| /* |
| * File: arch/blackfin/mm/blackfin_sram.c |
| * Based on: |
| * Author: |
| * |
| * Created: |
| * Description: SRAM driver for Blackfin ADSP-BF5xx |
| * |
| * Modified: |
| * Copyright 2004-2006 Analog Devices Inc. |
| * |
| * Bugs: Enter bugs at http://blackfin.uclinux.org/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see the file COPYING, or write |
| * to the Free Software Foundation, Inc., |
| * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <linux/autoconf.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/miscdevice.h> |
| #include <linux/ioport.h> |
| #include <linux/fcntl.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/proc_fs.h> |
| #include <linux/spinlock.h> |
| #include <linux/rtc.h> |
| #include <asm/blackfin.h> |
| #include "blackfin_sram.h" |
| |
| spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock; |
| |
| #if CONFIG_L1_MAX_PIECE < 16 |
| #undef CONFIG_L1_MAX_PIECE |
| #define CONFIG_L1_MAX_PIECE 16 |
| #endif |
| |
| #if CONFIG_L1_MAX_PIECE > 1024 |
| #undef CONFIG_L1_MAX_PIECE |
| #define CONFIG_L1_MAX_PIECE 1024 |
| #endif |
| |
| #define SRAM_SLT_NULL 0 |
| #define SRAM_SLT_FREE 1 |
| #define SRAM_SLT_ALLOCATED 2 |
| |
| /* the data structure for L1 scratchpad and DATA SRAM */ |
| struct l1_sram_piece { |
| void *paddr; |
| int size; |
| int flag; |
| }; |
| |
| static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE]; |
| |
| #if L1_DATA_A_LENGTH != 0 |
| static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE]; |
| #endif |
| |
| #if L1_DATA_B_LENGTH != 0 |
| static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE]; |
| #endif |
| |
| #if L1_CODE_LENGTH != 0 |
| static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE]; |
| #endif |
| |
| /* L1 Scratchpad SRAM initialization function */ |
| void l1sram_init(void) |
| { |
| printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n", |
| L1_SCRATCH_LENGTH >> 10); |
| |
| memset(&l1_ssram, 0x00, sizeof(l1_ssram)); |
| l1_ssram[0].paddr = (void*)L1_SCRATCH_START; |
| l1_ssram[0].size = L1_SCRATCH_LENGTH; |
| l1_ssram[0].flag = SRAM_SLT_FREE; |
| |
| /* mutex initialize */ |
| spin_lock_init(&l1sram_lock); |
| } |
| |
| void l1_data_sram_init(void) |
| { |
| #if L1_DATA_A_LENGTH != 0 |
| printk(KERN_INFO "Blackfin DATA_A SRAM: %d KB\n", |
| L1_DATA_A_LENGTH >> 10); |
| |
| memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram)); |
| l1_data_A_sram[0].paddr = (void*)L1_DATA_A_START + |
| (_ebss_l1 - _sdata_l1); |
| l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1); |
| l1_data_A_sram[0].flag = SRAM_SLT_FREE; |
| #endif |
| #if L1_DATA_B_LENGTH != 0 |
| printk(KERN_INFO "Blackfin DATA_B SRAM: %d KB\n", |
| L1_DATA_B_LENGTH >> 10); |
| |
| memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram)); |
| l1_data_B_sram[0].paddr = (void*)L1_DATA_B_START; |
| l1_data_B_sram[0].size = L1_DATA_B_LENGTH; |
| l1_data_B_sram[0].flag = SRAM_SLT_FREE; |
| #endif |
| |
| /* mutex initialize */ |
| spin_lock_init(&l1_data_sram_lock); |
| } |
| |
| void l1_inst_sram_init(void) |
| { |
| #if L1_CODE_LENGTH != 0 |
| printk(KERN_INFO "Blackfin Instruction SRAM: %d KB\n", |
| L1_CODE_LENGTH >> 10); |
| |
| memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram)); |
| l1_inst_sram[0].paddr = (void*)L1_CODE_START + (_etext_l1 - _stext_l1); |
| l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1); |
| l1_inst_sram[0].flag = SRAM_SLT_FREE; |
| #endif |
| |
| /* mutex initialize */ |
| spin_lock_init(&l1_inst_sram_lock); |
| } |
| |
| /* L1 memory allocate function */ |
| static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count) |
| { |
| int i, index = 0; |
| void *addr = NULL; |
| |
| if (size <= 0) |
| return NULL; |
| |
| /* Align the size */ |
| size = (size + 3) & ~3; |
| |
| /* not use the good method to match the best slot !!! */ |
| /* search an available memeory slot */ |
| for (i = 0; i < count; i++) { |
| if ((pfree[i].flag == SRAM_SLT_FREE) |
| && (pfree[i].size >= size)) { |
| addr = pfree[i].paddr; |
| pfree[i].flag = SRAM_SLT_ALLOCATED; |
| index = i; |
| break; |
| } |
| } |
| if (i >= count) |
| return NULL; |
| |
| /* updated the NULL memeory slot !!! */ |
| if (pfree[i].size > size) { |
| for (i = 0; i < count; i++) { |
| if (pfree[i].flag == SRAM_SLT_NULL) { |
| pfree[i].flag = SRAM_SLT_FREE; |
| pfree[i].paddr = addr + size; |
| pfree[i].size = pfree[index].size - size; |
| pfree[index].size = size; |
| break; |
| } |
| } |
| } |
| |
| return addr; |
| } |
| |
| /* Allocate the largest available block. */ |
| static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count, |
| unsigned long *psize) |
| { |
| unsigned long best = 0; |
| int i, index = -1; |
| void *addr = NULL; |
| |
| /* search an available memeory slot */ |
| for (i = 0; i < count; i++) { |
| if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) { |
| addr = pfree[i].paddr; |
| index = i; |
| best = pfree[i].size; |
| } |
| } |
| if (index < 0) |
| return NULL; |
| *psize = best; |
| |
| pfree[index].flag = SRAM_SLT_ALLOCATED; |
| return addr; |
| } |
| |
| /* L1 memory free function */ |
| static int _l1_sram_free(const void *addr, |
| struct l1_sram_piece *pfree, int count) |
| { |
| int i, index = 0; |
| |
| /* search the relevant memory slot */ |
| for (i = 0; i < count; i++) { |
| if (pfree[i].paddr == addr) { |
| if (pfree[i].flag != SRAM_SLT_ALLOCATED) { |
| /* error log */ |
| return -1; |
| } |
| index = i; |
| break; |
| } |
| } |
| if (i >= count) |
| return -1; |
| |
| pfree[index].flag = SRAM_SLT_FREE; |
| |
| /* link the next address slot */ |
| for (i = 0; i < count; i++) { |
| if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr) |
| && (pfree[i].flag == SRAM_SLT_FREE)) { |
| pfree[i].flag = SRAM_SLT_NULL; |
| pfree[index].size += pfree[i].size; |
| pfree[index].flag = SRAM_SLT_FREE; |
| break; |
| } |
| } |
| |
| /* link the last address slot */ |
| for (i = 0; i < count; i++) { |
| if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) && |
| (pfree[i].flag == SRAM_SLT_FREE)) { |
| pfree[index].flag = SRAM_SLT_NULL; |
| pfree[i].size += pfree[index].size; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int sram_free(const void *addr) |
| { |
| if (0) {} |
| #if L1_CODE_LENGTH != 0 |
| else if (addr >= (void *)L1_CODE_START |
| && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH)) |
| return l1_inst_sram_free(addr); |
| #endif |
| #if L1_DATA_A_LENGTH != 0 |
| else if (addr >= (void *)L1_DATA_A_START |
| && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH)) |
| return l1_data_A_sram_free(addr); |
| #endif |
| #if L1_DATA_B_LENGTH != 0 |
| else if (addr >= (void *)L1_DATA_B_START |
| && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH)) |
| return l1_data_B_sram_free(addr); |
| #endif |
| else |
| return -1; |
| } |
| EXPORT_SYMBOL(sram_free); |
| |
| void *l1_data_A_sram_alloc(size_t size) |
| { |
| unsigned flags; |
| void *addr = NULL; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1_data_sram_lock, flags); |
| |
| #if L1_DATA_A_LENGTH != 0 |
| addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram)); |
| #endif |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1_data_sram_lock, flags); |
| |
| pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(l1_data_A_sram_alloc); |
| |
| int l1_data_A_sram_free(const void *addr) |
| { |
| unsigned flags; |
| int ret; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1_data_sram_lock, flags); |
| |
| #if L1_DATA_A_LENGTH != 0 |
| ret = _l1_sram_free(addr, |
| l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram)); |
| #else |
| ret = -1; |
| #endif |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1_data_sram_lock, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(l1_data_A_sram_free); |
| |
| void *l1_data_B_sram_alloc(size_t size) |
| { |
| #if L1_DATA_B_LENGTH != 0 |
| unsigned flags; |
| void *addr; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1_data_sram_lock, flags); |
| |
| addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1_data_sram_lock, flags); |
| |
| pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_data_B_sram_alloc); |
| |
| int l1_data_B_sram_free(const void *addr) |
| { |
| #if L1_DATA_B_LENGTH != 0 |
| unsigned flags; |
| int ret; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1_data_sram_lock, flags); |
| |
| ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1_data_sram_lock, flags); |
| |
| return ret; |
| #else |
| return -1; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_data_B_sram_free); |
| |
| void *l1_data_sram_alloc(size_t size) |
| { |
| void *addr = l1_data_A_sram_alloc(size); |
| |
| if (!addr) |
| addr = l1_data_B_sram_alloc(size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(l1_data_sram_alloc); |
| |
| void *l1_data_sram_zalloc(size_t size) |
| { |
| void *addr = l1_data_sram_alloc(size); |
| |
| if (addr) |
| memset(addr, 0x00, size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(l1_data_sram_zalloc); |
| |
| int l1_data_sram_free(const void *addr) |
| { |
| int ret; |
| ret = l1_data_A_sram_free(addr); |
| if (ret == -1) |
| ret = l1_data_B_sram_free(addr); |
| return ret; |
| } |
| EXPORT_SYMBOL(l1_data_sram_free); |
| |
| void *l1_inst_sram_alloc(size_t size) |
| { |
| #if L1_DATA_A_LENGTH != 0 |
| unsigned flags; |
| void *addr; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1_inst_sram_lock, flags); |
| |
| addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1_inst_sram_lock, flags); |
| |
| pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_inst_sram_alloc); |
| |
| int l1_inst_sram_free(const void *addr) |
| { |
| #if L1_CODE_LENGTH != 0 |
| unsigned flags; |
| int ret; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1_inst_sram_lock, flags); |
| |
| ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1_inst_sram_lock, flags); |
| |
| return ret; |
| #else |
| return -1; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_inst_sram_free); |
| |
| /* L1 Scratchpad memory allocate function */ |
| void *l1sram_alloc(size_t size) |
| { |
| unsigned flags; |
| void *addr; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1sram_lock, flags); |
| |
| addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1sram_lock, flags); |
| |
| return addr; |
| } |
| |
| /* L1 Scratchpad memory allocate function */ |
| void *l1sram_alloc_max(size_t *psize) |
| { |
| unsigned flags; |
| void *addr; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1sram_lock, flags); |
| |
| addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1sram_lock, flags); |
| |
| return addr; |
| } |
| |
| /* L1 Scratchpad memory free function */ |
| int l1sram_free(const void *addr) |
| { |
| unsigned flags; |
| int ret; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l1sram_lock, flags); |
| |
| ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l1sram_lock, flags); |
| |
| return ret; |
| } |
| |
| int sram_free_with_lsl(const void *addr) |
| { |
| struct sram_list_struct *lsl, **tmp; |
| struct mm_struct *mm = current->mm; |
| |
| for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next) |
| if ((*tmp)->addr == addr) |
| goto found; |
| return -1; |
| found: |
| lsl = *tmp; |
| sram_free(addr); |
| *tmp = lsl->next; |
| kfree(lsl); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sram_free_with_lsl); |
| |
| void *sram_alloc_with_lsl(size_t size, unsigned long flags) |
| { |
| void *addr = NULL; |
| struct sram_list_struct *lsl = NULL; |
| struct mm_struct *mm = current->mm; |
| |
| lsl = kmalloc(sizeof(struct sram_list_struct), GFP_KERNEL); |
| if (!lsl) |
| return NULL; |
| memset(lsl, 0, sizeof(*lsl)); |
| |
| if (flags & L1_INST_SRAM) |
| addr = l1_inst_sram_alloc(size); |
| |
| if (addr == NULL && (flags & L1_DATA_A_SRAM)) |
| addr = l1_data_A_sram_alloc(size); |
| |
| if (addr == NULL && (flags & L1_DATA_B_SRAM)) |
| addr = l1_data_B_sram_alloc(size); |
| |
| if (addr == NULL) { |
| kfree(lsl); |
| return NULL; |
| } |
| lsl->addr = addr; |
| lsl->length = size; |
| lsl->next = mm->context.sram_list; |
| mm->context.sram_list = lsl; |
| return addr; |
| } |
| EXPORT_SYMBOL(sram_alloc_with_lsl); |