blob: fcb429948936e018bf5baf6e1370570d12fedf5d [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <mach/mpm.h>
#include "lpm_resources.h"
#include "pm.h"
#include "rpm-notifier.h"
enum {
MSM_LPM_LVL_DBG_SUSPEND_LIMITS = BIT(0),
MSM_LPM_LVL_DBG_IDLE_LIMITS = BIT(1),
};
static int msm_lpm_lvl_dbg_msk;
module_param_named(
debug_mask, msm_lpm_lvl_dbg_msk, int, S_IRUGO | S_IWUSR | S_IWGRP
);
static struct msm_rpmrs_level *msm_lpm_levels;
static int msm_lpm_level_count;
static DEFINE_PER_CPU(uint32_t , msm_lpm_sleep_time);
static DEFINE_PER_CPU(int , lpm_permitted_level);
static DEFINE_PER_CPU(struct atomic_notifier_head, lpm_notify_head);
static void msm_lpm_level_update(void)
{
unsigned int lpm_level;
struct msm_rpmrs_level *level = NULL;
for (lpm_level = 0; lpm_level < msm_lpm_level_count; lpm_level++) {
level = &msm_lpm_levels[lpm_level];
level->available =
!msm_lpm_level_beyond_limit(&level->rs_limits);
}
}
int msm_lpm_enter_sleep(uint32_t sclk_count, void *limits,
bool from_idle, bool notify_rpm)
{
int ret = 0;
struct msm_lpm_sleep_data sleep_data;
sleep_data.limits = limits;
sleep_data.kernel_sleep = __get_cpu_var(msm_lpm_sleep_time);
atomic_notifier_call_chain(&__get_cpu_var(lpm_notify_head),
MSM_LPM_STATE_ENTER, &sleep_data);
if (notify_rpm) {
int debug_mask;
struct msm_rpmrs_limits *l = (struct msm_rpmrs_limits *)limits;
ret = msm_rpm_enter_sleep();
if (ret) {
pr_warn("%s(): RPM failed to enter sleep err:%d\n",
__func__, ret);
goto bail;
}
if (from_idle)
debug_mask = msm_lpm_lvl_dbg_msk &
MSM_LPM_LVL_DBG_IDLE_LIMITS;
else
debug_mask = msm_lpm_lvl_dbg_msk &
MSM_LPM_LVL_DBG_SUSPEND_LIMITS;
if (debug_mask)
pr_info("%s(): pxo:%d l2:%d mem:0x%x(0x%x) dig:0x%x(0x%x)\n",
__func__, l->pxo, l->l2_cache,
l->vdd_mem_lower_bound,
l->vdd_mem_upper_bound,
l->vdd_dig_lower_bound,
l->vdd_dig_upper_bound);
ret = msm_lpmrs_enter_sleep(sclk_count, l, from_idle,
notify_rpm);
}
bail:
return ret;
}
static void msm_lpm_exit_sleep(void *limits, bool from_idle,
bool notify_rpm, bool collapsed)
{
msm_rpm_exit_sleep();
msm_lpmrs_exit_sleep((struct msm_rpmrs_limits *)limits,
from_idle, notify_rpm, collapsed);
atomic_notifier_call_chain(&__get_cpu_var(lpm_notify_head),
MSM_LPM_STATE_EXIT, NULL);
}
void msm_lpm_show_resources(void)
{
/* TODO */
return;
}
uint32_t msm_pm_get_pxo(struct msm_rpmrs_limits *limits)
{
return limits->pxo;
}
uint32_t msm_pm_get_l2_cache(struct msm_rpmrs_limits *limits)
{
return limits->l2_cache;
}
uint32_t msm_pm_get_vdd_mem(struct msm_rpmrs_limits *limits)
{
return limits->vdd_mem_upper_bound;
}
uint32_t msm_pm_get_vdd_dig(struct msm_rpmrs_limits *limits)
{
return limits->vdd_dig_upper_bound;
}
static bool lpm_level_permitted(int cur_level_count)
{
if (__get_cpu_var(lpm_permitted_level) == msm_lpm_level_count + 1)
return true;
return (__get_cpu_var(lpm_permitted_level) == cur_level_count);
}
int msm_lpm_register_notifier(int cpu, int level_iter,
struct notifier_block *nb, bool is_latency_measure)
{
per_cpu(lpm_permitted_level, cpu) = level_iter;
return atomic_notifier_chain_register(&per_cpu(lpm_notify_head,
cpu), nb);
}
int msm_lpm_unregister_notifier(int cpu, struct notifier_block *nb)
{
per_cpu(lpm_permitted_level, cpu) = msm_lpm_level_count + 1;
return atomic_notifier_chain_unregister(&per_cpu(lpm_notify_head, cpu),
nb);
}
s32 msm_cpuidle_get_deep_idle_latency(void)
{
int i;
struct msm_rpmrs_level *level = msm_lpm_levels, *best = level;
if (!level)
return 0;
for (i = 0; i < msm_lpm_level_count; i++, level++) {
if (!level->available)
continue;
if (level->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE)
continue;
/* Pick the first power collapse mode by default */
if (best->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE)
best = level;
/* Find the lowest latency for power collapse */
if (level->latency_us < best->latency_us)
best = level;
}
return best->latency_us - 1;
}
static void *msm_lpm_lowest_limits(bool from_idle,
enum msm_pm_sleep_mode sleep_mode,
struct msm_pm_time_params *time_param, uint32_t *power)
{
unsigned int cpu = smp_processor_id();
struct msm_rpmrs_level *best_level = NULL;
uint32_t pwr;
int i;
int best_level_iter = msm_lpm_level_count + 1;
if (!msm_lpm_levels)
return NULL;
msm_lpm_level_update();
for (i = 0; i < msm_lpm_level_count; i++) {
struct msm_rpmrs_level *level = &msm_lpm_levels[i];
if (!level->available)
continue;
if (sleep_mode != level->sleep_mode)
continue;
if (time_param->latency_us < level->latency_us)
continue;
if ((MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE == sleep_mode)
|| (MSM_PM_SLEEP_MODE_POWER_COLLAPSE == sleep_mode))
if (!cpu && msm_rpm_waiting_for_ack())
break;
if (time_param->sleep_us <= 1) {
pwr = level->energy_overhead;
} else if (time_param->sleep_us <= level->time_overhead_us) {
pwr = level->energy_overhead / time_param->sleep_us;
} else if ((time_param->sleep_us >> 10)
> level->time_overhead_us) {
pwr = level->steady_state_power;
} else {
pwr = level->steady_state_power;
pwr -= (level->time_overhead_us *
level->steady_state_power) /
time_param->sleep_us;
pwr += level->energy_overhead / time_param->sleep_us;
}
if (!best_level || best_level->rs_limits.power[cpu] >= pwr) {
level->rs_limits.latency_us[cpu] = level->latency_us;
level->rs_limits.power[cpu] = pwr;
best_level = level;
best_level_iter = i;
if (power)
*power = pwr;
}
}
if (best_level && !lpm_level_permitted(best_level_iter))
best_level = NULL;
else
per_cpu(msm_lpm_sleep_time, cpu) =
time_param->modified_time_us ?
time_param->modified_time_us : time_param->sleep_us;
return best_level ? &best_level->rs_limits : NULL;
}
static struct lpm_test_platform_data lpm_test_pdata;
static struct platform_device msm_lpm_test_device = {
.name = "lpm_test",
.id = -1,
.dev = {
.platform_data = &lpm_test_pdata,
},
};
static struct msm_pm_sleep_ops msm_lpm_ops = {
.lowest_limits = msm_lpm_lowest_limits,
.enter_sleep = msm_lpm_enter_sleep,
.exit_sleep = msm_lpm_exit_sleep,
};
static int __devinit msm_lpm_levels_probe(struct platform_device *pdev)
{
struct msm_rpmrs_level *levels = NULL;
struct msm_rpmrs_level *level = NULL;
struct device_node *node = NULL;
char *key = NULL;
uint32_t val = 0;
int ret = 0;
uint32_t num_levels = 0;
int idx = 0;
unsigned int m_cpu = 0;
for_each_child_of_node(pdev->dev.of_node, node)
num_levels++;
levels = kzalloc(num_levels * sizeof(struct msm_rpmrs_level),
GFP_KERNEL);
if (!levels)
return -ENOMEM;
for_each_child_of_node(pdev->dev.of_node, node) {
level = &levels[idx++];
level->available = false;
key = "qcom,mode";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->sleep_mode = val;
key = "qcom,xo";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->rs_limits.pxo = val;
key = "qcom,l2";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->rs_limits.l2_cache = val;
key = "qcom,vdd-dig-upper-bound";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->rs_limits.vdd_dig_upper_bound = val;
key = "qcom,vdd-dig-lower-bound";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->rs_limits.vdd_dig_lower_bound = val;
key = "qcom,vdd-mem-upper-bound";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->rs_limits.vdd_mem_upper_bound = val;
key = "qcom,vdd-mem-lower-bound";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->rs_limits.vdd_mem_lower_bound = val;
key = "qcom,latency-us";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->latency_us = val;
key = "qcom,ss-power";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->steady_state_power = val;
key = "qcom,energy-overhead";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->energy_overhead = val;
key = "qcom,time-overhead";
ret = of_property_read_u32(node, key, &val);
if (ret)
goto fail;
level->time_overhead_us = val;
level->available = true;
}
msm_lpm_levels = levels;
msm_lpm_level_count = idx;
lpm_test_pdata.msm_lpm_test_levels = msm_lpm_levels;
lpm_test_pdata.msm_lpm_test_level_count = msm_lpm_level_count;
key = "qcom,use-qtimer";
lpm_test_pdata.use_qtimer =
of_property_read_bool(pdev->dev.of_node, key);
for_each_possible_cpu(m_cpu)
per_cpu(lpm_permitted_level, m_cpu) =
msm_lpm_level_count + 1;
platform_device_register(&msm_lpm_test_device);
msm_pm_set_sleep_ops(&msm_lpm_ops);
return 0;
fail:
pr_err("%s: Error in name %s key %s\n", __func__, node->full_name, key);
kfree(levels);
return -EFAULT;
}
static struct of_device_id msm_lpm_levels_match_table[] = {
{.compatible = "qcom,lpm-levels"},
{},
};
static struct platform_driver msm_lpm_levels_driver = {
.probe = msm_lpm_levels_probe,
.driver = {
.name = "lpm-levels",
.owner = THIS_MODULE,
.of_match_table = msm_lpm_levels_match_table,
},
};
static int __init msm_lpm_levels_module_init(void)
{
return platform_driver_register(&msm_lpm_levels_driver);
}
late_initcall(msm_lpm_levels_module_init);