |
| |
| /* No coalescing; list insert and return */ |
| if (before == NULL && after == NULL) { |
| |
| if (next != NULL) |
| list_add(&blkn->list, &next->list); |
| else |
| list_add(&blkn->list, &info->free_list); |
| |
| return; |
| } |
| |
| /* We don't need it anymore */ |
| release_slot(info, blkn); |
| |
| /* Grow the before block */ |
| if (before != NULL && after == NULL) { |
| before->size += size; |
| return; |
| } |
| |
| /* Grow the after block backwards */ |
| if (before == NULL && after != NULL) { |
| after->start = (int8_t *)after->start - size; |
| after->size += size; |
| return; |
| } |
| |
| /* Grow the before block, and release the after block */ |
| before->size += size + after->size; |
| list_del(&after->list); |
| release_slot(info, after); |
| } |
| |
| static void attach_taken_block(rh_info_t * info, rh_block_t * blkn) |
| { |
| rh_block_t *blk; |
| struct list_head *l; |
| |
| /* Find the block immediately before the given one (if any) */ |
| list_for_each(l, &info->taken_list) { |
| blk = list_entry(l, rh_block_t, list); |
| if (blk->start > blkn->start) { |
| list_add_tail(&blkn->list, &blk->list); |
| return; |
| } |
| } |
| |
| list_add_tail(&blkn->list, &info->taken_list); |
| } |
| |
| /* |
| * Create a remote heap dynamically. Note that no memory for the blocks |
| * are allocated. It will upon the first allocation |
| */ |
| rh_info_t *rh_create(unsigned int alignment) |
| { |
| rh_info_t *info; |
| |
| /* Alignment must be a power of two */ |
| if ((alignment & (alignment - 1)) != 0) |
| return ERR_PTR(-EINVAL); |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (info == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| info->alignment = alignment; |
| |
| /* Initially everything as empty */ |
| info->block = NULL; |
| info->max_blocks = 0; |
| info->empty_slots = 0; |
| info->flags = 0; |
| |
| INIT_LIST_HEAD(&info->empty_list); |
| INIT_LIST_HEAD(&info->free_list); |
| INIT_LIST_HEAD(&info->taken_list); |
| |
| return info; |
| } |
| |
| /* |
| * Destroy a dynamically created remote heap. Deallocate only if the areas |
| * are not static |
| */ |
| void rh_destroy(rh_info_t * info) |
| { |
| if ((info->flags & RHIF_STATIC_BLOCK) == 0 && info->block != NULL) |
| kfree(info->block); |
| |
| if ((info->flags & RHIF_STATIC_INFO) == 0) |
| kfree(info); |
| } |
| |
| /* |
| * Initialize in place a remote heap info block. This is needed to support |
| * operation very early in the startup of the kernel, when it is not yet safe |
| * to call kmalloc. |
| */ |
| void rh_init(rh_info_t * info, unsigned int alignment, int max_blocks, |
| rh_block_t * block) |
| { |
| int i; |
| rh_block_t *blk; |
| |
| /* Alignment must be a power of two */ |
| if ((alignment & (alignment - 1)) != 0) |
| return; |
| |
| info->alignment = alignment; |
| |
| /* Initially everything as empty */ |
| info->block = block; |
| info->max_blocks = max_blocks; |
| info->empty_slots = max_blocks; |
| info->flags = RHIF_STATIC_INFO | RHIF_STATIC_BLOCK; |
| |
| INIT_LIST_HEAD(&info->empty_list); |
| INIT_LIST_HEAD(&info->free_list); |
| INIT_LIST_HEAD(&info->taken_list); |
| |
| /* Add all new blocks to the free list */ |
| for (i = 0, blk = block; i < max_blocks; i++, blk++) |
| list_add(&blk->list, &info->empty_list); |
| } |
| |
| /* Attach a free memory region, coalesces regions if adjuscent */ |
| int rh_attach_region(rh_info_t * info, void *start, int size) |
| { |
| rh_block_t *blk; |
| unsigned long s, e, m; |
| int r; |
| |
| /* The region must be aligned */ |
| s = (unsigned long)start; |
| e = s + size; |
| m = info->alignment - 1; |
| |
| /* Round start up */ |
| s = (s + m) & ~m; |
| |
| /* Round end down */ |
| e = e & ~m; |
| |
| /* Take final values */ |
| start = (void *)s; |
| size = (int)(e - s); |
| |
| /* Grow the blocks, if needed */ |
| r = assure_empty(info, 1); |
| if (r < 0) |
| return r; |
| |
| blk = get_slot(info); |
| blk->start = start; |
| blk->size = size; |
| blk->owner = NULL; |
| |
| attach_free_block(info, blk); |
| |
| return 0; |
| } |
| |
| /* Detatch given address range, splits free block if needed. */ |
| void *rh_detach_region(rh_info_t * info, void *start, int size) |
| { |
| struct list_head *l; |
| rh_block_t *blk, *newblk; |
| unsigned long s, e, m, bs, be; |
| |
| /* Validate size */ |
| if (size <= 0) |
| return ERR_PTR(-EINVAL); |
| |
| /* The region must be aligned */ |
| s = (unsigned long)start; |
| e = s + size; |
| m = info->alignment - 1; |
| |
| /* Round start up */ |
| s = (s + m) & ~m; |
| |
| /* Round end down */ |
| e = e & ~m; |
| |
| if (assure_empty(info, 1) < 0) |
| return ERR_PTR(-ENOMEM); |
| |
| blk = NULL; |
| list_for_each(l, &info->free_list) { |
| blk = list_entry(l, rh_block_t, list); |
| /* The range must lie entirely inside one free block */ |
| bs = (unsigned long)blk->start; |
| be = (unsigned long)blk->start + blk->size; |
| if (s >= bs && e <= be) |
| break; |
| blk = NULL; |
| } |
| |
| if (blk == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Perfect fit */ |
| if (bs == s && be == e) { |
| /* Delete from free list, release slot */ |
| list_del(&blk->list); |
| release_slot(info, blk); |
| return (void *)s; |
| } |
| |
| /* blk still in free list, with updated start and/or size */ |
| if (bs == s || be == e) { |
| if (bs == s) |
| blk->start = (int8_t *)blk->start + size; |
| blk->size -= size; |
| |
| } else { |
| /* The front free fragment */ |
| blk->size = s - bs; |
| |
| /* the back free fragment */ |
| newblk = get_slot(info); |
| newblk->start = (void *)e; |
| newblk->size = be - e; |
| |
| list_add(&newblk->list, &blk->list); |
| } |
| |
| return (void *)s; |
| } |
| |
| void *rh_alloc_align(rh_info_t * info, int size, int alignment, const char *owner) |
| { |
| struct list_head *l; |
| rh_block_t *blk; |
| rh_block_t *newblk; |
| void *start; |
| |
| /* Validate size, (must be power of two) */ |
| if (size <= 0 || (alignment & (alignment - 1)) != 0) |
| return ERR_PTR(-EINVAL); |
| |
| /* given alignment larger that default rheap alignment */ |
| if (alignment > info->alignment) |
| size += alignment - 1; |
| |
| /* Align to configured alignment */ |
| size = (size + (info->alignment - 1)) & ~(info->alignment - 1); |
| |
| if (assure_empty(info, 1) < 0) |
| return ERR_PTR(-ENOMEM); |
| |
| blk = NULL; |
| list_for_each(l, &info->free_list) { |
| blk = list_entry(l, rh_block_t, list); |
| if (size <= blk->size) |
| break; |
| blk = NULL; |
| } |
| |
| if (blk == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Just fits */ |
| if (blk->size == size) { |
| /* Move from free list to taken list */ |
| list_del(&blk->list); |
| blk->owner = owner; |
| start = blk->start; |
| |
| attach_taken_block(info, blk); |
| |
| return start; |
| } |
| |
| newblk = get_slot(info); |
| newblk->start = blk->start; |
| newblk->size = size; |
| newblk->owner = owner; |
| |
| /* blk still in free list, with updated start, size */ |
| blk->start = (int8_t *)blk->start + size; |
| blk->size -= size; |
| |
| start = newblk->start; |
| |
| attach_taken_block(info, newblk); |
| |
| /* for larger alignment return fixed up pointer */ |
| /* this is no problem with the deallocator since */ |
| /* we scan for pointers that lie in the blocks */ |
| if (alignment > info->alignment) |
| start = (void *)(((unsigned long)start + alignment - 1) & |
| ~(alignment - 1)); |
| |
| return start; |
| } |
| |
| void *rh_alloc(rh_info_t * info, int size, const char *owner) |
| { |
| return rh_alloc_align(info, size, info->alignment, owner); |
| } |
| |
| /* allocate at precisely the given address */ |
| void *rh_alloc_fixed(rh_info_t * info, void *start, int size, const char *owner) |
| { |
| struct list_head *l; |
| rh_block_t *blk, *newblk1, *newblk2; |
| unsigned long s, e, m, bs = 0, be = 0; |
| |
| /* Validate size */ |
| if (size <= 0) |
| return ERR_PTR(-EINVAL); |
| |
| /* The region must be aligned */ |
| s = (unsigned long)start; |
| e = s + size; |
| m = info->alignment - 1; |
| |
| /* Round start up */ |
| s = (s + m) & ~m; |
| |
| /* Round end down */ |
| e = e & ~m; |
| |
| if (assure_empty(info, 2) < 0) |
| return ERR_PTR(-ENOMEM); |
| |
| blk = NULL; |
| list_for_each(l, &info->free_list) { |
| blk = list_entry(l, rh_block_t, list); |
| /* The range must lie entirely inside one free block */ |
| bs = (unsigned long)blk->start; |
| be = (unsigned long)blk->start + blk->size; |
| if (s >= bs && e <= be) |
| break; |
| } |
| |
| if (blk == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Perfect fit */ |
| if (bs == s && be == e) { |
| /* Move from free list to taken list */ |
| list_del(&blk->list); |
| blk->owner = owner; |
| |
| start = blk->start; |
| attach_taken_block(info, blk); |
| |
| return start; |
| |
| } |
| |
| /* blk still in free list, with updated start and/or size */ |
| if (bs == s || be == e) { |
| if (bs == s) |
| blk->start = (int8_t *)blk->start + size; |
| blk->size -= size; |
| |
| } else { |
| /* The front free fragment */ |
| blk->size = s - bs; |
| |
| /* The back free fragment */ |
| newblk2 = get_slot(info); |
| newblk2->start = (void *)e; |
| newblk2->size = be - e; |
| |
| list_add(&newblk2->list, &blk->list); |
| } |
| |
| newblk1 = get_slot(info); |
| newblk1->start = (void *)s; |
| newblk1->size = e - s; |
| newblk1->owner = owner; |
| |
| start = newblk1->start; |
| attach_taken_block(info, newblk1); |
| |
| return start; |
| } |
| |
| int rh_free(rh_info_t * info, void *start) |
| { |
| rh_block_t *blk, *blk2; |
| struct list_head *l; |
| int size; |
| |
| /* Linear search for block */ |
| blk = NULL; |
| list_for_each(l, &info->taken_list) { |
| blk2 = list_entry(l, rh_block_t, list); |
| if (start < blk2->start) |
| break; |
| blk = blk2; |
| } |
| |
| if (blk == NULL || start > (blk->start + blk->size)) |
| return -EINVAL; |
| |
| /* Remove from taken list */ |
| list_del(&blk->list); |
| |
| /* Get size of freed block */ |
| size = blk->size; |
| attach_free_block(info, blk); |
| |
| return size; |
| } |
| |
| int rh_get_stats(rh_info_t * info, int what, int max_stats, rh_stats_t * stats) |
| { |
| rh_block_t *blk; |
| struct list_head *l; |
| struct list_head *h; |
| int nr; |
| |
| switch (what) { |
| |
| case RHGS_FREE: |
| h = &info->free_list; |
| break; |
| |
| case RHGS_TAKEN: |
| h = &info->taken_list; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| /* Linear search for block */ |
| nr = 0; |
| list_for_each(l, h) { |
| blk = list_entry(l, rh_block_t, list); |
| if (stats != NULL && nr < max_stats) { |
| stats->start = blk->start; |
| stats->size = blk->size; |
| stats->owner = blk->owner; |
| stats++; |
| } |
| nr++; |
| } |
| |
| return nr; |
| } |
| |
| int rh_set_owner(rh_info_t * info, void *start, const char *owner) |
| { |
| rh_block_t *blk, *blk2; |
| struct list_head *l; |
| int size; |
| |
| /* Linear search for block */ |
| blk = NULL; |
| list_for_each(l, &info->taken_list) { |
| blk2 = list_entry(l, rh_block_t, list); |
| if (start < blk2->start) |
| break; |
| blk = blk2; |
| } |
| |
| if (blk == NULL || start > (blk->start + blk->size)) |
| return -EINVAL; |
| |
| blk->owner = owner; |
| size = blk->size; |
| |
| return size; |
| } |
| |
| void rh_dump(rh_info_t * info) |
| { |
| static rh_stats_t st[32]; /* XXX maximum 32 blocks */ |
| int maxnr; |
| int i, nr; |
| |
| maxnr = sizeof(st) / sizeof(st[0]); |
| |
| printk(KERN_INFO |
| "info @0x%p (%d slots empty / %d max)\n", |
| info, info->empty_slots, info->max_blocks); |
| |
| printk(KERN_INFO " Free:\n"); |
| nr = rh_get_stats(info, RHGS_FREE, maxnr, st); |
| if (nr > maxnr) |
| nr = maxnr; |
| for (i = 0; i < nr; i++) |
| printk(KERN_INFO |
| " 0x%p-0x%p (%u)\n", |
| st[i].start, (int8_t *) st[i].start + st[i].size, |
| st[i].size); |
| printk(KERN_INFO "\n"); |
| |
| printk(KERN_INFO " Taken:\n"); |
| nr = rh_get_stats(info, RHGS_TAKEN, maxnr, st); |
| if (nr > maxnr) |
| nr = maxnr; |
| for (i = 0; i < nr; i++) |
| printk(KERN_INFO |
| " 0x%p-0x%p (%u) %s\n", |
| st[i].start, (int8_t *) st[i].start + st[i].size, |
| st[i].size, st[i].owner != NULL ? st[i].owner : ""); |
| printk(KERN_INFO "\n"); |
| } |
| |
| void rh_dump_blk(rh_info_t * info, rh_block_t * blk) |
| { |
| printk(KERN_INFO |
| "blk @0x%p: 0x%p-0x%p (%u)\n", |
| blk, blk->start, (int8_t *) blk->start + blk->size, blk->size); |
| } |