| /* -*- mode: c; c-basic-offset: 8; -*- |
| * vim: noexpandtab sw=8 ts=8 sts=0: |
| * |
| * mmap.c |
| * |
| * Code to deal with the mess that is clustered mmap. |
| * |
| * Copyright (C) 2002, 2004 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/types.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/uio.h> |
| #include <linux/signal.h> |
| #include <linux/rbtree.h> |
| |
| #define MLOG_MASK_PREFIX ML_FILE_IO |
| #include <cluster/masklog.h> |
| |
| #include "ocfs2.h" |
| |
| #include "aops.h" |
| #include "dlmglue.h" |
| #include "file.h" |
| #include "inode.h" |
| #include "mmap.h" |
| #include "super.h" |
| |
| |
| static int ocfs2_fault(struct vm_area_struct *area, struct vm_fault *vmf) |
| { |
| sigset_t oldset; |
| int ret; |
| |
| mlog_entry("(area=%p, page offset=%lu)\n", area, vmf->pgoff); |
| |
| ocfs2_block_signals(&oldset); |
| ret = filemap_fault(area, vmf); |
| ocfs2_unblock_signals(&oldset); |
| |
| mlog_exit_ptr(vmf->page); |
| return ret; |
| } |
| |
| static int __ocfs2_page_mkwrite(struct inode *inode, struct buffer_head *di_bh, |
| struct page *page) |
| { |
| int ret; |
| struct address_space *mapping = inode->i_mapping; |
| loff_t pos = page_offset(page); |
| unsigned int len = PAGE_CACHE_SIZE; |
| pgoff_t last_index; |
| struct page *locked_page = NULL; |
| void *fsdata; |
| loff_t size = i_size_read(inode); |
| |
| /* |
| * Another node might have truncated while we were waiting on |
| * cluster locks. |
| * We don't check size == 0 before the shift. This is borrowed |
| * from do_generic_file_read. |
| */ |
| last_index = (size - 1) >> PAGE_CACHE_SHIFT; |
| if (unlikely(!size || page->index > last_index)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * The i_size check above doesn't catch the case where nodes |
| * truncated and then re-extended the file. We'll re-check the |
| * page mapping after taking the page lock inside of |
| * ocfs2_write_begin_nolock(). |
| */ |
| if (!PageUptodate(page) || page->mapping != inode->i_mapping) { |
| /* |
| * the page has been umapped in ocfs2_data_downconvert_worker. |
| * So return 0 here and let VFS retry. |
| */ |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * Call ocfs2_write_begin() and ocfs2_write_end() to take |
| * advantage of the allocation code there. We pass a write |
| * length of the whole page (chopped to i_size) to make sure |
| * the whole thing is allocated. |
| * |
| * Since we know the page is up to date, we don't have to |
| * worry about ocfs2_write_begin() skipping some buffer reads |
| * because the "write" would invalidate their data. |
| */ |
| if (page->index == last_index) |
| len = ((size - 1) & ~PAGE_CACHE_MASK) + 1; |
| |
| ret = ocfs2_write_begin_nolock(mapping, pos, len, 0, &locked_page, |
| &fsdata, di_bh, page); |
| if (ret) { |
| if (ret != -ENOSPC) |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_write_end_nolock(mapping, pos, len, len, locked_page, |
| fsdata); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| BUG_ON(ret != len); |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct page *page = vmf->page; |
| struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
| struct buffer_head *di_bh = NULL; |
| sigset_t oldset; |
| int ret; |
| |
| ocfs2_block_signals(&oldset); |
| |
| /* |
| * The cluster locks taken will block a truncate from another |
| * node. Taking the data lock will also ensure that we don't |
| * attempt page truncation as part of a downconvert. |
| */ |
| ret = ocfs2_inode_lock(inode, &di_bh, 1); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * The alloc sem should be enough to serialize with |
| * ocfs2_truncate_file() changing i_size as well as any thread |
| * modifying the inode btree. |
| */ |
| down_write(&OCFS2_I(inode)->ip_alloc_sem); |
| |
| ret = __ocfs2_page_mkwrite(inode, di_bh, page); |
| |
| up_write(&OCFS2_I(inode)->ip_alloc_sem); |
| |
| brelse(di_bh); |
| ocfs2_inode_unlock(inode, 1); |
| |
| out: |
| ocfs2_unblock_signals(&oldset); |
| if (ret) |
| ret = VM_FAULT_SIGBUS; |
| return ret; |
| } |
| |
| static const struct vm_operations_struct ocfs2_file_vm_ops = { |
| .fault = ocfs2_fault, |
| .page_mkwrite = ocfs2_page_mkwrite, |
| }; |
| |
| int ocfs2_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| int ret = 0, lock_level = 0; |
| |
| ret = ocfs2_inode_lock_atime(file->f_dentry->d_inode, |
| file->f_vfsmnt, &lock_level); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| ocfs2_inode_unlock(file->f_dentry->d_inode, lock_level); |
| out: |
| vma->vm_ops = &ocfs2_file_vm_ops; |
| vma->vm_flags |= VM_CAN_NONLINEAR; |
| return 0; |
| } |
| |