| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём) |
| * Adrian Hunter |
| */ |
| |
| /* |
| * This file implements most of the debugging stuff which is compiled in only |
| * when it is enabled. But some debugging check functions are implemented in |
| * corresponding subsystem, just because they are closely related and utilize |
| * various local functions of those subsystems. |
| */ |
| |
| #define UBIFS_DBG_PRESERVE_UBI |
| |
| #include "ubifs.h" |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| |
| #ifdef CONFIG_UBIFS_FS_DEBUG |
| |
| DEFINE_SPINLOCK(dbg_lock); |
| |
| static char dbg_key_buf0[128]; |
| static char dbg_key_buf1[128]; |
| |
| unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; |
| unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; |
| unsigned int ubifs_tst_flags; |
| |
| module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); |
| module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); |
| module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); |
| |
| MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); |
| MODULE_PARM_DESC(debug_chks, "Debug check flags"); |
| MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); |
| |
| static const char *get_key_fmt(int fmt) |
| { |
| switch (fmt) { |
| case UBIFS_SIMPLE_KEY_FMT: |
| return "simple"; |
| default: |
| return "unknown/invalid format"; |
| } |
| } |
| |
| static const char *get_key_hash(int hash) |
| { |
| switch (hash) { |
| case UBIFS_KEY_HASH_R5: |
| return "R5"; |
| case UBIFS_KEY_HASH_TEST: |
| return "test"; |
| default: |
| return "unknown/invalid name hash"; |
| } |
| } |
| |
| static const char *get_key_type(int type) |
| { |
| switch (type) { |
| case UBIFS_INO_KEY: |
| return "inode"; |
| case UBIFS_DENT_KEY: |
| return "direntry"; |
| case UBIFS_XENT_KEY: |
| return "xentry"; |
| case UBIFS_DATA_KEY: |
| return "data"; |
| case UBIFS_TRUN_KEY: |
| return "truncate"; |
| default: |
| return "unknown/invalid key"; |
| } |
| } |
| |
| static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, |
| char *buffer) |
| { |
| char *p = buffer; |
| int type = key_type(c, key); |
| |
| if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { |
| switch (type) { |
| case UBIFS_INO_KEY: |
| sprintf(p, "(%lu, %s)", key_inum(c, key), |
| get_key_type(type)); |
| break; |
| case UBIFS_DENT_KEY: |
| case UBIFS_XENT_KEY: |
| sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key), |
| get_key_type(type), key_hash(c, key)); |
| break; |
| case UBIFS_DATA_KEY: |
| sprintf(p, "(%lu, %s, %u)", key_inum(c, key), |
| get_key_type(type), key_block(c, key)); |
| break; |
| case UBIFS_TRUN_KEY: |
| sprintf(p, "(%lu, %s)", |
| key_inum(c, key), get_key_type(type)); |
| break; |
| default: |
| sprintf(p, "(bad key type: %#08x, %#08x)", |
| key->u32[0], key->u32[1]); |
| } |
| } else |
| sprintf(p, "bad key format %d", c->key_fmt); |
| } |
| |
| const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) |
| { |
| /* dbg_lock must be held */ |
| sprintf_key(c, key, dbg_key_buf0); |
| return dbg_key_buf0; |
| } |
| |
| const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) |
| { |
| /* dbg_lock must be held */ |
| sprintf_key(c, key, dbg_key_buf1); |
| return dbg_key_buf1; |
| } |
| |
| const char *dbg_ntype(int type) |
| { |
| switch (type) { |
| case UBIFS_PAD_NODE: |
| return "padding node"; |
| case UBIFS_SB_NODE: |
| return "superblock node"; |
| case UBIFS_MST_NODE: |
| return "master node"; |
| case UBIFS_REF_NODE: |
| return "reference node"; |
| case UBIFS_INO_NODE: |
| return "inode node"; |
| case UBIFS_DENT_NODE: |
| return "direntry node"; |
| case UBIFS_XENT_NODE: |
| return "xentry node"; |
| case UBIFS_DATA_NODE: |
| return "data node"; |
| case UBIFS_TRUN_NODE: |
| return "truncate node"; |
| case UBIFS_IDX_NODE: |
| return "indexing node"; |
| case UBIFS_CS_NODE: |
| return "commit start node"; |
| case UBIFS_ORPH_NODE: |
| return "orphan node"; |
| default: |
| return "unknown node"; |
| } |
| } |
| |
| static const char *dbg_gtype(int type) |
| { |
| switch (type) { |
| case UBIFS_NO_NODE_GROUP: |
| return "no node group"; |
| case UBIFS_IN_NODE_GROUP: |
| return "in node group"; |
| case UBIFS_LAST_OF_NODE_GROUP: |
| return "last of node group"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| const char *dbg_cstate(int cmt_state) |
| { |
| switch (cmt_state) { |
| case COMMIT_RESTING: |
| return "commit resting"; |
| case COMMIT_BACKGROUND: |
| return "background commit requested"; |
| case COMMIT_REQUIRED: |
| return "commit required"; |
| case COMMIT_RUNNING_BACKGROUND: |
| return "BACKGROUND commit running"; |
| case COMMIT_RUNNING_REQUIRED: |
| return "commit running and required"; |
| case COMMIT_BROKEN: |
| return "broken commit"; |
| default: |
| return "unknown commit state"; |
| } |
| } |
| |
| static void dump_ch(const struct ubifs_ch *ch) |
| { |
| printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); |
| printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); |
| printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, |
| dbg_ntype(ch->node_type)); |
| printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, |
| dbg_gtype(ch->group_type)); |
| printk(KERN_DEBUG "\tsqnum %llu\n", |
| (unsigned long long)le64_to_cpu(ch->sqnum)); |
| printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); |
| } |
| |
| void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) |
| { |
| const struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| printk(KERN_DEBUG "Dump in-memory inode:"); |
| printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); |
| printk(KERN_DEBUG "\tsize %llu\n", |
| (unsigned long long)i_size_read(inode)); |
| printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); |
| printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); |
| printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); |
| printk(KERN_DEBUG "\tatime %u.%u\n", |
| (unsigned int)inode->i_atime.tv_sec, |
| (unsigned int)inode->i_atime.tv_nsec); |
| printk(KERN_DEBUG "\tmtime %u.%u\n", |
| (unsigned int)inode->i_mtime.tv_sec, |
| (unsigned int)inode->i_mtime.tv_nsec); |
| printk(KERN_DEBUG "\tctime %u.%u\n", |
| (unsigned int)inode->i_ctime.tv_sec, |
| (unsigned int)inode->i_ctime.tv_nsec); |
| printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); |
| printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); |
| printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); |
| printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); |
| printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); |
| printk(KERN_DEBUG "\txattr %u\n", ui->xattr); |
| printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); |
| printk(KERN_DEBUG "\tsynced_i_size %llu\n", |
| (unsigned long long)ui->synced_i_size); |
| printk(KERN_DEBUG "\tui_size %llu\n", |
| (unsigned long long)ui->ui_size); |
| printk(KERN_DEBUG "\tflags %d\n", ui->flags); |
| printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); |
| printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); |
| printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); |
| printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); |
| } |
| |
| void dbg_dump_node(const struct ubifs_info *c, const void *node) |
| { |
| int i, n; |
| union ubifs_key key; |
| const struct ubifs_ch *ch = node; |
| |
| if (dbg_failure_mode) |
| return; |
| |
| /* If the magic is incorrect, just hexdump the first bytes */ |
| if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { |
| printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); |
| print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, |
| (void *)node, UBIFS_CH_SZ, 1); |
| return; |
| } |
| |
| spin_lock(&dbg_lock); |
| dump_ch(node); |
| |
| switch (ch->node_type) { |
| case UBIFS_PAD_NODE: |
| { |
| const struct ubifs_pad_node *pad = node; |
| |
| printk(KERN_DEBUG "\tpad_len %u\n", |
| le32_to_cpu(pad->pad_len)); |
| break; |
| } |
| case UBIFS_SB_NODE: |
| { |
| const struct ubifs_sb_node *sup = node; |
| unsigned int sup_flags = le32_to_cpu(sup->flags); |
| |
| printk(KERN_DEBUG "\tkey_hash %d (%s)\n", |
| (int)sup->key_hash, get_key_hash(sup->key_hash)); |
| printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", |
| (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); |
| printk(KERN_DEBUG "\tflags %#x\n", sup_flags); |
| printk(KERN_DEBUG "\t big_lpt %u\n", |
| !!(sup_flags & UBIFS_FLG_BIGLPT)); |
| printk(KERN_DEBUG "\tmin_io_size %u\n", |
| le32_to_cpu(sup->min_io_size)); |
| printk(KERN_DEBUG "\tleb_size %u\n", |
| le32_to_cpu(sup->leb_size)); |
| printk(KERN_DEBUG "\tleb_cnt %u\n", |
| le32_to_cpu(sup->leb_cnt)); |
| printk(KERN_DEBUG "\tmax_leb_cnt %u\n", |
| le32_to_cpu(sup->max_leb_cnt)); |
| printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", |
| (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); |
| printk(KERN_DEBUG "\tlog_lebs %u\n", |
| le32_to_cpu(sup->log_lebs)); |
| printk(KERN_DEBUG "\tlpt_lebs %u\n", |
| le32_to_cpu(sup->lpt_lebs)); |
| printk(KERN_DEBUG "\torph_lebs %u\n", |
| le32_to_cpu(sup->orph_lebs)); |
| printk(KERN_DEBUG "\tjhead_cnt %u\n", |
| le32_to_cpu(sup->jhead_cnt)); |
| printk(KERN_DEBUG "\tfanout %u\n", |
| le32_to_cpu(sup->fanout)); |
| printk(KERN_DEBUG "\tlsave_cnt %u\n", |
| le32_to_cpu(sup->lsave_cnt)); |
| printk(KERN_DEBUG "\tdefault_compr %u\n", |
| (int)le16_to_cpu(sup->default_compr)); |
| printk(KERN_DEBUG "\trp_size %llu\n", |
| (unsigned long long)le64_to_cpu(sup->rp_size)); |
| printk(KERN_DEBUG "\trp_uid %u\n", |
| le32_to_cpu(sup->rp_uid)); |
| printk(KERN_DEBUG "\trp_gid %u\n", |
| le32_to_cpu(sup->rp_gid)); |
| printk(KERN_DEBUG "\tfmt_version %u\n", |
| le32_to_cpu(sup->fmt_version)); |
| printk(KERN_DEBUG "\ttime_gran %u\n", |
| le32_to_cpu(sup->time_gran)); |
| printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" |
| "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", |
| sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], |
| sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], |
| sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], |
| sup->uuid[12], sup->uuid[13], sup->uuid[14], |
| sup->uuid[15]); |
| break; |
| } |
| case UBIFS_MST_NODE: |
| { |
| const struct ubifs_mst_node *mst = node; |
| |
| printk(KERN_DEBUG "\thighest_inum %llu\n", |
| (unsigned long long)le64_to_cpu(mst->highest_inum)); |
| printk(KERN_DEBUG "\tcommit number %llu\n", |
| (unsigned long long)le64_to_cpu(mst->cmt_no)); |
| printk(KERN_DEBUG "\tflags %#x\n", |
| le32_to_cpu(mst->flags)); |
| printk(KERN_DEBUG "\tlog_lnum %u\n", |
| le32_to_cpu(mst->log_lnum)); |
| printk(KERN_DEBUG "\troot_lnum %u\n", |
| le32_to_cpu(mst->root_lnum)); |
| printk(KERN_DEBUG "\troot_offs %u\n", |
| le32_to_cpu(mst->root_offs)); |
| printk(KERN_DEBUG "\troot_len %u\n", |
| le32_to_cpu(mst->root_len)); |
| printk(KERN_DEBUG "\tgc_lnum %u\n", |
| le32_to_cpu(mst->gc_lnum)); |
| printk(KERN_DEBUG "\tihead_lnum %u\n", |
| le32_to_cpu(mst->ihead_lnum)); |
| printk(KERN_DEBUG "\tihead_offs %u\n", |
| le32_to_cpu(mst->ihead_offs)); |
| printk(KERN_DEBUG "\tindex_size %u\n", |
| le32_to_cpu(mst->index_size)); |
| printk(KERN_DEBUG "\tlpt_lnum %u\n", |
| le32_to_cpu(mst->lpt_lnum)); |
| printk(KERN_DEBUG "\tlpt_offs %u\n", |
| le32_to_cpu(mst->lpt_offs)); |
| printk(KERN_DEBUG "\tnhead_lnum %u\n", |
| le32_to_cpu(mst->nhead_lnum)); |
| printk(KERN_DEBUG "\tnhead_offs %u\n", |
| le32_to_cpu(mst->nhead_offs)); |
| printk(KERN_DEBUG "\tltab_lnum %u\n", |
| le32_to_cpu(mst->ltab_lnum)); |
| printk(KERN_DEBUG "\tltab_offs %u\n", |
| le32_to_cpu(mst->ltab_offs)); |
| printk(KERN_DEBUG "\tlsave_lnum %u\n", |
| le32_to_cpu(mst->lsave_lnum)); |
| printk(KERN_DEBUG "\tlsave_offs %u\n", |
| le32_to_cpu(mst->lsave_offs)); |
| printk(KERN_DEBUG "\tlscan_lnum %u\n", |
| le32_to_cpu(mst->lscan_lnum)); |
| printk(KERN_DEBUG "\tleb_cnt %u\n", |
| le32_to_cpu(mst->leb_cnt)); |
| printk(KERN_DEBUG "\tempty_lebs %u\n", |
| le32_to_cpu(mst->empty_lebs)); |
| printk(KERN_DEBUG "\tidx_lebs %u\n", |
| le32_to_cpu(mst->idx_lebs)); |
| printk(KERN_DEBUG "\ttotal_free %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_free)); |
| printk(KERN_DEBUG "\ttotal_dirty %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_dirty)); |
| printk(KERN_DEBUG "\ttotal_used %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_used)); |
| printk(KERN_DEBUG "\ttotal_dead %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_dead)); |
| printk(KERN_DEBUG "\ttotal_dark %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_dark)); |
| break; |
| } |
| case UBIFS_REF_NODE: |
| { |
| const struct ubifs_ref_node *ref = node; |
| |
| printk(KERN_DEBUG "\tlnum %u\n", |
| le32_to_cpu(ref->lnum)); |
| printk(KERN_DEBUG "\toffs %u\n", |
| le32_to_cpu(ref->offs)); |
| printk(KERN_DEBUG "\tjhead %u\n", |
| le32_to_cpu(ref->jhead)); |
| break; |
| } |
| case UBIFS_INO_NODE: |
| { |
| const struct ubifs_ino_node *ino = node; |
| |
| key_read(c, &ino->key, &key); |
| printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); |
| printk(KERN_DEBUG "\tcreat_sqnum %llu\n", |
| (unsigned long long)le64_to_cpu(ino->creat_sqnum)); |
| printk(KERN_DEBUG "\tsize %llu\n", |
| (unsigned long long)le64_to_cpu(ino->size)); |
| printk(KERN_DEBUG "\tnlink %u\n", |
| le32_to_cpu(ino->nlink)); |
| printk(KERN_DEBUG "\tatime %lld.%u\n", |
| (long long)le64_to_cpu(ino->atime_sec), |
| le32_to_cpu(ino->atime_nsec)); |
| printk(KERN_DEBUG "\tmtime %lld.%u\n", |
| (long long)le64_to_cpu(ino->mtime_sec), |
| le32_to_cpu(ino->mtime_nsec)); |
| printk(KERN_DEBUG "\tctime %lld.%u\n", |
| (long long)le64_to_cpu(ino->ctime_sec), |
| le32_to_cpu(ino->ctime_nsec)); |
| printk(KERN_DEBUG "\tuid %u\n", |
| le32_to_cpu(ino->uid)); |
| printk(KERN_DEBUG "\tgid %u\n", |
| le32_to_cpu(ino->gid)); |
| printk(KERN_DEBUG "\tmode %u\n", |
| le32_to_cpu(ino->mode)); |
| printk(KERN_DEBUG "\tflags %#x\n", |
| le32_to_cpu(ino->flags)); |
| printk(KERN_DEBUG "\txattr_cnt %u\n", |
| le32_to_cpu(ino->xattr_cnt)); |
| printk(KERN_DEBUG "\txattr_size %u\n", |
| le32_to_cpu(ino->xattr_size)); |
| printk(KERN_DEBUG "\txattr_names %u\n", |
| le32_to_cpu(ino->xattr_names)); |
| printk(KERN_DEBUG "\tcompr_type %#x\n", |
| (int)le16_to_cpu(ino->compr_type)); |
| printk(KERN_DEBUG "\tdata len %u\n", |
| le32_to_cpu(ino->data_len)); |
| break; |
| } |
| case UBIFS_DENT_NODE: |
| case UBIFS_XENT_NODE: |
| { |
| const struct ubifs_dent_node *dent = node; |
| int nlen = le16_to_cpu(dent->nlen); |
| |
| key_read(c, &dent->key, &key); |
| printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); |
| printk(KERN_DEBUG "\tinum %llu\n", |
| (unsigned long long)le64_to_cpu(dent->inum)); |
| printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); |
| printk(KERN_DEBUG "\tnlen %d\n", nlen); |
| printk(KERN_DEBUG "\tname "); |
| |
| if (nlen > UBIFS_MAX_NLEN) |
| printk(KERN_DEBUG "(bad name length, not printing, " |
| "bad or corrupted node)"); |
| else { |
| for (i = 0; i < nlen && dent->name[i]; i++) |
| printk("%c", dent->name[i]); |
| } |
| printk("\n"); |
| |
| break; |
| } |
| case UBIFS_DATA_NODE: |
| { |
| const struct ubifs_data_node *dn = node; |
| int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; |
| |
| key_read(c, &dn->key, &key); |
| printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); |
| printk(KERN_DEBUG "\tsize %u\n", |
| le32_to_cpu(dn->size)); |
| printk(KERN_DEBUG "\tcompr_typ %d\n", |
| (int)le16_to_cpu(dn->compr_type)); |
| printk(KERN_DEBUG "\tdata size %d\n", |
| dlen); |
| printk(KERN_DEBUG "\tdata:\n"); |
| print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, |
| (void *)&dn->data, dlen, 0); |
| break; |
| } |
| case UBIFS_TRUN_NODE: |
| { |
| const struct ubifs_trun_node *trun = node; |
| |
| printk(KERN_DEBUG "\tinum %u\n", |
| le32_to_cpu(trun->inum)); |
| printk(KERN_DEBUG "\told_size %llu\n", |
| (unsigned long long)le64_to_cpu(trun->old_size)); |
| printk(KERN_DEBUG "\tnew_size %llu\n", |
| (unsigned long long)le64_to_cpu(trun->new_size)); |
| break; |
| } |
| case UBIFS_IDX_NODE: |
| { |
| const struct ubifs_idx_node *idx = node; |
| |
| n = le16_to_cpu(idx->child_cnt); |
| printk(KERN_DEBUG "\tchild_cnt %d\n", n); |
| printk(KERN_DEBUG "\tlevel %d\n", |
| (int)le16_to_cpu(idx->level)); |
| printk(KERN_DEBUG "\tBranches:\n"); |
| |
| for (i = 0; i < n && i < c->fanout - 1; i++) { |
| const struct ubifs_branch *br; |
| |
| br = ubifs_idx_branch(c, idx, i); |
| key_read(c, &br->key, &key); |
| printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", |
| i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), |
| le32_to_cpu(br->len), DBGKEY(&key)); |
| } |
| break; |
| } |
| case UBIFS_CS_NODE: |
| break; |
| case UBIFS_ORPH_NODE: |
| { |
| const struct ubifs_orph_node *orph = node; |
| |
| printk(KERN_DEBUG "\tcommit number %llu\n", |
| (unsigned long long) |
| le64_to_cpu(orph->cmt_no) & LLONG_MAX); |
| printk(KERN_DEBUG "\tlast node flag %llu\n", |
| (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); |
| n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; |
| printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); |
| for (i = 0; i < n; i++) |
| printk(KERN_DEBUG "\t ino %llu\n", |
| (unsigned long long)le64_to_cpu(orph->inos[i])); |
| break; |
| } |
| default: |
| printk(KERN_DEBUG "node type %d was not recognized\n", |
| (int)ch->node_type); |
| } |
| spin_unlock(&dbg_lock); |
| } |
| |
| void dbg_dump_budget_req(const struct ubifs_budget_req *req) |
| { |
| spin_lock(&dbg_lock); |
| printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", |
| req->new_ino, req->dirtied_ino); |
| printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", |
| req->new_ino_d, req->dirtied_ino_d); |
| printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", |
| req->new_page, req->dirtied_page); |
| printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", |
| req->new_dent, req->mod_dent); |
| printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); |
| printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", |
| req->data_growth, req->dd_growth); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void dbg_dump_lstats(const struct ubifs_lp_stats *lst) |
| { |
| spin_lock(&dbg_lock); |
| printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " |
| "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); |
| printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " |
| "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, |
| lst->total_dirty); |
| printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " |
| "total_dead %lld\n", lst->total_used, lst->total_dark, |
| lst->total_dead); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void dbg_dump_budg(struct ubifs_info *c) |
| { |
| int i; |
| struct rb_node *rb; |
| struct ubifs_bud *bud; |
| struct ubifs_gced_idx_leb *idx_gc; |
| |
| spin_lock(&dbg_lock); |
| printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " |
| "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, |
| c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); |
| printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " |
| "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, |
| c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, |
| c->freeable_cnt); |
| printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " |
| "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, |
| c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); |
| printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " |
| "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), |
| atomic_long_read(&c->dirty_zn_cnt), |
| atomic_long_read(&c->clean_zn_cnt)); |
| printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", |
| c->dark_wm, c->dead_wm, c->max_idx_node_sz); |
| printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", |
| c->gc_lnum, c->ihead_lnum); |
| for (i = 0; i < c->jhead_cnt; i++) |
| printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", |
| c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); |
| for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { |
| bud = rb_entry(rb, struct ubifs_bud, rb); |
| printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); |
| } |
| list_for_each_entry(bud, &c->old_buds, list) |
| printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); |
| list_for_each_entry(idx_gc, &c->idx_gc, list) |
| printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", |
| idx_gc->lnum, idx_gc->unmap); |
| printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) |
| { |
| printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " |
| "flags %#x\n", lp->lnum, lp->free, lp->dirty, |
| c->leb_size - lp->free - lp->dirty, lp->flags); |
| } |
| |
| void dbg_dump_lprops(struct ubifs_info *c) |
| { |
| int lnum, err; |
| struct ubifs_lprops lp; |
| struct ubifs_lp_stats lst; |
| |
| printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid); |
| ubifs_get_lp_stats(c, &lst); |
| dbg_dump_lstats(&lst); |
| |
| for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { |
| err = ubifs_read_one_lp(c, lnum, &lp); |
| if (err) |
| ubifs_err("cannot read lprops for LEB %d", lnum); |
| |
| dbg_dump_lprop(c, &lp); |
| } |
| } |
| |
| void dbg_dump_lpt_info(struct ubifs_info *c) |
| { |
| int i; |
| |
| spin_lock(&dbg_lock); |
| printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); |
| printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); |
| printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); |
| printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); |
| printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); |
| printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); |
| printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); |
| printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); |
| printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); |
| printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); |
| printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); |
| printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); |
| printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); |
| printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); |
| printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); |
| printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); |
| printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); |
| printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); |
| printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); |
| printk(KERN_DEBUG "\tLPT head is at %d:%d\n", |
| c->nhead_lnum, c->nhead_offs); |
| printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); |
| if (c->big_lpt) |
| printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", |
| c->lsave_lnum, c->lsave_offs); |
| for (i = 0; i < c->lpt_lebs; i++) |
| printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " |
| "cmt %d\n", i + c->lpt_first, c->ltab[i].free, |
| c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void dbg_dump_leb(const struct ubifs_info *c, int lnum) |
| { |
| struct ubifs_scan_leb *sleb; |
| struct ubifs_scan_node *snod; |
| |
| if (dbg_failure_mode) |
| return; |
| |
| printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum); |
| |
| sleb = ubifs_scan(c, lnum, 0, c->dbg_buf); |
| if (IS_ERR(sleb)) { |
| ubifs_err("scan error %d", (int)PTR_ERR(sleb)); |
| return; |
| } |
| |
| printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, |
| sleb->nodes_cnt, sleb->endpt); |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| cond_resched(); |
| printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, |
| snod->offs, snod->len); |
| dbg_dump_node(c, snod->node); |
| } |
| |
| ubifs_scan_destroy(sleb); |
| return; |
| } |
| |
| void dbg_dump_znode(const struct ubifs_info *c, |
| const struct ubifs_znode *znode) |
| { |
| int n; |
| const struct ubifs_zbranch *zbr; |
| |
| spin_lock(&dbg_lock); |
| if (znode->parent) |
| zbr = &znode->parent->zbranch[znode->iip]; |
| else |
| zbr = &c->zroot; |
| |
| printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" |
| " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, |
| zbr->len, znode->parent, znode->iip, znode->level, |
| znode->child_cnt, znode->flags); |
| |
| if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { |
| spin_unlock(&dbg_lock); |
| return; |
| } |
| |
| printk(KERN_DEBUG "zbranches:\n"); |
| for (n = 0; n < znode->child_cnt; n++) { |
| zbr = &znode->zbranch[n]; |
| if (znode->level > 0) |
| printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " |
| "%s\n", n, zbr->znode, zbr->lnum, |
| zbr->offs, zbr->len, |
| DBGKEY(&zbr->key)); |
| else |
| printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " |
| "%s\n", n, zbr->znode, zbr->lnum, |
| zbr->offs, zbr->len, |
| DBGKEY(&zbr->key)); |
| } |
| spin_unlock(&dbg_lock); |
| } |
| |
| void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) |
| { |
| int i; |
| |
| printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n", |
| current->pid, cat, heap->cnt); |
| for (i = 0; i < heap->cnt; i++) { |
| struct ubifs_lprops *lprops = heap->arr[i]; |
| |
| printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " |
| "flags %d\n", i, lprops->lnum, lprops->hpos, |
| lprops->free, lprops->dirty, lprops->flags); |
| } |
| } |
| |
| void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, |
| struct ubifs_nnode *parent, int iip) |
| { |
| int i; |
| |
| printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid); |
| printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", |
| (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); |
| printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", |
| pnode->flags, iip, pnode->level, pnode->num); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_lprops *lp = &pnode->lprops[i]; |
| |
| printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", |
| i, lp->free, lp->dirty, lp->flags, lp->lnum); |
| } |
| } |
| |
| void dbg_dump_tnc(struct ubifs_info *c) |
| { |
| struct ubifs_znode *znode; |
| int level; |
| |
| printk(KERN_DEBUG "\n"); |
| printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid); |
| znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); |
| level = znode->level; |
| printk(KERN_DEBUG "== Level %d ==\n", level); |
| while (znode) { |
| if (level != znode->level) { |
| level = znode->level; |
| printk(KERN_DEBUG "== Level %d ==\n", level); |
| } |
| dbg_dump_znode(c, znode); |
| znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); |
| } |
| |
| printk(KERN_DEBUG "\n"); |
| } |
| |
| static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, |
| void *priv) |
| { |
| dbg_dump_znode(c, znode); |
| return 0; |
| } |
| |
| /** |
| * dbg_dump_index - dump the on-flash index. |
| * @c: UBIFS file-system description object |
| * |
| * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' |
| * which dumps only in-memory znodes and does not read znodes which from flash. |
| */ |
| void dbg_dump_index(struct ubifs_info *c) |
| { |
| dbg_walk_index(c, NULL, dump_znode, NULL); |
| } |
| |
| /** |
| * dbg_check_synced_i_size - check synchronized inode size. |
| * @inode: inode to check |
| * |
| * If inode is clean, synchronized inode size has to be equivalent to current |
| * inode size. This function has to be called only for locked inodes (@i_mutex |
| * has to be locked). Returns %0 if synchronized inode size if correct, and |
| * %-EINVAL if not. |
| */ |
| int dbg_check_synced_i_size(struct inode *inode) |
| { |
| int err = 0; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) |
| return 0; |
| if (!S_ISREG(inode->i_mode)) |
| return 0; |
| |
| mutex_lock(&ui->ui_mutex); |
| spin_lock(&ui->ui_lock); |
| if (ui->ui_size != ui->synced_i_size && !ui->dirty) { |
| ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " |
| "is clean", ui->ui_size, ui->synced_i_size); |
| ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, |
| inode->i_mode, i_size_read(inode)); |
| dbg_dump_stack(); |
| err = -EINVAL; |
| } |
| spin_unlock(&ui->ui_lock); |
| mutex_unlock(&ui->ui_mutex); |
| return err; |
| } |
| |
| /* |
| * dbg_check_dir - check directory inode size and link count. |
| * @c: UBIFS file-system description object |
| * @dir: the directory to calculate size for |
| * @size: the result is returned here |
| * |
| * This function makes sure that directory size and link count are correct. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| * |
| * Note, it is good idea to make sure the @dir->i_mutex is locked before |
| * calling this function. |
| */ |
| int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) |
| { |
| unsigned int nlink = 2; |
| union ubifs_key key; |
| struct ubifs_dent_node *dent, *pdent = NULL; |
| struct qstr nm = { .name = NULL }; |
| loff_t size = UBIFS_INO_NODE_SZ; |
| |
| if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) |
| return 0; |
| |
| if (!S_ISDIR(dir->i_mode)) |
| return 0; |
| |
| lowest_dent_key(c, &key, dir->i_ino); |
| while (1) { |
| int err; |
| |
| dent = ubifs_tnc_next_ent(c, &key, &nm); |
| if (IS_ERR(dent)) { |
| err = PTR_ERR(dent); |
| if (err == -ENOENT) |
| break; |
| return err; |
| } |
| |
| nm.name = dent->name; |
| nm.len = le16_to_cpu(dent->nlen); |
| size += CALC_DENT_SIZE(nm.len); |
| if (dent->type == UBIFS_ITYPE_DIR) |
| nlink += 1; |
| kfree(pdent); |
| pdent = dent; |
| key_read(c, &dent->key, &key); |
| } |
| kfree(pdent); |
| |
| if (i_size_read(dir) != size) { |
| ubifs_err("directory inode %lu has size %llu, " |
| "but calculated size is %llu", dir->i_ino, |
| (unsigned long long)i_size_read(dir), |
| (unsigned long long)size); |
| dump_stack(); |
| return -EINVAL; |
| } |
| if (dir->i_nlink != nlink) { |
| ubifs_err("directory inode %lu has nlink %u, but calculated " |
| "nlink is %u", dir->i_ino, dir->i_nlink, nlink); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dbg_check_key_order - make sure that colliding keys are properly ordered. |
| * @c: UBIFS file-system description object |
| * @zbr1: first zbranch |
| * @zbr2: following zbranch |
| * |
| * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of |
| * names of the direntries/xentries which are referred by the keys. This |
| * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes |
| * sure the name of direntry/xentry referred by @zbr1 is less than |
| * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, |
| * and a negative error code in case of failure. |
| */ |
| static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, |
| struct ubifs_zbranch *zbr2) |
| { |
| int err, nlen1, nlen2, cmp; |
| struct ubifs_dent_node *dent1, *dent2; |
| union ubifs_key key; |
| |
| ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); |
| dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); |
| if (!dent1) |
| return -ENOMEM; |
| dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); |
| if (!dent2) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| err = ubifs_tnc_read_node(c, zbr1, dent1); |
| if (err) |
| goto out_free; |
| err = ubifs_validate_entry(c, dent1); |
| if (err) |
| goto out_free; |
| |
| err = ubifs_tnc_read_node(c, zbr2, dent2); |
| if (err) |
| goto out_free; |
| err = ubifs_validate_entry(c, dent2); |
| if (err) |
| goto out_free; |
| |
| /* Make sure node keys are the same as in zbranch */ |
| err = 1; |
| key_read(c, &dent1->key, &key); |
| if (keys_cmp(c, &zbr1->key, &key)) { |
| dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, |
| zbr1->offs, DBGKEY(&key)); |
| dbg_err("but it should have key %s according to tnc", |
| DBGKEY(&zbr1->key)); |
| dbg_dump_node(c, dent1); |
| goto out_free; |
| } |
| |
| key_read(c, &dent2->key, &key); |
| if (keys_cmp(c, &zbr2->key, &key)) { |
| dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, |
| zbr1->offs, DBGKEY(&key)); |
| dbg_err("but it should have key %s according to tnc", |
| DBGKEY(&zbr2->key)); |
| dbg_dump_node(c, dent2); |
| goto out_free; |
| } |
| |
| nlen1 = le16_to_cpu(dent1->nlen); |
| nlen2 = le16_to_cpu(dent2->nlen); |
| |
| cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); |
| if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { |
| err = 0; |
| goto out_free; |
| } |
| if (cmp == 0 && nlen1 == nlen2) |
| dbg_err("2 xent/dent nodes with the same name"); |
| else |
| dbg_err("bad order of colliding key %s", |
| DBGKEY(&key)); |
| |
| dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); |
| dbg_dump_node(c, dent1); |
| dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); |
| dbg_dump_node(c, dent2); |
| |
| out_free: |
| kfree(dent2); |
| kfree(dent1); |
| return err; |
| } |
| |
| /** |
| * dbg_check_znode - check if znode is all right. |
| * @c: UBIFS file-system description object |
| * @zbr: zbranch which points to this znode |
| * |
| * This function makes sure that znode referred to by @zbr is all right. |
| * Returns zero if it is, and %-EINVAL if it is not. |
| */ |
| static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) |
| { |
| struct ubifs_znode *znode = zbr->znode; |
| struct ubifs_znode *zp = znode->parent; |
| int n, err, cmp; |
| |
| if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { |
| err = 1; |
| goto out; |
| } |
| if (znode->level < 0) { |
| err = 2; |
| goto out; |
| } |
| if (znode->iip < 0 || znode->iip >= c->fanout) { |
| err = 3; |
| goto out; |
| } |
| |
| if (zbr->len == 0) |
| /* Only dirty zbranch may have no on-flash nodes */ |
| if (!ubifs_zn_dirty(znode)) { |
| err = 4; |
| goto out; |
| } |
| |
| if (ubifs_zn_dirty(znode)) { |
| /* |
| * If znode is dirty, its parent has to be dirty as well. The |
| * order of the operation is important, so we have to have |
| * memory barriers. |
| */ |
| smp_mb(); |
| if (zp && !ubifs_zn_dirty(zp)) { |
| /* |
| * The dirty flag is atomic and is cleared outside the |
| * TNC mutex, so znode's dirty flag may now have |
| * been cleared. The child is always cleared before the |
| * parent, so we just need to check again. |
| */ |
| smp_mb(); |
| if (ubifs_zn_dirty(znode)) { |
| err = 5; |
| goto out; |
| } |
| } |
| } |
| |
| if (zp) { |
| const union ubifs_key *min, *max; |
| |
| if (znode->level != zp->level - 1) { |
| err = 6; |
| goto out; |
| } |
| |
| /* Make sure the 'parent' pointer in our znode is correct */ |
| err = ubifs_search_zbranch(c, zp, &zbr->key, &n); |
| if (!err) { |
| /* This zbranch does not exist in the parent */ |
| err = 7; |
| goto out; |
| } |
| |
| if (znode->iip >= zp->child_cnt) { |
| err = 8; |
| goto out; |
| } |
| |
| if (znode->iip != n) { |
| /* This may happen only in case of collisions */ |
| if (keys_cmp(c, &zp->zbranch[n].key, |
| &zp->zbranch[znode->iip].key)) { |
| err = 9; |
| goto out; |
| } |
| n = znode->iip; |
| } |
| |
| /* |
| * Make sure that the first key in our znode is greater than or |
| * equal to the key in the pointing zbranch. |
| */ |
| min = &zbr->key; |
| cmp = keys_cmp(c, min, &znode->zbranch[0].key); |
| if (cmp == 1) { |
| err = 10; |
| goto out; |
| } |
| |
| if (n + 1 < zp->child_cnt) { |
| max = &zp->zbranch[n + 1].key; |
| |
| /* |
| * Make sure the last key in our znode is less or |
| * equivalent than the the key in zbranch which goes |
| * after our pointing zbranch. |
| */ |
| cmp = keys_cmp(c, max, |
| &znode->zbranch[znode->child_cnt - 1].key); |
| if (cmp == -1) { |
| err = 11; |
| goto out; |
| } |
| } |
| } else { |
| /* This may only be root znode */ |
| if (zbr != &c->zroot) { |
| err = 12; |
| goto out; |
| } |
| } |
| |
| /* |
| * Make sure that next key is greater or equivalent then the previous |
| * one. |
| */ |
| for (n = 1; n < znode->child_cnt; n++) { |
| cmp = keys_cmp(c, &znode->zbranch[n - 1].key, |
| &znode->zbranch[n].key); |
| if (cmp > 0) { |
| err = 13; |
| goto out; |
| } |
| if (cmp == 0) { |
| /* This can only be keys with colliding hash */ |
| if (!is_hash_key(c, &znode->zbranch[n].key)) { |
| err = 14; |
| goto out; |
| } |
| |
| if (znode->level != 0 || c->replaying) |
| continue; |
| |
| /* |
| * Colliding keys should follow binary order of |
| * corresponding xentry/dentry names. |
| */ |
| err = dbg_check_key_order(c, &znode->zbranch[n - 1], |
| &znode->zbranch[n]); |
| if (err < 0) |
| return err; |
| if (err) { |
| err = 15; |
| goto out; |
| } |
| } |
| } |
| |
| for (n = 0; n < znode->child_cnt; n++) { |
| if (!znode->zbranch[n].znode && |
| (znode->zbranch[n].lnum == 0 || |
| znode->zbranch[n].len == 0)) { |
| err = 16; |
| goto out; |
| } |
| |
| if (znode->zbranch[n].lnum != 0 && |
| znode->zbranch[n].len == 0) { |
| err = 17; |
| goto out; |
| } |
| |
| if (znode->zbranch[n].lnum == 0 && |
| znode->zbranch[n].len != 0) { |
| err = 18; |
| goto out; |
| } |
| |
| if (znode->zbranch[n].lnum == 0 && |
| znode->zbranch[n].offs != 0) { |
| err = 19; |
| goto out; |
| } |
| |
| if (znode->level != 0 && znode->zbranch[n].znode) |
| if (znode->zbranch[n].znode->parent != znode) { |
| err = 20; |
| goto out; |
| } |
| } |
| |
| return 0; |
| |
| out: |
| ubifs_err("failed, error %d", err); |
| ubifs_msg("dump of the znode"); |
| dbg_dump_znode(c, znode); |
| if (zp) { |
| ubifs_msg("dump of the parent znode"); |
| dbg_dump_znode(c, zp); |
| } |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| /** |
| * dbg_check_tnc - check TNC tree. |
| * @c: UBIFS file-system description object |
| * @extra: do extra checks that are possible at start commit |
| * |
| * This function traverses whole TNC tree and checks every znode. Returns zero |
| * if everything is all right and %-EINVAL if something is wrong with TNC. |
| */ |
| int dbg_check_tnc(struct ubifs_info *c, int extra) |
| { |
| struct ubifs_znode *znode; |
| long clean_cnt = 0, dirty_cnt = 0; |
| int err, last; |
| |
| if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) |
| return 0; |
| |
| ubifs_assert(mutex_is_locked(&c->tnc_mutex)); |
| if (!c->zroot.znode) |
| return 0; |
| |
| znode = ubifs_tnc_postorder_first(c->zroot.znode); |
| while (1) { |
| struct ubifs_znode *prev; |
| struct ubifs_zbranch *zbr; |
| |
| if (!znode->parent) |
| zbr = &c->zroot; |
| else |
| zbr = &znode->parent->zbranch[znode->iip]; |
| |
| err = dbg_check_znode(c, zbr); |
| if (err) |
| return err; |
| |
| if (extra) { |
| if (ubifs_zn_dirty(znode)) |
| dirty_cnt += 1; |
| else |
| clean_cnt += 1; |
| } |
| |
| prev = znode; |
| znode = ubifs_tnc_postorder_next(znode); |
| if (!znode) |
| break; |
| |
| /* |
| * If the last key of this znode is equivalent to the first key |
| * of the next znode (collision), then check order of the keys. |
| */ |
| last = prev->child_cnt - 1; |
| if (prev->level == 0 && znode->level == 0 && !c->replaying && |
| !keys_cmp(c, &prev->zbranch[last].key, |
| &znode->zbranch[0].key)) { |
| err = dbg_check_key_order(c, &prev->zbranch[last], |
| &znode->zbranch[0]); |
| if (err < 0) |
| return err; |
| if (err) { |
| ubifs_msg("first znode"); |
| dbg_dump_znode(c, prev); |
| ubifs_msg("second znode"); |
| dbg_dump_znode(c, znode); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| if (extra) { |
| if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { |
| ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", |
| atomic_long_read(&c->clean_zn_cnt), |
| clean_cnt); |
| return -EINVAL; |
| } |
| if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { |
| ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", |
| atomic_long_read(&c->dirty_zn_cnt), |
| dirty_cnt); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dbg_walk_index - walk the on-flash index. |
| * @c: UBIFS file-system description object |
| * @leaf_cb: called for each leaf node |
| * @znode_cb: called for each indexing node |
| * @priv: private date which is passed to callbacks |
| * |
| * This function walks the UBIFS index and calls the @leaf_cb for each leaf |
| * node and @znode_cb for each indexing node. Returns zero in case of success |
| * and a negative error code in case of failure. |
| * |
| * It would be better if this function removed every znode it pulled to into |
| * the TNC, so that the behavior more closely matched the non-debugging |
| * behavior. |
| */ |
| int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, |
| dbg_znode_callback znode_cb, void *priv) |
| { |
| int err; |
| struct ubifs_zbranch *zbr; |
| struct ubifs_znode *znode, *child; |
| |
| mutex_lock(&c->tnc_mutex); |
| /* If the root indexing node is not in TNC - pull it */ |
| if (!c->zroot.znode) { |
| c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); |
| if (IS_ERR(c->zroot.znode)) { |
| err = PTR_ERR(c->zroot.znode); |
| c->zroot.znode = NULL; |
| goto out_unlock; |
| } |
| } |
| |
| /* |
| * We are going to traverse the indexing tree in the postorder manner. |
| * Go down and find the leftmost indexing node where we are going to |
| * start from. |
| */ |
| znode = c->zroot.znode; |
| while (znode->level > 0) { |
| zbr = &znode->zbranch[0]; |
| child = zbr->znode; |
| if (!child) { |
| child = ubifs_load_znode(c, zbr, znode, 0); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto out_unlock; |
| } |
| zbr->znode = child; |
| } |
| |
| znode = child; |
| } |
| |
| /* Iterate over all indexing nodes */ |
| while (1) { |
| int idx; |
| |
| cond_resched(); |
| |
| if (znode_cb) { |
| err = znode_cb(c, znode, priv); |
| if (err) { |
| ubifs_err("znode checking function returned " |
| "error %d", err); |
| dbg_dump_znode(c, znode); |
| goto out_dump; |
| } |
| } |
| if (leaf_cb && znode->level == 0) { |
| for (idx = 0; idx < znode->child_cnt; idx++) { |
| zbr = &znode->zbranch[idx]; |
| err = leaf_cb(c, zbr, priv); |
| if (err) { |
| ubifs_err("leaf checking function " |
| "returned error %d, for leaf " |
| "at LEB %d:%d", |
| err, zbr->lnum, zbr->offs); |
| goto out_dump; |
| } |
| } |
| } |
| |
| if (!znode->parent) |
| break; |
| |
| idx = znode->iip + 1; |
| znode = znode->parent; |
| if (idx < znode->child_cnt) { |
| /* Switch to the next index in the parent */ |
| zbr = &znode->zbranch[idx]; |
| child = zbr->znode; |
| if (!child) { |
| child = ubifs_load_znode(c, zbr, znode, idx); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto out_unlock; |
| } |
| zbr->znode = child; |
| } |
| znode = child; |
| } else |
| /* |
| * This is the last child, switch to the parent and |
| * continue. |
| */ |
| continue; |
| |
| /* Go to the lowest leftmost znode in the new sub-tree */ |
| while (znode->level > 0) { |
| zbr = &znode->zbranch[0]; |
| child = zbr->znode; |
| if (!child) { |
| child = ubifs_load_znode(c, zbr, znode, 0); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto out_unlock; |
| } |
| zbr->znode = child; |
| } |
| znode = child; |
| } |
| } |
| |
| mutex_unlock(&c->tnc_mutex); |
| return 0; |
| |
| out_dump: |
| if (znode->parent) |
| zbr = &znode->parent->zbranch[znode->iip]; |
| else |
| zbr = &c->zroot; |
| ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); |
| dbg_dump_znode(c, znode); |
| out_unlock: |
| mutex_unlock(&c->tnc_mutex); |
| return err; |
| } |
| |
| /** |
| * add_size - add znode size to partially calculated index size. |
| * @c: UBIFS file-system description object |
| * @znode: znode to add size for |
| * @priv: partially calculated index size |
| * |
| * This is a helper function for 'dbg_check_idx_size()' which is called for |
| * every indexing node and adds its size to the 'long long' variable pointed to |
| * by @priv. |
| */ |
| static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) |
| { |
| long long *idx_size = priv; |
| int add; |
| |
| add = ubifs_idx_node_sz(c, znode->child_cnt); |
| add = ALIGN(add, 8); |
| *idx_size += add; |
| return 0; |
| } |
| |
| /** |
| * dbg_check_idx_size - check index size. |
| * @c: UBIFS file-system description object |
| * @idx_size: size to check |
| * |
| * This function walks the UBIFS index, calculates its size and checks that the |
| * size is equivalent to @idx_size. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) |
| { |
| int err; |
| long long calc = 0; |
| |
| if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) |
| return 0; |
| |
| err = dbg_walk_index(c, NULL, add_size, &calc); |
| if (err) { |
| ubifs_err("error %d while walking the index", err); |
| return err; |
| } |
| |
| if (calc != idx_size) { |
| ubifs_err("index size check failed: calculated size is %lld, " |
| "should be %lld", calc, idx_size); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * struct fsck_inode - information about an inode used when checking the file-system. |
| * @rb: link in the RB-tree of inodes |
| * @inum: inode number |
| * @mode: inode type, permissions, etc |
| * @nlink: inode link count |
| * @xattr_cnt: count of extended attributes |
| * @references: how many directory/xattr entries refer this inode (calculated |
| * while walking the index) |
| * @calc_cnt: for directory inode count of child directories |
| * @size: inode size (read from on-flash inode) |
| * @xattr_sz: summary size of all extended attributes (read from on-flash |
| * inode) |
| * @calc_sz: for directories calculated directory size |
| * @calc_xcnt: count of extended attributes |
| * @calc_xsz: calculated summary size of all extended attributes |
| * @xattr_nms: sum of lengths of all extended attribute names belonging to this |
| * inode (read from on-flash inode) |
| * @calc_xnms: calculated sum of lengths of all extended attribute names |
| */ |
| struct fsck_inode { |
| struct rb_node rb; |
| ino_t inum; |
| umode_t mode; |
| unsigned int nlink; |
| unsigned int xattr_cnt; |
| int references; |
| int calc_cnt; |
| long long size; |
| unsigned int xattr_sz; |
| long long calc_sz; |
| long long calc_xcnt; |
| long long calc_xsz; |
| unsigned int xattr_nms; |
| long long calc_xnms; |
| }; |
| |
| /** |
| * struct fsck_data - private FS checking information. |
| * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) |
| */ |
| struct fsck_data { |
| struct rb_root inodes; |
| }; |
| |
| /** |
| * add_inode - add inode information to RB-tree of inodes. |
| * @c: UBIFS file-system description object |
| * @fsckd: FS checking information |
| * @ino: raw UBIFS inode to add |
| * |
| * This is a helper function for 'check_leaf()' which adds information about |
| * inode @ino to the RB-tree of inodes. Returns inode information pointer in |
| * case of success and a negative error code in case of failure. |
| */ |
| static struct fsck_inode *add_inode(struct ubifs_info *c, |
| struct fsck_data *fsckd, |
| struct ubifs_ino_node *ino) |
| { |
| struct rb_node **p, *parent = NULL; |
| struct fsck_inode *fscki; |
| ino_t inum = key_inum_flash(c, &ino->key); |
| |
| p = &fsckd->inodes.rb_node; |
| while (*p) { |
| parent = *p; |
| fscki = rb_entry(parent, struct fsck_inode, rb); |
| if (inum < fscki->inum) |
| p = &(*p)->rb_left; |
| else if (inum > fscki->inum) |
| p = &(*p)->rb_right; |
| else |
| return fscki; |
| } |
| |
| if (inum > c->highest_inum) { |
| ubifs_err("too high inode number, max. is %lu", |
| c->highest_inum); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); |
| if (!fscki) |
| return ERR_PTR(-ENOMEM); |
| |
| fscki->inum = inum; |
| fscki->nlink = le32_to_cpu(ino->nlink); |
| fscki->size = le64_to_cpu(ino->size); |
| fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); |
| fscki->xattr_sz = le32_to_cpu(ino->xattr_size); |
| fscki->xattr_nms = le32_to_cpu(ino->xattr_names); |
| fscki->mode = le32_to_cpu(ino->mode); |
| if (S_ISDIR(fscki->mode)) { |
| fscki->calc_sz = UBIFS_INO_NODE_SZ; |
| fscki->calc_cnt = 2; |
| } |
| rb_link_node(&fscki->rb, parent, p); |
| rb_insert_color(&fscki->rb, &fsckd->inodes); |
| return fscki; |
| } |
| |
| /** |
| * search_inode - search inode in the RB-tree of inodes. |
| * @fsckd: FS checking information |
| * @inum: inode number to search |
| * |
| * This is a helper function for 'check_leaf()' which searches inode @inum in |
| * the RB-tree of inodes and returns an inode information pointer or %NULL if |
| * the inode was not found. |
| */ |
| static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) |
| { |
| struct rb_node *p; |
| struct fsck_inode *fscki; |
| |
| p = fsckd->inodes.rb_node; |
| while (p) { |
| fscki = rb_entry(p, struct fsck_inode, rb); |
| if (inum < fscki->inum) |
| p = p->rb_left; |
| else if (inum > fscki->inum) |
| p = p->rb_right; |
| else |
| return fscki; |
| } |
| return NULL; |
| } |
| |
| /** |
| * read_add_inode - read inode node and add it to RB-tree of inodes. |
| * @c: UBIFS file-system description object |
| * @fsckd: FS checking information |
| * @inum: inode number to read |
| * |
| * This is a helper function for 'check_leaf()' which finds inode node @inum in |
| * the index, reads it, and adds it to the RB-tree of inodes. Returns inode |
| * information pointer in case of success and a negative error code in case of |
| * failure. |
| */ |
| static struct fsck_inode *read_add_inode(struct ubifs_info *c, |
| struct fsck_data *fsckd, ino_t inum) |
| { |
| int n, err; |
| union ubifs_key key; |
| struct ubifs_znode *znode; |
| struct ubifs_zbranch *zbr; |
| struct ubifs_ino_node *ino; |
| struct fsck_inode *fscki; |
| |
| fscki = search_inode(fsckd, inum); |
| if (fscki) |
| return fscki; |
| |
| ino_key_init(c, &key, inum); |
| err = ubifs_lookup_level0(c, &key, &znode, &n); |
| if (!err) { |
| ubifs_err("inode %lu not found in index", inum); |
| return ERR_PTR(-ENOENT); |
| } else if (err < 0) { |
| ubifs_err("error %d while looking up inode %lu", err, inum); |
| return ERR_PTR(err); |
| } |
| |
| zbr = &znode->zbranch[n]; |
| if (zbr->len < UBIFS_INO_NODE_SZ) { |
| ubifs_err("bad node %lu node length %d", inum, zbr->len); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| ino = kmalloc(zbr->len, GFP_NOFS); |
| if (!ino) |
| return ERR_PTR(-ENOMEM); |
| |
| err = ubifs_tnc_read_node(c, zbr, ino); |
| if (err) { |
| ubifs_err("cannot read inode node at LEB %d:%d, error %d", |
| zbr->lnum, zbr->offs, err); |
| kfree(ino); |
| return ERR_PTR(err); |
| } |
| |
| fscki = add_inode(c, fsckd, ino); |
| kfree(ino); |
| if (IS_ERR(fscki)) { |
| ubifs_err("error %ld while adding inode %lu node", |
| PTR_ERR(fscki), inum); |
| return fscki; |
| } |
| |
| return fscki; |
| } |
| |
| /** |
| * check_leaf - check leaf node. |
| * @c: UBIFS file-system description object |
| * @zbr: zbranch of the leaf node to check |
| * @priv: FS checking information |
| * |
| * This is a helper function for 'dbg_check_filesystem()' which is called for |
| * every single leaf node while walking the indexing tree. It checks that the |
| * leaf node referred from the indexing tree exists, has correct CRC, and does |
| * some other basic validation. This function is also responsible for building |
| * an RB-tree of inodes - it adds all inodes into the RB-tree. It also |
| * calculates reference count, size, etc for each inode in order to later |
| * compare them to the information stored inside the inodes and detect possible |
| * inconsistencies. Returns zero in case of success and a negative error code |
| * in case of failure. |
| */ |
| static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| void *priv) |
| { |
| ino_t inum; |
| void *node; |
| struct ubifs_ch *ch; |
| int err, type = key_type(c, &zbr->key); |
| struct fsck_inode *fscki; |
| |
| if (zbr->len < UBIFS_CH_SZ) { |
| ubifs_err("bad leaf length %d (LEB %d:%d)", |
| zbr->len, zbr->lnum, zbr->offs); |
| return -EINVAL; |
| } |
| |
| node = kmalloc(zbr->len, GFP_NOFS); |
| if (!node) |
| return -ENOMEM; |
| |
| err = ubifs_tnc_read_node(c, zbr, node); |
| if (err) { |
| ubifs_err("cannot read leaf node at LEB %d:%d, error %d", |
| zbr->lnum, zbr->offs, err); |
| goto out_free; |
| } |
| |
| /* If this is an inode node, add it to RB-tree of inodes */ |
| if (type == UBIFS_INO_KEY) { |
| fscki = add_inode(c, priv, node); |
| if (IS_ERR(fscki)) { |
| err = PTR_ERR(fscki); |
| ubifs_err("error %d while adding inode node", err); |
| goto out_dump; |
| } |
| goto out; |
| } |
| |
| if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && |
| type != UBIFS_DATA_KEY) { |
| ubifs_err("unexpected node type %d at LEB %d:%d", |
| type, zbr->lnum, zbr->offs); |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| ch = node; |
| if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { |
| ubifs_err("too high sequence number, max. is %llu", |
| c->max_sqnum); |
| err = -EINVAL; |
| goto out_dump; |
| } |
| |
| if (type == UBIFS_DATA_KEY) { |
| long long blk_offs; |
| struct ubifs_data_node *dn = node; |
| |
| /* |
| * Search the inode node this data node belongs to and insert |
| * it to the RB-tree of inodes. |
| */ |
| inum = key_inum_flash(c, &dn->key); |
| fscki = read_add_inode(c, priv, inum); |
| if (IS_ERR(fscki)) { |
| err = PTR_ERR(fscki); |
| ubifs_err("error %d while processing data node and " |
| "trying to find inode node %lu", err, inum); |
| goto out_dump; |
| } |
| |
| /* Make sure the data node is within inode size */ |
| blk_offs = key_block_flash(c, &dn->key); |
| blk_offs <<= UBIFS_BLOCK_SHIFT; |
| blk_offs += le32_to_cpu(dn->size); |
| if (blk_offs > fscki->size) { |
| ubifs_err("data node at LEB %d:%d is not within inode " |
| "size %lld", zbr->lnum, zbr->offs, |
| fscki->size); |
| err = -EINVAL; |
| goto out_dump; |
| } |
| } else { |
| int nlen; |
| struct ubifs_dent_node *dent = node; |
| struct fsck_inode *fscki1; |
| |
| err = ubifs_validate_entry(c, dent); |
| if (err) |
| goto out_dump; |
| |
| /* |
| * Search the inode node this entry refers to and the parent |
| * inode node and insert them to the RB-tree of inodes. |
| */ |
| inum = le64_to_cpu(dent->inum); |
| fscki = read_add_inode(c, priv, inum); |
| if (IS_ERR(fscki)) { |
| err = PTR_ERR(fscki); |
| ubifs_err("error %d while processing entry node and " |
| "trying to find inode node %lu", err, inum); |
| goto out_dump; |
| } |
| |
| /* Count how many direntries or xentries refers this inode */ |
| fscki->references += 1; |
| |
| inum = key_inum_flash(c, &dent->key); |
| fscki1 = read_add_inode(c, priv, inum); |
| if (IS_ERR(fscki1)) { |
| err = PTR_ERR(fscki); |
| ubifs_err("error %d while processing entry node and " |
| "trying to find parent inode node %lu", |
| err, inum); |
| goto out_dump; |
| } |
| |
| nlen = le16_to_cpu(dent->nlen); |
| if (type == UBIFS_XENT_KEY) { |
| fscki1->calc_xcnt += 1; |
| fscki1->calc_xsz += CALC_DENT_SIZE(nlen); |
| fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); |
| fscki1->calc_xnms += nlen; |
| } else { |
| fscki1->calc_sz += CALC_DENT_SIZE(nlen); |
| if (dent->type == UBIFS_ITYPE_DIR) |
| fscki1->calc_cnt += 1; |
| } |
| } |
| |
| out: |
| kfree(node); |
| return 0; |
| |
| out_dump: |
| ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); |
| dbg_dump_node(c, node); |
| out_free: |
| kfree(node); |
| return err; |
| } |
| |
| /** |
| * free_inodes - free RB-tree of inodes. |
| * @fsckd: FS checking information |
| */ |
| static void free_inodes(struct fsck_data *fsckd) |
| { |
| struct rb_node *this = fsckd->inodes.rb_node; |
| struct fsck_inode *fscki; |
| |
| while (this) { |
| if (this->rb_left) |
| this = this->rb_left; |
| else if (this->rb_right) |
| this = this->rb_right; |
| else { |
| fscki = rb_entry(this, struct fsck_inode, rb); |
| this = rb_parent(this); |
| if (this) { |
| if (this->rb_left == &fscki->rb) |
| this->rb_left = NULL; |
| else |
| this->rb_right = NULL; |
| } |
| kfree(fscki); |
| } |
| } |
| } |
| |
| /** |
| * check_inodes - checks all inodes. |
| * @c: UBIFS file-system description object |
| * @fsckd: FS checking information |
| * |
| * This is a helper function for 'dbg_check_filesystem()' which walks the |
| * RB-tree of inodes after the index scan has been finished, and checks that |
| * inode nlink, size, etc are correct. Returns zero if inodes are fine, |
| * %-EINVAL if not, and a negative error code in case of failure. |
| */ |
| static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) |
| { |
| int n, err; |
| union ubifs_key key; |
| struct ubifs_znode *znode; |
| struct ubifs_zbranch *zbr; |
| struct ubifs_ino_node *ino; |
| struct fsck_inode *fscki; |
| struct rb_node *this = rb_first(&fsckd->inodes); |
| |
| while (this) { |
| fscki = rb_entry(this, struct fsck_inode, rb); |
| this = rb_next(this); |
| |
| if (S_ISDIR(fscki->mode)) { |
| /* |
| * Directories have to have exactly one reference (they |
| * cannot have hardlinks), although root inode is an |
| * exception. |
| */ |
| if (fscki->inum != UBIFS_ROOT_INO && |
| fscki->references != 1) { |
| ubifs_err("directory inode %lu has %d " |
| "direntries which refer it, but " |
| "should be 1", fscki->inum, |
| fscki->references); |
| goto out_dump; |
| } |
| if (fscki->inum == UBIFS_ROOT_INO && |
| fscki->references != 0) { |
| ubifs_err("root inode %lu has non-zero (%d) " |
| "direntries which refer it", |
| fscki->inum, fscki->references); |
| goto out_dump; |
| } |
| if (fscki->calc_sz != fscki->size) { |
| ubifs_err("directory inode %lu size is %lld, " |
| "but calculated size is %lld", |
| fscki->inum, fscki->size, |
| fscki->calc_sz); |
| goto out_dump; |
| } |
| if (fscki->calc_cnt != fscki->nlink) { |
| ubifs_err("directory inode %lu nlink is %d, " |
| "but calculated nlink is %d", |
| fscki->inum, fscki->nlink, |
| fscki->calc_cnt); |
| goto out_dump; |
| } |
| } else { |
| if (fscki->references != fscki->nlink) { |
| ubifs_err("inode %lu nlink is %d, but " |
| "calculated nlink is %d", fscki->inum, |
| fscki->nlink, fscki->references); |
| goto out_dump; |
| } |
| } |
| if (fscki->xattr_sz != fscki->calc_xsz) { |
| ubifs_err("inode %lu has xattr size %u, but " |
| "calculated size is %lld", |
| fscki->inum, fscki->xattr_sz, |
| fscki->calc_xsz); |
| goto out_dump; |
| } |
| if (fscki->xattr_cnt != fscki->calc_xcnt) { |
| ubifs_err("inode %lu has %u xattrs, but " |
| "calculated count is %lld", fscki->inum, |
| fscki->xattr_cnt, fscki->calc_xcnt); |
| goto out_dump; |
| } |
| if (fscki->xattr_nms != fscki->calc_xnms) { |
| ubifs_err("inode %lu has xattr names' size %u, but " |
| "calculated names' size is %lld", |
| fscki->inum, fscki->xattr_nms, |
| fscki->calc_xnms); |
| goto out_dump; |
| } |
| } |
| |
| return 0; |
| |
| out_dump: |
| /* Read the bad inode and dump it */ |
| ino_key_init(c, &key, fscki->inum); |
| err = ubifs_lookup_level0(c, &key, &znode, &n); |
| if (!err) { |
| ubifs_err("inode %lu not found in index", fscki->inum); |
| return -ENOENT; |
| } else if (err < 0) { |
| ubifs_err("error %d while looking up inode %lu", |
| err, fscki->inum); |
| return err; |
| } |
| |
| zbr = &znode->zbranch[n]; |
| ino = kmalloc(zbr->len, GFP_NOFS); |
| if (!ino) |
| return -ENOMEM; |
| |
| err = ubifs_tnc_read_node(c, zbr, ino); |
| if (err) { |
| ubifs_err("cannot read inode node at LEB %d:%d, error %d", |
| zbr->lnum, zbr->offs, err); |
| kfree(ino); |
| return err; |
| } |
| |
| ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", |
| fscki->inum, zbr->lnum, zbr->offs); |
| dbg_dump_node(c, ino); |
| kfree(ino); |
| return -EINVAL; |
| } |
| |
| /** |
| * dbg_check_filesystem - check the file-system. |
| * @c: UBIFS file-system description object |
| * |
| * This function checks the file system, namely: |
| * o makes sure that all leaf nodes exist and their CRCs are correct; |
| * o makes sure inode nlink, size, xattr size/count are correct (for all |
| * inodes). |
| * |
| * The function reads whole indexing tree and all nodes, so it is pretty |
| * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if |
| * not, and a negative error code in case of failure. |
| */ |
| int dbg_check_filesystem(struct ubifs_info *c) |
| { |
| int err; |
| struct fsck_data fsckd; |
| |
| if (!(ubifs_chk_flags & UBIFS_CHK_FS)) |
| return 0; |
| |
| fsckd.inodes = RB_ROOT; |
| err = dbg_walk_index(c, check_leaf, NULL, &fsckd); |
| if (err) |
| goto out_free; |
| |
| err = check_inodes(c, &fsckd); |
| if (err) |
| goto out_free; |
| |
| free_inodes(&fsckd); |
| return 0; |
| |
| out_free: |
| ubifs_err("file-system check failed with error %d", err); |
| dump_stack(); |
| free_inodes(&fsckd); |
| return err; |
| } |
| |
| static int invocation_cnt; |
| |
| int dbg_force_in_the_gaps(void) |
| { |
| if (!dbg_force_in_the_gaps_enabled) |
| return 0; |
| /* Force in-the-gaps every 8th commit */ |
| return !((invocation_cnt++) & 0x7); |
| } |
| |
| /* Failure mode for recovery testing */ |
| |
| #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) |
| |
| struct failure_mode_info { |
| struct list_head list; |
| struct ubifs_info *c; |
| }; |
| |
| static LIST_HEAD(fmi_list); |
| static DEFINE_SPINLOCK(fmi_lock); |
| |
| static unsigned int next; |
| |
| static int simple_rand(void) |
| { |
| if (next == 0) |
| next = current->pid; |
| next = next * 1103515245 + 12345; |
| return (next >> 16) & 32767; |
| } |
| |
| void dbg_failure_mode_registration(struct ubifs_info *c) |
| { |
| struct failure_mode_info *fmi; |
| |
| fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); |
| if (!fmi) { |
| dbg_err("Failed to register failure mode - no memory"); |
| return; |
| } |
| fmi->c = c; |
| spin_lock(&fmi_lock); |
| list_add_tail(&fmi->list, &fmi_list); |
| spin_unlock(&fmi_lock); |
| } |
| |
| void dbg_failure_mode_deregistration(struct ubifs_info *c) |
| { |
| struct failure_mode_info *fmi, *tmp; |
| |
| spin_lock(&fmi_lock); |
| list_for_each_entry_safe(fmi, tmp, &fmi_list, list) |
| if (fmi->c == c) { |
| list_del(&fmi->list); |
| kfree(fmi); |
| } |
| spin_unlock(&fmi_lock); |
| } |
| |
| static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) |
| { |
| struct failure_mode_info *fmi; |
| |
| spin_lock(&fmi_lock); |
| list_for_each_entry(fmi, &fmi_list, list) |
| if (fmi->c->ubi == desc) { |
| struct ubifs_info *c = fmi->c; |
| |
| spin_unlock(&fmi_lock); |
| return c; |
| } |
| spin_unlock(&fmi_lock); |
| return NULL; |
| } |
| |
| static int in_failure_mode(struct ubi_volume_desc *desc) |
| { |
| struct ubifs_info *c = dbg_find_info(desc); |
| |
| if (c && dbg_failure_mode) |
| return c->failure_mode; |
| return 0; |
| } |
| |
| static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) |
| { |
| struct ubifs_info *c = dbg_find_info(desc); |
| |
| if (!c || !dbg_failure_mode) |
| return 0; |
| if (c->failure_mode) |
| return 1; |
| if (!c->fail_cnt) { |
| /* First call - decide delay to failure */ |
| if (chance(1, 2)) { |
| unsigned int delay = 1 << (simple_rand() >> 11); |
| |
| if (chance(1, 2)) { |
| c->fail_delay = 1; |
| c->fail_timeout = jiffies + |
| msecs_to_jiffies(delay); |
| dbg_rcvry("failing after %ums", delay); |
| } else { |
| c->fail_delay = 2; |
| c->fail_cnt_max = delay; |
| dbg_rcvry("failing after %u calls", delay); |
| } |
| } |
| c->fail_cnt += 1; |
| } |
| /* Determine if failure delay has expired */ |
| if (c->fail_delay == 1) { |
| if (time_before(jiffies, c->fail_timeout)) |
| return 0; |
| } else if (c->fail_delay == 2) |
| if (c->fail_cnt++ < c->fail_cnt_max) |
| return 0; |
| if (lnum == UBIFS_SB_LNUM) { |
| if (write) { |
| if (chance(1, 2)) |
| return 0; |
| } else if (chance(19, 20)) |
| return 0; |
| dbg_rcvry("failing in super block LEB %d", lnum); |
| } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { |
| if (chance(19, 20)) |
| return 0; |
| dbg_rcvry("failing in master LEB %d", lnum); |
| } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { |
| if (write) { |
| if (chance(99, 100)) |
| return 0; |
| } else if (chance(399, 400)) |
| return 0; |
| dbg_rcvry("failing in log LEB %d", lnum); |
| } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { |
| if (write) { |
| if (chance(7, 8)) |
| return 0; |
| } else if (chance(19, 20)) |
| return 0; |
| dbg_rcvry("failing in LPT LEB %d", lnum); |
| } else if (lnum >= c->orph_first && lnum <= c->orph_last) { |
| if (write) { |
| if (chance(1, 2)) |
| return 0; |
| } else if (chance(9, 10)) |
| return 0; |
| dbg_rcvry("failing in orphan LEB %d", lnum); |
| } else if (lnum == c->ihead_lnum) { |
| if (chance(99, 100)) |
| return 0; |
| dbg_rcvry("failing in index head LEB %d", lnum); |
| } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { |
| if (chance(9, 10)) |
| return 0; |
| dbg_rcvry("failing in GC head LEB %d", lnum); |
| } else if (write && !RB_EMPTY_ROOT(&c->buds) && |
| !ubifs_search_bud(c, lnum)) { |
| if (chance(19, 20)) |
| return 0; |
| dbg_rcvry("failing in non-bud LEB %d", lnum); |
| } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || |
| c->cmt_state == COMMIT_RUNNING_REQUIRED) { |
| if (chance(999, 1000)) |
| return 0; |
| dbg_rcvry("failing in bud LEB %d commit running", lnum); |
| } else { |
| if (chance(9999, 10000)) |
| return 0; |
| dbg_rcvry("failing in bud LEB %d commit not running", lnum); |
| } |
| ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); |
| c->failure_mode = 1; |
| dump_stack(); |
| return 1; |
| } |
| |
| static void cut_data(const void *buf, int len) |
| { |
| int flen, i; |
| unsigned char *p = (void *)buf; |
| |
| flen = (len * (long long)simple_rand()) >> 15; |
| for (i = flen; i < len; i++) |
| p[i] = 0xff; |
| } |
| |
| int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, |
| int len, int check) |
| { |
| if (in_failure_mode(desc)) |
| return -EIO; |
| return ubi_leb_read(desc, lnum, buf, offset, len, check); |
| } |
| |
| int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, |
| int offset, int len, int dtype) |
| { |
| int err, failing; |
| |
| if (in_failure_mode(desc)) |
| return -EIO; |
| failing = do_fail(desc, lnum, 1); |
| if (failing) |
| cut_data(buf, len); |
| err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); |
| if (err) |
| return err; |
| if (failing) |
| return -EIO; |
| return 0; |
| } |
| |
| int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, |
| int len, int dtype) |
| { |
| int err; |
| |
| if (do_fail(desc, lnum, 1)) |
| return -EIO; |
| err = ubi_leb_change(desc, lnum, buf, len, dtype); |
| if (err) |
| return err; |
| if (do_fail(desc, lnum, 1)) |
| return -EIO; |
| return 0; |
| } |
| |
| int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) |
| { |
| int err; |
| |
| if (do_fail(desc, lnum, 0)) |
| return -EIO; |
| err = ubi_leb_erase(desc, lnum); |
| if (err) |
| return err; |
| if (do_fail(desc, lnum, 0)) |
| return -EIO; |
| return 0; |
| } |
| |
| int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) |
| { |
| int err; |
| |
| if (do_fail(desc, lnum, 0)) |
| return -EIO; |
| err = ubi_leb_unmap(desc, lnum); |
| if (err) |
| return err; |
| if (do_fail(desc, lnum, 0)) |
| return -EIO; |
| return 0; |
| } |
| |
| int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) |
| { |
| if (in_failure_mode(desc)) |
| return -EIO; |
| return ubi_is_mapped(desc, lnum); |
| } |
| |
| int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) |
| { |
| int err; |
| |
| if (do_fail(desc, lnum, 0)) |
| return -EIO; |
| err = ubi_leb_map(desc, lnum, dtype); |
| if (err) |
| return err; |
| if (do_fail(desc, lnum, 0)) |
| return -EIO; |
| return 0; |
| } |
| |
| #endif /* CONFIG_UBIFS_FS_DEBUG */ |