| /* |
| * |
| * BRIEF MODULE DESCRIPTION |
| * The Descriptor Based DMA channel manager that first appeared |
| * on the Au1550. I started with dma.c, but I think all that is |
| * left is this initial comment :-) |
| * |
| * Copyright 2004 Embedded Edge, LLC |
| * dan@embeddededge.com |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN |
| * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
| * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/syscore_ops.h> |
| #include <asm/mach-au1x00/au1000.h> |
| #include <asm/mach-au1x00/au1xxx_dbdma.h> |
| |
| #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) |
| |
| /* |
| * The Descriptor Based DMA supports up to 16 channels. |
| * |
| * There are 32 devices defined. We keep an internal structure |
| * of devices using these channels, along with additional |
| * information. |
| * |
| * We allocate the descriptors and allow access to them through various |
| * functions. The drivers allocate the data buffers and assign them |
| * to the descriptors. |
| */ |
| static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); |
| |
| /* I couldn't find a macro that did this... */ |
| #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) |
| |
| static dbdma_global_t *dbdma_gptr = |
| (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); |
| static int dbdma_initialized; |
| |
| static dbdev_tab_t dbdev_tab[] = { |
| #ifdef CONFIG_SOC_AU1550 |
| /* UARTS */ |
| { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, |
| { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, |
| { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, |
| { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, |
| |
| /* EXT DMA */ |
| { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, |
| |
| /* USB DEV */ |
| { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, |
| { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, |
| { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, |
| { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, |
| { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, |
| { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, |
| |
| /* PSC 0 */ |
| { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, |
| { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, |
| |
| /* PSC 1 */ |
| { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, |
| { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, |
| |
| /* PSC 2 */ |
| { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, |
| { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, |
| |
| /* PSC 3 */ |
| { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, |
| { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, |
| |
| { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ |
| { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ |
| |
| /* MAC 0 */ |
| { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| |
| /* MAC 1 */ |
| { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, |
| |
| #endif /* CONFIG_SOC_AU1550 */ |
| |
| #ifdef CONFIG_SOC_AU1200 |
| { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, |
| { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, |
| { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, |
| { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, |
| |
| { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, |
| |
| { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| |
| { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, |
| { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, |
| { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, |
| { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, |
| |
| { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, |
| { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, |
| |
| { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, |
| { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, |
| { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| |
| { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, |
| { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, |
| { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| |
| { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, |
| { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, |
| { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, |
| { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| |
| { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, |
| |
| #endif /* CONFIG_SOC_AU1200 */ |
| |
| { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, |
| |
| /* Provide 16 user definable device types */ |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| { ~0, 0, 0, 0, 0, 0, 0 }, |
| }; |
| |
| #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab) |
| |
| |
| static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; |
| |
| static dbdev_tab_t *find_dbdev_id(u32 id) |
| { |
| int i; |
| dbdev_tab_t *p; |
| for (i = 0; i < DBDEV_TAB_SIZE; ++i) { |
| p = &dbdev_tab[i]; |
| if (p->dev_id == id) |
| return p; |
| } |
| return NULL; |
| } |
| |
| void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) |
| { |
| return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| } |
| EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); |
| |
| u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) |
| { |
| u32 ret = 0; |
| dbdev_tab_t *p; |
| static u16 new_id = 0x1000; |
| |
| p = find_dbdev_id(~0); |
| if (NULL != p) { |
| memcpy(p, dev, sizeof(dbdev_tab_t)); |
| p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); |
| ret = p->dev_id; |
| new_id++; |
| #if 0 |
| printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", |
| p->dev_id, p->dev_flags, p->dev_physaddr); |
| #endif |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(au1xxx_ddma_add_device); |
| |
| void au1xxx_ddma_del_device(u32 devid) |
| { |
| dbdev_tab_t *p = find_dbdev_id(devid); |
| |
| if (p != NULL) { |
| memset(p, 0, sizeof(dbdev_tab_t)); |
| p->dev_id = ~0; |
| } |
| } |
| EXPORT_SYMBOL(au1xxx_ddma_del_device); |
| |
| /* Allocate a channel and return a non-zero descriptor if successful. */ |
| u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, |
| void (*callback)(int, void *), void *callparam) |
| { |
| unsigned long flags; |
| u32 used, chan; |
| u32 dcp; |
| int i; |
| dbdev_tab_t *stp, *dtp; |
| chan_tab_t *ctp; |
| au1x_dma_chan_t *cp; |
| |
| /* |
| * We do the intialization on the first channel allocation. |
| * We have to wait because of the interrupt handler initialization |
| * which can't be done successfully during board set up. |
| */ |
| if (!dbdma_initialized) |
| return 0; |
| |
| stp = find_dbdev_id(srcid); |
| if (stp == NULL) |
| return 0; |
| dtp = find_dbdev_id(destid); |
| if (dtp == NULL) |
| return 0; |
| |
| used = 0; |
| |
| /* Check to see if we can get both channels. */ |
| spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); |
| if (!(stp->dev_flags & DEV_FLAGS_INUSE) || |
| (stp->dev_flags & DEV_FLAGS_ANYUSE)) { |
| /* Got source */ |
| stp->dev_flags |= DEV_FLAGS_INUSE; |
| if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || |
| (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { |
| /* Got destination */ |
| dtp->dev_flags |= DEV_FLAGS_INUSE; |
| } else { |
| /* Can't get dest. Release src. */ |
| stp->dev_flags &= ~DEV_FLAGS_INUSE; |
| used++; |
| } |
| } else |
| used++; |
| spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); |
| |
| if (used) |
| return 0; |
| |
| /* Let's see if we can allocate a channel for it. */ |
| ctp = NULL; |
| chan = 0; |
| spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); |
| for (i = 0; i < NUM_DBDMA_CHANS; i++) |
| if (chan_tab_ptr[i] == NULL) { |
| /* |
| * If kmalloc fails, it is caught below same |
| * as a channel not available. |
| */ |
| ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); |
| chan_tab_ptr[i] = ctp; |
| break; |
| } |
| spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); |
| |
| if (ctp != NULL) { |
| memset(ctp, 0, sizeof(chan_tab_t)); |
| ctp->chan_index = chan = i; |
| dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); |
| dcp += (0x0100 * chan); |
| ctp->chan_ptr = (au1x_dma_chan_t *)dcp; |
| cp = (au1x_dma_chan_t *)dcp; |
| ctp->chan_src = stp; |
| ctp->chan_dest = dtp; |
| ctp->chan_callback = callback; |
| ctp->chan_callparam = callparam; |
| |
| /* Initialize channel configuration. */ |
| i = 0; |
| if (stp->dev_intlevel) |
| i |= DDMA_CFG_SED; |
| if (stp->dev_intpolarity) |
| i |= DDMA_CFG_SP; |
| if (dtp->dev_intlevel) |
| i |= DDMA_CFG_DED; |
| if (dtp->dev_intpolarity) |
| i |= DDMA_CFG_DP; |
| if ((stp->dev_flags & DEV_FLAGS_SYNC) || |
| (dtp->dev_flags & DEV_FLAGS_SYNC)) |
| i |= DDMA_CFG_SYNC; |
| cp->ddma_cfg = i; |
| au_sync(); |
| |
| /* |
| * Return a non-zero value that can be used to find the channel |
| * information in subsequent operations. |
| */ |
| return (u32)(&chan_tab_ptr[chan]); |
| } |
| |
| /* Release devices */ |
| stp->dev_flags &= ~DEV_FLAGS_INUSE; |
| dtp->dev_flags &= ~DEV_FLAGS_INUSE; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); |
| |
| /* |
| * Set the device width if source or destination is a FIFO. |
| * Should be 8, 16, or 32 bits. |
| */ |
| u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) |
| { |
| u32 rv; |
| chan_tab_t *ctp; |
| dbdev_tab_t *stp, *dtp; |
| |
| ctp = *((chan_tab_t **)chanid); |
| stp = ctp->chan_src; |
| dtp = ctp->chan_dest; |
| rv = 0; |
| |
| if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ |
| rv = stp->dev_devwidth; |
| stp->dev_devwidth = bits; |
| } |
| if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ |
| rv = dtp->dev_devwidth; |
| dtp->dev_devwidth = bits; |
| } |
| |
| return rv; |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); |
| |
| /* Allocate a descriptor ring, initializing as much as possible. */ |
| u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) |
| { |
| int i; |
| u32 desc_base, srcid, destid; |
| u32 cmd0, cmd1, src1, dest1; |
| u32 src0, dest0; |
| chan_tab_t *ctp; |
| dbdev_tab_t *stp, *dtp; |
| au1x_ddma_desc_t *dp; |
| |
| /* |
| * I guess we could check this to be within the |
| * range of the table...... |
| */ |
| ctp = *((chan_tab_t **)chanid); |
| stp = ctp->chan_src; |
| dtp = ctp->chan_dest; |
| |
| /* |
| * The descriptors must be 32-byte aligned. There is a |
| * possibility the allocation will give us such an address, |
| * and if we try that first we are likely to not waste larger |
| * slabs of memory. |
| */ |
| desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), |
| GFP_KERNEL|GFP_DMA); |
| if (desc_base == 0) |
| return 0; |
| |
| if (desc_base & 0x1f) { |
| /* |
| * Lost....do it again, allocate extra, and round |
| * the address base. |
| */ |
| kfree((const void *)desc_base); |
| i = entries * sizeof(au1x_ddma_desc_t); |
| i += (sizeof(au1x_ddma_desc_t) - 1); |
| desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); |
| if (desc_base == 0) |
| return 0; |
| |
| ctp->cdb_membase = desc_base; |
| desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); |
| } else |
| ctp->cdb_membase = desc_base; |
| |
| dp = (au1x_ddma_desc_t *)desc_base; |
| |
| /* Keep track of the base descriptor. */ |
| ctp->chan_desc_base = dp; |
| |
| /* Initialize the rings with as much information as we know. */ |
| srcid = stp->dev_id; |
| destid = dtp->dev_id; |
| |
| cmd0 = cmd1 = src1 = dest1 = 0; |
| src0 = dest0 = 0; |
| |
| cmd0 |= DSCR_CMD0_SID(srcid); |
| cmd0 |= DSCR_CMD0_DID(destid); |
| cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; |
| cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); |
| |
| /* Is it mem to mem transfer? */ |
| if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || |
| (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && |
| ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || |
| (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) |
| cmd0 |= DSCR_CMD0_MEM; |
| |
| switch (stp->dev_devwidth) { |
| case 8: |
| cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); |
| break; |
| case 16: |
| cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); |
| break; |
| case 32: |
| default: |
| cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); |
| break; |
| } |
| |
| switch (dtp->dev_devwidth) { |
| case 8: |
| cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); |
| break; |
| case 16: |
| cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); |
| break; |
| case 32: |
| default: |
| cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); |
| break; |
| } |
| |
| /* |
| * If the device is marked as an in/out FIFO, ensure it is |
| * set non-coherent. |
| */ |
| if (stp->dev_flags & DEV_FLAGS_IN) |
| cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */ |
| if (dtp->dev_flags & DEV_FLAGS_OUT) |
| cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */ |
| |
| /* |
| * Set up source1. For now, assume no stride and increment. |
| * A channel attribute update can change this later. |
| */ |
| switch (stp->dev_tsize) { |
| case 1: |
| src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); |
| break; |
| case 2: |
| src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); |
| break; |
| case 4: |
| src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); |
| break; |
| case 8: |
| default: |
| src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); |
| break; |
| } |
| |
| /* If source input is FIFO, set static address. */ |
| if (stp->dev_flags & DEV_FLAGS_IN) { |
| if (stp->dev_flags & DEV_FLAGS_BURSTABLE) |
| src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); |
| else |
| src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); |
| } |
| |
| if (stp->dev_physaddr) |
| src0 = stp->dev_physaddr; |
| |
| /* |
| * Set up dest1. For now, assume no stride and increment. |
| * A channel attribute update can change this later. |
| */ |
| switch (dtp->dev_tsize) { |
| case 1: |
| dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); |
| break; |
| case 2: |
| dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); |
| break; |
| case 4: |
| dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); |
| break; |
| case 8: |
| default: |
| dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); |
| break; |
| } |
| |
| /* If destination output is FIFO, set static address. */ |
| if (dtp->dev_flags & DEV_FLAGS_OUT) { |
| if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) |
| dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); |
| else |
| dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); |
| } |
| |
| if (dtp->dev_physaddr) |
| dest0 = dtp->dev_physaddr; |
| |
| #if 0 |
| printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " |
| "source1:%x dest0:%x dest1:%x\n", |
| dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, |
| src1, dest0, dest1); |
| #endif |
| for (i = 0; i < entries; i++) { |
| dp->dscr_cmd0 = cmd0; |
| dp->dscr_cmd1 = cmd1; |
| dp->dscr_source0 = src0; |
| dp->dscr_source1 = src1; |
| dp->dscr_dest0 = dest0; |
| dp->dscr_dest1 = dest1; |
| dp->dscr_stat = 0; |
| dp->sw_context = 0; |
| dp->sw_status = 0; |
| dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); |
| dp++; |
| } |
| |
| /* Make last descrptor point to the first. */ |
| dp--; |
| dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); |
| ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; |
| |
| return (u32)ctp->chan_desc_base; |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); |
| |
| /* |
| * Put a source buffer into the DMA ring. |
| * This updates the source pointer and byte count. Normally used |
| * for memory to fifo transfers. |
| */ |
| u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) |
| { |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| |
| /* |
| * I guess we could check this to be within the |
| * range of the table...... |
| */ |
| ctp = *(chan_tab_t **)chanid; |
| |
| /* |
| * We should have multiple callers for a particular channel, |
| * an interrupt doesn't affect this pointer nor the descriptor, |
| * so no locking should be needed. |
| */ |
| dp = ctp->put_ptr; |
| |
| /* |
| * If the descriptor is valid, we are way ahead of the DMA |
| * engine, so just return an error condition. |
| */ |
| if (dp->dscr_cmd0 & DSCR_CMD0_V) |
| return 0; |
| |
| /* Load up buffer address and byte count. */ |
| dp->dscr_source0 = buf & ~0UL; |
| dp->dscr_cmd1 = nbytes; |
| /* Check flags */ |
| if (flags & DDMA_FLAGS_IE) |
| dp->dscr_cmd0 |= DSCR_CMD0_IE; |
| if (flags & DDMA_FLAGS_NOIE) |
| dp->dscr_cmd0 &= ~DSCR_CMD0_IE; |
| |
| /* |
| * There is an errata on the Au1200/Au1550 parts that could result |
| * in "stale" data being DMA'ed. It has to do with the snoop logic on |
| * the cache eviction buffer. DMA_NONCOHERENT is on by default for |
| * these parts. If it is fixed in the future, these dma_cache_inv will |
| * just be nothing more than empty macros. See io.h. |
| */ |
| dma_cache_wback_inv((unsigned long)buf, nbytes); |
| dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ |
| au_sync(); |
| dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); |
| ctp->chan_ptr->ddma_dbell = 0; |
| |
| /* Get next descriptor pointer. */ |
| ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| |
| /* Return something non-zero. */ |
| return nbytes; |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_put_source); |
| |
| /* Put a destination buffer into the DMA ring. |
| * This updates the destination pointer and byte count. Normally used |
| * to place an empty buffer into the ring for fifo to memory transfers. |
| */ |
| u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) |
| { |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| |
| /* I guess we could check this to be within the |
| * range of the table...... |
| */ |
| ctp = *((chan_tab_t **)chanid); |
| |
| /* We should have multiple callers for a particular channel, |
| * an interrupt doesn't affect this pointer nor the descriptor, |
| * so no locking should be needed. |
| */ |
| dp = ctp->put_ptr; |
| |
| /* If the descriptor is valid, we are way ahead of the DMA |
| * engine, so just return an error condition. |
| */ |
| if (dp->dscr_cmd0 & DSCR_CMD0_V) |
| return 0; |
| |
| /* Load up buffer address and byte count */ |
| |
| /* Check flags */ |
| if (flags & DDMA_FLAGS_IE) |
| dp->dscr_cmd0 |= DSCR_CMD0_IE; |
| if (flags & DDMA_FLAGS_NOIE) |
| dp->dscr_cmd0 &= ~DSCR_CMD0_IE; |
| |
| dp->dscr_dest0 = buf & ~0UL; |
| dp->dscr_cmd1 = nbytes; |
| #if 0 |
| printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", |
| dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, |
| dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); |
| #endif |
| /* |
| * There is an errata on the Au1200/Au1550 parts that could result in |
| * "stale" data being DMA'ed. It has to do with the snoop logic on the |
| * cache eviction buffer. DMA_NONCOHERENT is on by default for these |
| * parts. If it is fixed in the future, these dma_cache_inv will just |
| * be nothing more than empty macros. See io.h. |
| */ |
| dma_cache_inv((unsigned long)buf, nbytes); |
| dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ |
| au_sync(); |
| dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); |
| ctp->chan_ptr->ddma_dbell = 0; |
| |
| /* Get next descriptor pointer. */ |
| ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| |
| /* Return something non-zero. */ |
| return nbytes; |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_put_dest); |
| |
| /* |
| * Get a destination buffer into the DMA ring. |
| * Normally used to get a full buffer from the ring during fifo |
| * to memory transfers. This does not set the valid bit, you will |
| * have to put another destination buffer to keep the DMA going. |
| */ |
| u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) |
| { |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| u32 rv; |
| |
| /* |
| * I guess we could check this to be within the |
| * range of the table...... |
| */ |
| ctp = *((chan_tab_t **)chanid); |
| |
| /* |
| * We should have multiple callers for a particular channel, |
| * an interrupt doesn't affect this pointer nor the descriptor, |
| * so no locking should be needed. |
| */ |
| dp = ctp->get_ptr; |
| |
| /* |
| * If the descriptor is valid, we are way ahead of the DMA |
| * engine, so just return an error condition. |
| */ |
| if (dp->dscr_cmd0 & DSCR_CMD0_V) |
| return 0; |
| |
| /* Return buffer address and byte count. */ |
| *buf = (void *)(phys_to_virt(dp->dscr_dest0)); |
| *nbytes = dp->dscr_cmd1; |
| rv = dp->dscr_stat; |
| |
| /* Get next descriptor pointer. */ |
| ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| |
| /* Return something non-zero. */ |
| return rv; |
| } |
| EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); |
| |
| void au1xxx_dbdma_stop(u32 chanid) |
| { |
| chan_tab_t *ctp; |
| au1x_dma_chan_t *cp; |
| int halt_timeout = 0; |
| |
| ctp = *((chan_tab_t **)chanid); |
| |
| cp = ctp->chan_ptr; |
| cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ |
| au_sync(); |
| while (!(cp->ddma_stat & DDMA_STAT_H)) { |
| udelay(1); |
| halt_timeout++; |
| if (halt_timeout > 100) { |
| printk(KERN_WARNING "warning: DMA channel won't halt\n"); |
| break; |
| } |
| } |
| /* clear current desc valid and doorbell */ |
| cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); |
| au_sync(); |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_stop); |
| |
| /* |
| * Start using the current descriptor pointer. If the DBDMA encounters |
| * a non-valid descriptor, it will stop. In this case, we can just |
| * continue by adding a buffer to the list and starting again. |
| */ |
| void au1xxx_dbdma_start(u32 chanid) |
| { |
| chan_tab_t *ctp; |
| au1x_dma_chan_t *cp; |
| |
| ctp = *((chan_tab_t **)chanid); |
| cp = ctp->chan_ptr; |
| cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); |
| cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ |
| au_sync(); |
| cp->ddma_dbell = 0; |
| au_sync(); |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_start); |
| |
| void au1xxx_dbdma_reset(u32 chanid) |
| { |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| |
| au1xxx_dbdma_stop(chanid); |
| |
| ctp = *((chan_tab_t **)chanid); |
| ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; |
| |
| /* Run through the descriptors and reset the valid indicator. */ |
| dp = ctp->chan_desc_base; |
| |
| do { |
| dp->dscr_cmd0 &= ~DSCR_CMD0_V; |
| /* |
| * Reset our software status -- this is used to determine |
| * if a descriptor is in use by upper level software. Since |
| * posting can reset 'V' bit. |
| */ |
| dp->sw_status = 0; |
| dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| } while (dp != ctp->chan_desc_base); |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_reset); |
| |
| u32 au1xxx_get_dma_residue(u32 chanid) |
| { |
| chan_tab_t *ctp; |
| au1x_dma_chan_t *cp; |
| u32 rv; |
| |
| ctp = *((chan_tab_t **)chanid); |
| cp = ctp->chan_ptr; |
| |
| /* This is only valid if the channel is stopped. */ |
| rv = cp->ddma_bytecnt; |
| au_sync(); |
| |
| return rv; |
| } |
| EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); |
| |
| void au1xxx_dbdma_chan_free(u32 chanid) |
| { |
| chan_tab_t *ctp; |
| dbdev_tab_t *stp, *dtp; |
| |
| ctp = *((chan_tab_t **)chanid); |
| stp = ctp->chan_src; |
| dtp = ctp->chan_dest; |
| |
| au1xxx_dbdma_stop(chanid); |
| |
| kfree((void *)ctp->cdb_membase); |
| |
| stp->dev_flags &= ~DEV_FLAGS_INUSE; |
| dtp->dev_flags &= ~DEV_FLAGS_INUSE; |
| chan_tab_ptr[ctp->chan_index] = NULL; |
| |
| kfree(ctp); |
| } |
| EXPORT_SYMBOL(au1xxx_dbdma_chan_free); |
| |
| static irqreturn_t dbdma_interrupt(int irq, void *dev_id) |
| { |
| u32 intstat; |
| u32 chan_index; |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| au1x_dma_chan_t *cp; |
| |
| intstat = dbdma_gptr->ddma_intstat; |
| au_sync(); |
| chan_index = __ffs(intstat); |
| |
| ctp = chan_tab_ptr[chan_index]; |
| cp = ctp->chan_ptr; |
| dp = ctp->cur_ptr; |
| |
| /* Reset interrupt. */ |
| cp->ddma_irq = 0; |
| au_sync(); |
| |
| if (ctp->chan_callback) |
| ctp->chan_callback(irq, ctp->chan_callparam); |
| |
| ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| return IRQ_RETVAL(1); |
| } |
| |
| void au1xxx_dbdma_dump(u32 chanid) |
| { |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| dbdev_tab_t *stp, *dtp; |
| au1x_dma_chan_t *cp; |
| u32 i = 0; |
| |
| ctp = *((chan_tab_t **)chanid); |
| stp = ctp->chan_src; |
| dtp = ctp->chan_dest; |
| cp = ctp->chan_ptr; |
| |
| printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n", |
| (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, |
| dtp - dbdev_tab); |
| printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", |
| (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), |
| (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); |
| |
| printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); |
| printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", |
| cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); |
| printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", |
| cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, |
| cp->ddma_bytecnt); |
| |
| /* Run through the descriptors */ |
| dp = ctp->chan_desc_base; |
| |
| do { |
| printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", |
| i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); |
| printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", |
| dp->dscr_source0, dp->dscr_source1, |
| dp->dscr_dest0, dp->dscr_dest1); |
| printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", |
| dp->dscr_stat, dp->dscr_nxtptr); |
| dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| } while (dp != ctp->chan_desc_base); |
| } |
| |
| /* Put a descriptor into the DMA ring. |
| * This updates the source/destination pointers and byte count. |
| */ |
| u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) |
| { |
| chan_tab_t *ctp; |
| au1x_ddma_desc_t *dp; |
| u32 nbytes = 0; |
| |
| /* |
| * I guess we could check this to be within the |
| * range of the table...... |
| */ |
| ctp = *((chan_tab_t **)chanid); |
| |
| /* |
| * We should have multiple callers for a particular channel, |
| * an interrupt doesn't affect this pointer nor the descriptor, |
| * so no locking should be needed. |
| */ |
| dp = ctp->put_ptr; |
| |
| /* |
| * If the descriptor is valid, we are way ahead of the DMA |
| * engine, so just return an error condition. |
| */ |
| if (dp->dscr_cmd0 & DSCR_CMD0_V) |
| return 0; |
| |
| /* Load up buffer addresses and byte count. */ |
| dp->dscr_dest0 = dscr->dscr_dest0; |
| dp->dscr_source0 = dscr->dscr_source0; |
| dp->dscr_dest1 = dscr->dscr_dest1; |
| dp->dscr_source1 = dscr->dscr_source1; |
| dp->dscr_cmd1 = dscr->dscr_cmd1; |
| nbytes = dscr->dscr_cmd1; |
| /* Allow the caller to specifiy if an interrupt is generated */ |
| dp->dscr_cmd0 &= ~DSCR_CMD0_IE; |
| dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; |
| ctp->chan_ptr->ddma_dbell = 0; |
| |
| /* Get next descriptor pointer. */ |
| ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); |
| |
| /* Return something non-zero. */ |
| return nbytes; |
| } |
| |
| |
| static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6]; |
| |
| static int alchemy_dbdma_suspend(void) |
| { |
| int i; |
| void __iomem *addr; |
| |
| addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); |
| alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00); |
| alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04); |
| alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08); |
| alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c); |
| |
| /* save channel configurations */ |
| addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); |
| for (i = 1; i <= NUM_DBDMA_CHANS; i++) { |
| alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00); |
| alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04); |
| alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08); |
| alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c); |
| alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10); |
| alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14); |
| |
| /* halt channel */ |
| __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00); |
| wmb(); |
| while (!(__raw_readl(addr + 0x14) & 1)) |
| wmb(); |
| |
| addr += 0x100; /* next channel base */ |
| } |
| /* disable channel interrupts */ |
| addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); |
| __raw_writel(0, addr + 0x0c); |
| wmb(); |
| |
| return 0; |
| } |
| |
| static void alchemy_dbdma_resume(void) |
| { |
| int i; |
| void __iomem *addr; |
| |
| addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); |
| __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00); |
| __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04); |
| __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08); |
| __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c); |
| |
| /* restore channel configurations */ |
| addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); |
| for (i = 1; i <= NUM_DBDMA_CHANS; i++) { |
| __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00); |
| __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04); |
| __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08); |
| __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c); |
| __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10); |
| __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14); |
| wmb(); |
| addr += 0x100; /* next channel base */ |
| } |
| } |
| |
| static struct syscore_ops alchemy_dbdma_syscore_ops = { |
| .suspend = alchemy_dbdma_suspend, |
| .resume = alchemy_dbdma_resume, |
| }; |
| |
| static int __init au1xxx_dbdma_init(void) |
| { |
| int irq_nr, ret; |
| |
| dbdma_gptr->ddma_config = 0; |
| dbdma_gptr->ddma_throttle = 0; |
| dbdma_gptr->ddma_inten = 0xffff; |
| au_sync(); |
| |
| switch (alchemy_get_cputype()) { |
| case ALCHEMY_CPU_AU1550: |
| irq_nr = AU1550_DDMA_INT; |
| break; |
| case ALCHEMY_CPU_AU1200: |
| irq_nr = AU1200_DDMA_INT; |
| break; |
| default: |
| return -ENODEV; |
| } |
| |
| ret = request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED, |
| "Au1xxx dbdma", (void *)dbdma_gptr); |
| if (ret) |
| printk(KERN_ERR "Cannot grab DBDMA interrupt!\n"); |
| else { |
| dbdma_initialized = 1; |
| printk(KERN_INFO "Alchemy DBDMA initialized\n"); |
| register_syscore_ops(&alchemy_dbdma_syscore_ops); |
| } |
| |
| return ret; |
| } |
| subsys_initcall(au1xxx_dbdma_init); |
| |
| #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */ |