| /* Copyright (c) 2008-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| /* |
| * SPI driver for Qualcomm MSM platforms |
| * |
| */ |
| |
| #include <linux/version.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/list.h> |
| #include <linux/irq.h> |
| #include <linux/platform_device.h> |
| #include <linux/spi/spi.h> |
| #include <linux/interrupt.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/workqueue.h> |
| #include <linux/io.h> |
| #include <linux/debugfs.h> |
| #include <linux/gpio.h> |
| #include <linux/remote_spinlock.h> |
| #include <linux/pm_qos.h> |
| #include <linux/of.h> |
| #include <linux/of_gpio.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/sched.h> |
| #include <linux/mutex.h> |
| #include <linux/atomic.h> |
| #include <linux/pm_runtime.h> |
| #include <mach/msm_spi.h> |
| #include <mach/sps.h> |
| #include <mach/dma.h> |
| #include <mach/msm_bus.h> |
| #include <mach/msm_bus_board.h> |
| #include "spi_qsd.h" |
| |
| static int msm_spi_pm_resume_runtime(struct device *device); |
| static int msm_spi_pm_suspend_runtime(struct device *device); |
| |
| |
| static inline int msm_spi_configure_gsbi(struct msm_spi *dd, |
| struct platform_device *pdev) |
| { |
| struct resource *resource; |
| unsigned long gsbi_mem_phys_addr; |
| size_t gsbi_mem_size; |
| void __iomem *gsbi_base; |
| |
| resource = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (!resource) |
| return 0; |
| |
| gsbi_mem_phys_addr = resource->start; |
| gsbi_mem_size = resource_size(resource); |
| if (!devm_request_mem_region(&pdev->dev, gsbi_mem_phys_addr, |
| gsbi_mem_size, SPI_DRV_NAME)) |
| return -ENXIO; |
| |
| gsbi_base = devm_ioremap(&pdev->dev, gsbi_mem_phys_addr, |
| gsbi_mem_size); |
| if (!gsbi_base) |
| return -ENXIO; |
| |
| /* Set GSBI to SPI mode */ |
| writel_relaxed(GSBI_SPI_CONFIG, gsbi_base + GSBI_CTRL_REG); |
| |
| return 0; |
| } |
| |
| static inline void msm_spi_register_init(struct msm_spi *dd) |
| { |
| writel_relaxed(0x00000001, dd->base + SPI_SW_RESET); |
| msm_spi_set_state(dd, SPI_OP_STATE_RESET); |
| writel_relaxed(0x00000000, dd->base + SPI_OPERATIONAL); |
| writel_relaxed(0x00000000, dd->base + SPI_CONFIG); |
| writel_relaxed(0x00000000, dd->base + SPI_IO_MODES); |
| if (dd->qup_ver) |
| writel_relaxed(0x00000000, dd->base + QUP_OPERATIONAL_MASK); |
| } |
| |
| static inline int msm_spi_request_gpios(struct msm_spi *dd) |
| { |
| int i; |
| int result = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) { |
| if (dd->spi_gpios[i] >= 0) { |
| result = gpio_request(dd->spi_gpios[i], spi_rsrcs[i]); |
| if (result) { |
| dev_err(dd->dev, "%s: gpio_request for pin %d " |
| "failed with error %d\n", __func__, |
| dd->spi_gpios[i], result); |
| goto error; |
| } |
| } |
| } |
| return 0; |
| |
| error: |
| for (; --i >= 0;) { |
| if (dd->spi_gpios[i] >= 0) |
| gpio_free(dd->spi_gpios[i]); |
| } |
| return result; |
| } |
| |
| static inline void msm_spi_free_gpios(struct msm_spi *dd) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) { |
| if (dd->spi_gpios[i] >= 0) |
| gpio_free(dd->spi_gpios[i]); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) { |
| if (dd->cs_gpios[i].valid) { |
| gpio_free(dd->cs_gpios[i].gpio_num); |
| dd->cs_gpios[i].valid = 0; |
| } |
| } |
| } |
| |
| /** |
| * msm_spi_clk_max_rate: finds the nearest lower rate for a clk |
| * @clk the clock for which to find nearest lower rate |
| * @rate clock frequency in Hz |
| * @return nearest lower rate or negative error value |
| * |
| * Public clock API extends clk_round_rate which is a ceiling function. This |
| * function is a floor function implemented as a binary search using the |
| * ceiling function. |
| */ |
| static long msm_spi_clk_max_rate(struct clk *clk, unsigned long rate) |
| { |
| long lowest_available, nearest_low, step_size, cur; |
| long step_direction = -1; |
| long guess = rate; |
| int max_steps = 10; |
| |
| cur = clk_round_rate(clk, rate); |
| if (cur == rate) |
| return rate; |
| |
| /* if we got here then: cur > rate */ |
| lowest_available = clk_round_rate(clk, 0); |
| if (lowest_available > rate) |
| return -EINVAL; |
| |
| step_size = (rate - lowest_available) >> 1; |
| nearest_low = lowest_available; |
| |
| while (max_steps-- && step_size) { |
| guess += step_size * step_direction; |
| |
| cur = clk_round_rate(clk, guess); |
| |
| if ((cur < rate) && (cur > nearest_low)) |
| nearest_low = cur; |
| |
| /* |
| * if we stepped too far, then start stepping in the other |
| * direction with half the step size |
| */ |
| if (((cur > rate) && (step_direction > 0)) |
| || ((cur < rate) && (step_direction < 0))) { |
| step_direction = -step_direction; |
| step_size >>= 1; |
| } |
| } |
| return nearest_low; |
| } |
| |
| static void msm_spi_clock_set(struct msm_spi *dd, int speed) |
| { |
| long rate; |
| int rc; |
| |
| rate = msm_spi_clk_max_rate(dd->clk, speed); |
| if (rate < 0) { |
| dev_err(dd->dev, |
| "%s: no match found for requested clock frequency:%d", |
| __func__, speed); |
| return; |
| } |
| |
| rc = clk_set_rate(dd->clk, rate); |
| if (!rc) |
| dd->clock_speed = rate; |
| } |
| |
| static void msm_spi_clk_path_vote(struct msm_spi *dd) |
| { |
| if (dd->clk_path_vote.client_hdl) |
| msm_bus_scale_client_update_request( |
| dd->clk_path_vote.client_hdl, |
| MSM_SPI_CLK_PATH_RESUME_VEC); |
| } |
| |
| static void msm_spi_clk_path_unvote(struct msm_spi *dd) |
| { |
| if (dd->clk_path_vote.client_hdl) |
| msm_bus_scale_client_update_request( |
| dd->clk_path_vote.client_hdl, |
| MSM_SPI_CLK_PATH_SUSPEND_VEC); |
| } |
| |
| static void msm_spi_clk_path_teardown(struct msm_spi *dd) |
| { |
| if (dd->pdata->active_only) |
| msm_spi_clk_path_unvote(dd); |
| |
| if (dd->clk_path_vote.client_hdl) { |
| msm_bus_scale_unregister_client(dd->clk_path_vote.client_hdl); |
| dd->clk_path_vote.client_hdl = 0; |
| } |
| } |
| |
| /** |
| * msm_spi_clk_path_init_structs: internal impl detail of msm_spi_clk_path_init |
| * |
| * allocates and initilizes the bus scaling vectors. |
| */ |
| static int msm_spi_clk_path_init_structs(struct msm_spi *dd) |
| { |
| struct msm_bus_vectors *paths = NULL; |
| struct msm_bus_paths *usecases = NULL; |
| |
| dev_dbg(dd->dev, "initialises path clock voting structs"); |
| |
| paths = devm_kzalloc(dd->dev, sizeof(*paths) * 2, GFP_KERNEL); |
| if (!paths) { |
| dev_err(dd->dev, |
| "msm_bus_paths.paths memory allocation failed"); |
| return -ENOMEM; |
| } |
| |
| usecases = devm_kzalloc(dd->dev, sizeof(*usecases) * 2, GFP_KERNEL); |
| if (!usecases) { |
| dev_err(dd->dev, |
| "msm_bus_scale_pdata.usecases memory allocation failed"); |
| goto path_init_err; |
| } |
| |
| dd->clk_path_vote.pdata = devm_kzalloc(dd->dev, |
| sizeof(*dd->clk_path_vote.pdata), |
| GFP_KERNEL); |
| if (!dd->clk_path_vote.pdata) { |
| dev_err(dd->dev, |
| "msm_bus_scale_pdata memory allocation failed"); |
| goto path_init_err; |
| } |
| |
| paths[MSM_SPI_CLK_PATH_SUSPEND_VEC] = (struct msm_bus_vectors) { |
| .src = dd->pdata->master_id, |
| .dst = MSM_BUS_SLAVE_EBI_CH0, |
| .ab = 0, |
| .ib = 0, |
| }; |
| |
| paths[MSM_SPI_CLK_PATH_RESUME_VEC] = (struct msm_bus_vectors) { |
| .src = dd->pdata->master_id, |
| .dst = MSM_BUS_SLAVE_EBI_CH0, |
| .ab = MSM_SPI_CLK_PATH_AVRG_BW(dd), |
| .ib = MSM_SPI_CLK_PATH_BRST_BW(dd), |
| }; |
| |
| usecases[MSM_SPI_CLK_PATH_SUSPEND_VEC] = (struct msm_bus_paths) { |
| .num_paths = 1, |
| .vectors = &paths[MSM_SPI_CLK_PATH_SUSPEND_VEC], |
| }; |
| |
| usecases[MSM_SPI_CLK_PATH_RESUME_VEC] = (struct msm_bus_paths) { |
| .num_paths = 1, |
| .vectors = &paths[MSM_SPI_CLK_PATH_RESUME_VEC], |
| }; |
| |
| *dd->clk_path_vote.pdata = (struct msm_bus_scale_pdata) { |
| .active_only = dd->pdata->active_only, |
| .name = dev_name(dd->dev), |
| .num_usecases = 2, |
| .usecase = usecases, |
| }; |
| |
| return 0; |
| |
| path_init_err: |
| devm_kfree(dd->dev, paths); |
| devm_kfree(dd->dev, usecases); |
| devm_kfree(dd->dev, dd->clk_path_vote.pdata); |
| dd->clk_path_vote.pdata = NULL; |
| return -ENOMEM; |
| } |
| |
| /** |
| * msm_spi_clk_path_postponed_register: reg with bus-scaling after it is probed |
| * |
| * @return zero on success |
| * |
| * Workaround: SPI driver may be probed before the bus scaling driver. Calling |
| * msm_bus_scale_register_client() will fail if the bus scaling driver is not |
| * ready yet. Thus, this function should be called not from probe but from a |
| * later context. Also, this function may be called more then once before |
| * register succeed. At this case only one error message will be logged. At boot |
| * time all clocks are on, so earlier SPI transactions should succeed. |
| */ |
| static int msm_spi_clk_path_postponed_register(struct msm_spi *dd) |
| { |
| dd->clk_path_vote.client_hdl = msm_bus_scale_register_client( |
| dd->clk_path_vote.pdata); |
| |
| if (dd->clk_path_vote.client_hdl) { |
| if (dd->clk_path_vote.reg_err) { |
| /* log a success message if an error msg was logged */ |
| dd->clk_path_vote.reg_err = false; |
| dev_info(dd->dev, |
| "msm_bus_scale_register_client(mstr-id:%d " |
| "actv-only:%d):0x%x", |
| dd->pdata->master_id, dd->pdata->active_only, |
| dd->clk_path_vote.client_hdl); |
| } |
| |
| if (dd->pdata->active_only) |
| msm_spi_clk_path_vote(dd); |
| } else { |
| /* guard to log only one error on multiple failure */ |
| if (!dd->clk_path_vote.reg_err) { |
| dd->clk_path_vote.reg_err = true; |
| |
| dev_info(dd->dev, |
| "msm_bus_scale_register_client(mstr-id:%d " |
| "actv-only:%d):0", |
| dd->pdata->master_id, dd->pdata->active_only); |
| } |
| } |
| |
| return dd->clk_path_vote.client_hdl ? 0 : -EAGAIN; |
| } |
| |
| static void msm_spi_clk_path_init(struct msm_spi *dd) |
| { |
| /* |
| * bail out if path voting is diabled (master_id == 0) or if it is |
| * already registered (client_hdl != 0) |
| */ |
| if (!dd->pdata->master_id || dd->clk_path_vote.client_hdl) |
| return; |
| |
| /* if fail once then try no more */ |
| if (!dd->clk_path_vote.pdata && msm_spi_clk_path_init_structs(dd)) { |
| dd->pdata->master_id = 0; |
| return; |
| }; |
| |
| /* on failure try again later */ |
| if (msm_spi_clk_path_postponed_register(dd)) |
| return; |
| |
| if (dd->pdata->active_only) |
| msm_spi_clk_path_vote(dd); |
| } |
| |
| static int msm_spi_calculate_size(int *fifo_size, |
| int *block_size, |
| int block, |
| int mult) |
| { |
| int words; |
| |
| switch (block) { |
| case 0: |
| words = 1; /* 4 bytes */ |
| break; |
| case 1: |
| words = 4; /* 16 bytes */ |
| break; |
| case 2: |
| words = 8; /* 32 bytes */ |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (mult) { |
| case 0: |
| *fifo_size = words * 2; |
| break; |
| case 1: |
| *fifo_size = words * 4; |
| break; |
| case 2: |
| *fifo_size = words * 8; |
| break; |
| case 3: |
| *fifo_size = words * 16; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *block_size = words * sizeof(u32); /* in bytes */ |
| return 0; |
| } |
| |
| static void get_next_transfer(struct msm_spi *dd) |
| { |
| struct spi_transfer *t = dd->cur_transfer; |
| |
| if (t->transfer_list.next != &dd->cur_msg->transfers) { |
| dd->cur_transfer = list_entry(t->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| dd->write_buf = dd->cur_transfer->tx_buf; |
| dd->read_buf = dd->cur_transfer->rx_buf; |
| } |
| } |
| |
| static void __init msm_spi_calculate_fifo_size(struct msm_spi *dd) |
| { |
| u32 spi_iom; |
| int block; |
| int mult; |
| |
| spi_iom = readl_relaxed(dd->base + SPI_IO_MODES); |
| |
| block = (spi_iom & SPI_IO_M_INPUT_BLOCK_SIZE) >> INPUT_BLOCK_SZ_SHIFT; |
| mult = (spi_iom & SPI_IO_M_INPUT_FIFO_SIZE) >> INPUT_FIFO_SZ_SHIFT; |
| if (msm_spi_calculate_size(&dd->input_fifo_size, &dd->input_block_size, |
| block, mult)) { |
| goto fifo_size_err; |
| } |
| |
| block = (spi_iom & SPI_IO_M_OUTPUT_BLOCK_SIZE) >> OUTPUT_BLOCK_SZ_SHIFT; |
| mult = (spi_iom & SPI_IO_M_OUTPUT_FIFO_SIZE) >> OUTPUT_FIFO_SZ_SHIFT; |
| if (msm_spi_calculate_size(&dd->output_fifo_size, |
| &dd->output_block_size, block, mult)) { |
| goto fifo_size_err; |
| } |
| if (dd->qup_ver == SPI_QUP_VERSION_NONE) { |
| /* DM mode is not available for this block size */ |
| if (dd->input_block_size == 4 || dd->output_block_size == 4) |
| dd->use_dma = 0; |
| |
| if (dd->use_dma) { |
| dd->input_burst_size = max(dd->input_block_size, |
| DM_BURST_SIZE); |
| dd->output_burst_size = max(dd->output_block_size, |
| DM_BURST_SIZE); |
| } |
| } |
| |
| return; |
| |
| fifo_size_err: |
| dd->use_dma = 0; |
| pr_err("%s: invalid FIFO size, SPI_IO_MODES=0x%x\n", __func__, spi_iom); |
| return; |
| } |
| |
| static void msm_spi_read_word_from_fifo(struct msm_spi *dd) |
| { |
| u32 data_in; |
| int i; |
| int shift; |
| |
| data_in = readl_relaxed(dd->base + SPI_INPUT_FIFO); |
| if (dd->read_buf) { |
| for (i = 0; (i < dd->bytes_per_word) && |
| dd->rx_bytes_remaining; i++) { |
| /* The data format depends on bytes_per_word: |
| 4 bytes: 0x12345678 |
| 3 bytes: 0x00123456 |
| 2 bytes: 0x00001234 |
| 1 byte : 0x00000012 |
| */ |
| shift = 8 * (dd->bytes_per_word - i - 1); |
| *dd->read_buf++ = (data_in & (0xFF << shift)) >> shift; |
| dd->rx_bytes_remaining--; |
| } |
| } else { |
| if (dd->rx_bytes_remaining >= dd->bytes_per_word) |
| dd->rx_bytes_remaining -= dd->bytes_per_word; |
| else |
| dd->rx_bytes_remaining = 0; |
| } |
| |
| dd->read_xfr_cnt++; |
| if (dd->multi_xfr) { |
| if (!dd->rx_bytes_remaining) |
| dd->read_xfr_cnt = 0; |
| else if ((dd->read_xfr_cnt * dd->bytes_per_word) == |
| dd->read_len) { |
| struct spi_transfer *t = dd->cur_rx_transfer; |
| if (t->transfer_list.next != &dd->cur_msg->transfers) { |
| t = list_entry(t->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| dd->read_buf = t->rx_buf; |
| dd->read_len = t->len; |
| dd->read_xfr_cnt = 0; |
| dd->cur_rx_transfer = t; |
| } |
| } |
| } |
| } |
| |
| static inline bool msm_spi_is_valid_state(struct msm_spi *dd) |
| { |
| u32 spi_op = readl_relaxed(dd->base + SPI_STATE); |
| |
| return spi_op & SPI_OP_STATE_VALID; |
| } |
| |
| static inline void msm_spi_udelay(unsigned long delay_usecs) |
| { |
| /* |
| * For smaller values of delay, context switch time |
| * would negate the usage of usleep |
| */ |
| if (delay_usecs > 20) |
| usleep_range(delay_usecs, delay_usecs); |
| else if (delay_usecs) |
| udelay(delay_usecs); |
| } |
| |
| static inline int msm_spi_wait_valid(struct msm_spi *dd) |
| { |
| unsigned long delay = 0; |
| unsigned long timeout = 0; |
| |
| if (dd->clock_speed == 0) |
| return -EINVAL; |
| /* |
| * Based on the SPI clock speed, sufficient time |
| * should be given for the SPI state transition |
| * to occur |
| */ |
| delay = (10 * USEC_PER_SEC) / dd->clock_speed; |
| /* |
| * For small delay values, the default timeout would |
| * be one jiffy |
| */ |
| if (delay < SPI_DELAY_THRESHOLD) |
| delay = SPI_DELAY_THRESHOLD; |
| |
| /* Adding one to round off to the nearest jiffy */ |
| timeout = jiffies + msecs_to_jiffies(delay * SPI_DEFAULT_TIMEOUT) + 1; |
| while (!msm_spi_is_valid_state(dd)) { |
| if (time_after(jiffies, timeout)) { |
| if (!msm_spi_is_valid_state(dd)) { |
| if (dd->cur_msg) |
| dd->cur_msg->status = -EIO; |
| dev_err(dd->dev, "%s: SPI operational state" |
| "not valid\n", __func__); |
| return -ETIMEDOUT; |
| } else |
| return 0; |
| } |
| msm_spi_udelay(delay); |
| } |
| return 0; |
| } |
| |
| static inline int msm_spi_set_state(struct msm_spi *dd, |
| enum msm_spi_state state) |
| { |
| enum msm_spi_state cur_state; |
| if (msm_spi_wait_valid(dd)) |
| return -EIO; |
| cur_state = readl_relaxed(dd->base + SPI_STATE); |
| /* Per spec: |
| For PAUSE_STATE to RESET_STATE, two writes of (10) are required */ |
| if (((cur_state & SPI_OP_STATE) == SPI_OP_STATE_PAUSE) && |
| (state == SPI_OP_STATE_RESET)) { |
| writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE); |
| writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE); |
| } else { |
| writel_relaxed((cur_state & ~SPI_OP_STATE) | state, |
| dd->base + SPI_STATE); |
| } |
| if (msm_spi_wait_valid(dd)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /** |
| * msm_spi_set_bpw_and_no_io_flags: configure N, and no-input/no-output flags |
| */ |
| static inline void |
| msm_spi_set_bpw_and_no_io_flags(struct msm_spi *dd, u32 *config, int n) |
| { |
| *config &= ~(SPI_NO_INPUT|SPI_NO_OUTPUT); |
| |
| if (n != (*config & SPI_CFG_N)) |
| *config = (*config & ~SPI_CFG_N) | n; |
| |
| if (((dd->mode == SPI_DMOV_MODE) && (!dd->read_len)) |
| || (dd->mode == SPI_BAM_MODE)) { |
| if (dd->read_buf == NULL) |
| *config |= SPI_NO_INPUT; |
| if (dd->write_buf == NULL) |
| *config |= SPI_NO_OUTPUT; |
| } |
| } |
| |
| /** |
| * msm_spi_calc_spi_config_loopback_and_input_first: Calculate the values that |
| * should be updated into SPI_CONFIG's LOOPBACK and INPUT_FIRST flags |
| * @return calculatd value for SPI_CONFIG |
| */ |
| static u32 |
| msm_spi_calc_spi_config_loopback_and_input_first(u32 spi_config, u8 mode) |
| { |
| if (mode & SPI_LOOP) |
| spi_config |= SPI_CFG_LOOPBACK; |
| else |
| spi_config &= ~SPI_CFG_LOOPBACK; |
| |
| if (mode & SPI_CPHA) |
| spi_config &= ~SPI_CFG_INPUT_FIRST; |
| else |
| spi_config |= SPI_CFG_INPUT_FIRST; |
| |
| return spi_config; |
| } |
| |
| /** |
| * msm_spi_set_spi_config: prepares register SPI_CONFIG to process the |
| * next transfer |
| */ |
| static void msm_spi_set_spi_config(struct msm_spi *dd, int bpw) |
| { |
| u32 spi_config = readl_relaxed(dd->base + SPI_CONFIG); |
| spi_config = msm_spi_calc_spi_config_loopback_and_input_first( |
| spi_config, dd->cur_msg->spi->mode); |
| |
| if (dd->qup_ver == SPI_QUP_VERSION_NONE) |
| /* flags removed from SPI_CONFIG in QUP version-2 */ |
| msm_spi_set_bpw_and_no_io_flags(dd, &spi_config, bpw-1); |
| else if (dd->mode == SPI_BAM_MODE) |
| spi_config |= SPI_CFG_INPUT_FIRST; |
| |
| /* |
| * HS_MODE improves signal stability for spi-clk high rates |
| * but is invalid in LOOPBACK mode. |
| */ |
| if ((dd->clock_speed >= SPI_HS_MIN_RATE) && |
| !(dd->cur_msg->spi->mode & SPI_LOOP)) |
| spi_config |= SPI_CFG_HS_MODE; |
| else |
| spi_config &= ~SPI_CFG_HS_MODE; |
| |
| writel_relaxed(spi_config, dd->base + SPI_CONFIG); |
| } |
| |
| /** |
| * msm_spi_set_mx_counts: set SPI_MX_INPUT_COUNT and SPI_MX_INPUT_COUNT |
| * for FIFO-mode. set SPI_MX_INPUT_COUNT and SPI_MX_OUTPUT_COUNT for |
| * BAM and DMOV modes. |
| * @n_words The number of reads/writes of size N. |
| */ |
| static void msm_spi_set_mx_counts(struct msm_spi *dd, u32 n_words) |
| { |
| /* |
| * n_words cannot exceed fifo_size, and only one READ COUNT |
| * interrupt is generated per transaction, so for transactions |
| * larger than fifo size READ COUNT must be disabled. |
| * For those transactions we usually move to Data Mover mode. |
| */ |
| if (dd->mode == SPI_FIFO_MODE) { |
| if (n_words <= dd->input_fifo_size) { |
| writel_relaxed(n_words, |
| dd->base + SPI_MX_READ_COUNT); |
| msm_spi_set_write_count(dd, n_words); |
| } else { |
| writel_relaxed(0, dd->base + SPI_MX_READ_COUNT); |
| msm_spi_set_write_count(dd, 0); |
| } |
| if (dd->qup_ver == SPI_QUP_VERSION_BFAM) { |
| /* must be zero for FIFO */ |
| writel_relaxed(0, dd->base + SPI_MX_INPUT_COUNT); |
| writel_relaxed(0, dd->base + SPI_MX_OUTPUT_COUNT); |
| } |
| } else { |
| /* must be zero for BAM and DMOV */ |
| writel_relaxed(0, dd->base + SPI_MX_READ_COUNT); |
| msm_spi_set_write_count(dd, 0); |
| |
| /* |
| * for DMA transfers, both QUP_MX_INPUT_COUNT and |
| * QUP_MX_OUTPUT_COUNT must be zero to all cases but one. |
| * That case is a non-balanced transfer when there is |
| * only a read_buf. |
| */ |
| if (dd->qup_ver == SPI_QUP_VERSION_BFAM) { |
| if (dd->write_buf) |
| writel_relaxed(0, |
| dd->base + SPI_MX_INPUT_COUNT); |
| else |
| writel_relaxed(n_words, |
| dd->base + SPI_MX_INPUT_COUNT); |
| |
| writel_relaxed(0, dd->base + SPI_MX_OUTPUT_COUNT); |
| } |
| } |
| } |
| |
| /** |
| * msm_spi_bam_begin_transfer: transfer dd->tx_bytes_remaining bytes |
| * using BAM. |
| * @brief BAM can transfer SPI_MAX_TRFR_BTWN_RESETS byte at a single |
| * transfer. Between transfer QUP must change to reset state. A loop is |
| * issuing a single BAM transfer at a time. If another tsranfer is |
| * required, it waits for the trasfer to finish, then moving to reset |
| * state, and back to run state to issue the next transfer. |
| * The function dose not wait for the last transfer to end, or if only |
| * a single transfer is required, the function dose not wait for it to |
| * end. |
| * @timeout max time in jiffies to wait for a transfer to finish. |
| * @return zero on success |
| */ |
| static int |
| msm_spi_bam_begin_transfer(struct msm_spi *dd, u32 timeout, u8 bpw) |
| { |
| u32 bytes_to_send, bytes_sent, n_words_xfr, cons_flags, prod_flags; |
| int ret; |
| /* |
| * QUP must move to reset mode every 64K-1 bytes of transfer |
| * (counter is 16 bit) |
| */ |
| if (dd->tx_bytes_remaining > SPI_MAX_TRFR_BTWN_RESETS) { |
| /* assert chip select unconditionally */ |
| u32 spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL); |
| if (!(spi_ioc & SPI_IO_C_FORCE_CS)) |
| writel_relaxed(spi_ioc | SPI_IO_C_FORCE_CS, |
| dd->base + SPI_IO_CONTROL); |
| } |
| |
| /* Following flags are required since we are waiting on all transfers */ |
| cons_flags = SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD; |
| /* |
| * on a balanced transaction, BAM will set the flags on the producer |
| * pipe based on the flags set on the consumer pipe |
| */ |
| prod_flags = (dd->write_buf) ? 0 : cons_flags; |
| |
| while (dd->tx_bytes_remaining > 0) { |
| bytes_sent = dd->cur_transfer->len - dd->tx_bytes_remaining; |
| bytes_to_send = min_t(u32, dd->tx_bytes_remaining |
| , SPI_MAX_TRFR_BTWN_RESETS); |
| n_words_xfr = DIV_ROUND_UP(bytes_to_send |
| , dd->bytes_per_word); |
| |
| msm_spi_set_mx_counts(dd, n_words_xfr); |
| |
| ret = msm_spi_set_state(dd, SPI_OP_STATE_RUN); |
| if (ret < 0) { |
| dev_err(dd->dev, |
| "%s: Failed to set QUP state to run", |
| __func__); |
| goto xfr_err; |
| } |
| |
| /* enqueue read buffer in BAM */ |
| if (dd->read_buf) { |
| ret = sps_transfer_one(dd->bam.prod.handle, |
| dd->cur_transfer->rx_dma + bytes_sent, |
| bytes_to_send, dd, prod_flags); |
| if (ret < 0) { |
| dev_err(dd->dev, |
| "%s: Failed to queue producer BAM transfer", |
| __func__); |
| goto xfr_err; |
| } |
| } |
| |
| /* enqueue write buffer in BAM */ |
| if (dd->write_buf) { |
| ret = sps_transfer_one(dd->bam.cons.handle, |
| dd->cur_transfer->tx_dma + bytes_sent, |
| bytes_to_send, dd, cons_flags); |
| if (ret < 0) { |
| dev_err(dd->dev, |
| "%s: Failed to queue consumer BAM transfer", |
| __func__); |
| goto xfr_err; |
| } |
| } |
| |
| dd->tx_bytes_remaining -= bytes_to_send; |
| |
| /* move to reset state after SPI_MAX_TRFR_BTWN_RESETS */ |
| if (dd->tx_bytes_remaining > 0) { |
| if (!wait_for_completion_timeout( |
| &dd->transfer_complete, timeout)) { |
| dev_err(dd->dev, |
| "%s: SPI transaction timeout", |
| __func__); |
| dd->cur_msg->status = -EIO; |
| ret = -EIO; |
| goto xfr_err; |
| } |
| ret = msm_spi_set_state(dd, SPI_OP_STATE_RESET); |
| if (ret < 0) { |
| dev_err(dd->dev, |
| "%s: Failed to set QUP state to reset", |
| __func__); |
| goto xfr_err; |
| } |
| init_completion(&dd->transfer_complete); |
| } |
| } |
| return 0; |
| |
| xfr_err: |
| return ret; |
| } |
| |
| static void msm_spi_setup_dm_transfer(struct msm_spi *dd) |
| { |
| dmov_box *box; |
| int bytes_to_send, bytes_sent; |
| int tx_num_rows, rx_num_rows; |
| u32 num_transfers; |
| |
| atomic_set(&dd->rx_irq_called, 0); |
| atomic_set(&dd->tx_irq_called, 0); |
| if (dd->write_len && !dd->read_len) { |
| /* WR-WR transfer */ |
| bytes_sent = dd->cur_msg_len - dd->tx_bytes_remaining; |
| dd->write_buf = dd->temp_buf; |
| } else { |
| bytes_sent = dd->cur_transfer->len - dd->tx_bytes_remaining; |
| /* For WR-RD transfer, bytes_sent can be negative */ |
| if (bytes_sent < 0) |
| bytes_sent = 0; |
| } |
| /* We'll send in chunks of SPI_MAX_LEN if larger than |
| * 4K bytes for targets that have only 12 bits in |
| * QUP_MAX_OUTPUT_CNT register. If the target supports |
| * more than 12bits then we send the data in chunks of |
| * the infinite_mode value that is defined in the |
| * corresponding board file. |
| */ |
| if (!dd->pdata->infinite_mode) |
| dd->max_trfr_len = SPI_MAX_LEN; |
| else |
| dd->max_trfr_len = (dd->pdata->infinite_mode) * |
| (dd->bytes_per_word); |
| |
| bytes_to_send = min_t(u32, dd->tx_bytes_remaining, |
| dd->max_trfr_len); |
| |
| num_transfers = DIV_ROUND_UP(bytes_to_send, dd->bytes_per_word); |
| dd->tx_unaligned_len = bytes_to_send % dd->output_burst_size; |
| dd->rx_unaligned_len = bytes_to_send % dd->input_burst_size; |
| tx_num_rows = bytes_to_send / dd->output_burst_size; |
| rx_num_rows = bytes_to_send / dd->input_burst_size; |
| |
| dd->mode = SPI_DMOV_MODE; |
| |
| if (tx_num_rows) { |
| /* src in 16 MSB, dst in 16 LSB */ |
| box = &dd->tx_dmov_cmd->box; |
| box->src_row_addr = dd->cur_transfer->tx_dma + bytes_sent; |
| box->src_dst_len |
| = (dd->output_burst_size << 16) | dd->output_burst_size; |
| box->num_rows = (tx_num_rows << 16) | tx_num_rows; |
| box->row_offset = (dd->output_burst_size << 16) | 0; |
| |
| dd->tx_dmov_cmd->cmd_ptr = CMD_PTR_LP | |
| DMOV_CMD_ADDR(dd->tx_dmov_cmd_dma + |
| offsetof(struct spi_dmov_cmd, box)); |
| } else { |
| dd->tx_dmov_cmd->cmd_ptr = CMD_PTR_LP | |
| DMOV_CMD_ADDR(dd->tx_dmov_cmd_dma + |
| offsetof(struct spi_dmov_cmd, single_pad)); |
| } |
| |
| if (rx_num_rows) { |
| /* src in 16 MSB, dst in 16 LSB */ |
| box = &dd->rx_dmov_cmd->box; |
| box->dst_row_addr = dd->cur_transfer->rx_dma + bytes_sent; |
| box->src_dst_len |
| = (dd->input_burst_size << 16) | dd->input_burst_size; |
| box->num_rows = (rx_num_rows << 16) | rx_num_rows; |
| box->row_offset = (0 << 16) | dd->input_burst_size; |
| |
| dd->rx_dmov_cmd->cmd_ptr = CMD_PTR_LP | |
| DMOV_CMD_ADDR(dd->rx_dmov_cmd_dma + |
| offsetof(struct spi_dmov_cmd, box)); |
| } else { |
| dd->rx_dmov_cmd->cmd_ptr = CMD_PTR_LP | |
| DMOV_CMD_ADDR(dd->rx_dmov_cmd_dma + |
| offsetof(struct spi_dmov_cmd, single_pad)); |
| } |
| |
| if (!dd->tx_unaligned_len) { |
| dd->tx_dmov_cmd->box.cmd |= CMD_LC; |
| } else { |
| dmov_s *tx_cmd = &(dd->tx_dmov_cmd->single_pad); |
| u32 tx_offset = dd->cur_transfer->len - dd->tx_unaligned_len; |
| |
| if ((dd->multi_xfr) && (dd->read_len <= 0)) |
| tx_offset = dd->cur_msg_len - dd->tx_unaligned_len; |
| |
| dd->tx_dmov_cmd->box.cmd &= ~CMD_LC; |
| |
| memset(dd->tx_padding, 0, dd->output_burst_size); |
| if (dd->write_buf) |
| memcpy(dd->tx_padding, dd->write_buf + tx_offset, |
| dd->tx_unaligned_len); |
| |
| tx_cmd->src = dd->tx_padding_dma; |
| tx_cmd->len = dd->output_burst_size; |
| } |
| |
| if (!dd->rx_unaligned_len) { |
| dd->rx_dmov_cmd->box.cmd |= CMD_LC; |
| } else { |
| dmov_s *rx_cmd = &(dd->rx_dmov_cmd->single_pad); |
| dd->rx_dmov_cmd->box.cmd &= ~CMD_LC; |
| |
| memset(dd->rx_padding, 0, dd->input_burst_size); |
| rx_cmd->dst = dd->rx_padding_dma; |
| rx_cmd->len = dd->input_burst_size; |
| } |
| |
| /* This also takes care of the padding dummy buf |
| Since this is set to the correct length, the |
| dummy bytes won't be actually sent */ |
| if (dd->multi_xfr) { |
| u32 write_transfers = 0; |
| u32 read_transfers = 0; |
| |
| if (dd->write_len > 0) { |
| write_transfers = DIV_ROUND_UP(dd->write_len, |
| dd->bytes_per_word); |
| writel_relaxed(write_transfers, |
| dd->base + SPI_MX_OUTPUT_COUNT); |
| } |
| if (dd->read_len > 0) { |
| /* |
| * The read following a write transfer must take |
| * into account, that the bytes pertaining to |
| * the write transfer needs to be discarded, |
| * before the actual read begins. |
| */ |
| read_transfers = DIV_ROUND_UP(dd->read_len + |
| dd->write_len, |
| dd->bytes_per_word); |
| writel_relaxed(read_transfers, |
| dd->base + SPI_MX_INPUT_COUNT); |
| } |
| } else { |
| if (dd->write_buf) |
| writel_relaxed(num_transfers, |
| dd->base + SPI_MX_OUTPUT_COUNT); |
| if (dd->read_buf) |
| writel_relaxed(num_transfers, |
| dd->base + SPI_MX_INPUT_COUNT); |
| } |
| } |
| |
| static void msm_spi_enqueue_dm_commands(struct msm_spi *dd) |
| { |
| dma_coherent_pre_ops(); |
| if (dd->write_buf) |
| msm_dmov_enqueue_cmd(dd->tx_dma_chan, &dd->tx_hdr); |
| if (dd->read_buf) |
| msm_dmov_enqueue_cmd(dd->rx_dma_chan, &dd->rx_hdr); |
| } |
| |
| /* SPI core on targets that does not support infinite mode can send |
| maximum of 4K transfers or 64K transfers depending up on size of |
| MAX_OUTPUT_COUNT register, Therefore, we are sending in several |
| chunks. Upon completion we send the next chunk, or complete the |
| transfer if everything is finished. On targets that support |
| infinite mode, we send all the bytes in as single chunk. |
| */ |
| static int msm_spi_dm_send_next(struct msm_spi *dd) |
| { |
| /* By now we should have sent all the bytes in FIFO mode, |
| * However to make things right, we'll check anyway. |
| */ |
| if (dd->mode != SPI_DMOV_MODE) |
| return 0; |
| |
| /* On targets which does not support infinite mode, |
| We need to send more chunks, if we sent max last time */ |
| if (dd->tx_bytes_remaining > dd->max_trfr_len) { |
| dd->tx_bytes_remaining -= dd->max_trfr_len; |
| if (msm_spi_set_state(dd, SPI_OP_STATE_RESET)) |
| return 0; |
| dd->read_len = dd->write_len = 0; |
| msm_spi_setup_dm_transfer(dd); |
| msm_spi_enqueue_dm_commands(dd); |
| if (msm_spi_set_state(dd, SPI_OP_STATE_RUN)) |
| return 0; |
| return 1; |
| } else if (dd->read_len && dd->write_len) { |
| dd->tx_bytes_remaining -= dd->cur_transfer->len; |
| if (list_is_last(&dd->cur_transfer->transfer_list, |
| &dd->cur_msg->transfers)) |
| return 0; |
| get_next_transfer(dd); |
| if (msm_spi_set_state(dd, SPI_OP_STATE_PAUSE)) |
| return 0; |
| dd->tx_bytes_remaining = dd->read_len + dd->write_len; |
| dd->read_buf = dd->temp_buf; |
| dd->read_len = dd->write_len = -1; |
| msm_spi_setup_dm_transfer(dd); |
| msm_spi_enqueue_dm_commands(dd); |
| if (msm_spi_set_state(dd, SPI_OP_STATE_RUN)) |
| return 0; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline void msm_spi_ack_transfer(struct msm_spi *dd) |
| { |
| writel_relaxed(SPI_OP_MAX_INPUT_DONE_FLAG | |
| SPI_OP_MAX_OUTPUT_DONE_FLAG, |
| dd->base + SPI_OPERATIONAL); |
| /* Ensure done flag was cleared before proceeding further */ |
| mb(); |
| } |
| |
| /* Figure which irq occured and call the relevant functions */ |
| static inline irqreturn_t msm_spi_qup_irq(int irq, void *dev_id) |
| { |
| u32 op, ret = IRQ_NONE; |
| struct msm_spi *dd = dev_id; |
| |
| if (pm_runtime_suspended(dd->dev)) { |
| dev_warn(dd->dev, "QUP: pm runtime suspend, irq:%d\n", irq); |
| return ret; |
| } |
| if (readl_relaxed(dd->base + SPI_ERROR_FLAGS) || |
| readl_relaxed(dd->base + QUP_ERROR_FLAGS)) { |
| struct spi_master *master = dev_get_drvdata(dd->dev); |
| ret |= msm_spi_error_irq(irq, master); |
| } |
| |
| op = readl_relaxed(dd->base + SPI_OPERATIONAL); |
| if (op & SPI_OP_INPUT_SERVICE_FLAG) { |
| writel_relaxed(SPI_OP_INPUT_SERVICE_FLAG, |
| dd->base + SPI_OPERATIONAL); |
| /* |
| * Ensure service flag was cleared before further |
| * processing of interrupt. |
| */ |
| mb(); |
| ret |= msm_spi_input_irq(irq, dev_id); |
| } |
| |
| if (op & SPI_OP_OUTPUT_SERVICE_FLAG) { |
| writel_relaxed(SPI_OP_OUTPUT_SERVICE_FLAG, |
| dd->base + SPI_OPERATIONAL); |
| /* |
| * Ensure service flag was cleared before further |
| * processing of interrupt. |
| */ |
| mb(); |
| ret |= msm_spi_output_irq(irq, dev_id); |
| } |
| |
| if (dd->done) { |
| complete(&dd->transfer_complete); |
| dd->done = 0; |
| } |
| return ret; |
| } |
| |
| static irqreturn_t msm_spi_input_irq(int irq, void *dev_id) |
| { |
| struct msm_spi *dd = dev_id; |
| |
| dd->stat_rx++; |
| |
| if (dd->mode == SPI_MODE_NONE) |
| return IRQ_HANDLED; |
| |
| if (dd->mode == SPI_DMOV_MODE) { |
| u32 op = readl_relaxed(dd->base + SPI_OPERATIONAL); |
| if ((!dd->read_buf || op & SPI_OP_MAX_INPUT_DONE_FLAG) && |
| (!dd->write_buf || op & SPI_OP_MAX_OUTPUT_DONE_FLAG)) { |
| msm_spi_ack_transfer(dd); |
| if (dd->rx_unaligned_len == 0) { |
| if (atomic_inc_return(&dd->rx_irq_called) == 1) |
| return IRQ_HANDLED; |
| } |
| msm_spi_complete(dd); |
| return IRQ_HANDLED; |
| } |
| return IRQ_NONE; |
| } |
| |
| if (dd->mode == SPI_FIFO_MODE) { |
| while ((readl_relaxed(dd->base + SPI_OPERATIONAL) & |
| SPI_OP_IP_FIFO_NOT_EMPTY) && |
| (dd->rx_bytes_remaining > 0)) { |
| msm_spi_read_word_from_fifo(dd); |
| } |
| if (dd->rx_bytes_remaining == 0) |
| msm_spi_complete(dd); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void msm_spi_write_word_to_fifo(struct msm_spi *dd) |
| { |
| u32 word; |
| u8 byte; |
| int i; |
| |
| word = 0; |
| if (dd->write_buf) { |
| for (i = 0; (i < dd->bytes_per_word) && |
| dd->tx_bytes_remaining; i++) { |
| dd->tx_bytes_remaining--; |
| byte = *dd->write_buf++; |
| word |= (byte << (BITS_PER_BYTE * (3 - i))); |
| } |
| } else |
| if (dd->tx_bytes_remaining > dd->bytes_per_word) |
| dd->tx_bytes_remaining -= dd->bytes_per_word; |
| else |
| dd->tx_bytes_remaining = 0; |
| dd->write_xfr_cnt++; |
| if (dd->multi_xfr) { |
| if (!dd->tx_bytes_remaining) |
| dd->write_xfr_cnt = 0; |
| else if ((dd->write_xfr_cnt * dd->bytes_per_word) == |
| dd->write_len) { |
| struct spi_transfer *t = dd->cur_tx_transfer; |
| if (t->transfer_list.next != &dd->cur_msg->transfers) { |
| t = list_entry(t->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| dd->write_buf = t->tx_buf; |
| dd->write_len = t->len; |
| dd->write_xfr_cnt = 0; |
| dd->cur_tx_transfer = t; |
| } |
| } |
| } |
| writel_relaxed(word, dd->base + SPI_OUTPUT_FIFO); |
| } |
| |
| static inline void msm_spi_write_rmn_to_fifo(struct msm_spi *dd) |
| { |
| int count = 0; |
| |
| while ((dd->tx_bytes_remaining > 0) && (count < dd->input_fifo_size) && |
| !(readl_relaxed(dd->base + SPI_OPERATIONAL) & |
| SPI_OP_OUTPUT_FIFO_FULL)) { |
| msm_spi_write_word_to_fifo(dd); |
| count++; |
| } |
| } |
| |
| static irqreturn_t msm_spi_output_irq(int irq, void *dev_id) |
| { |
| struct msm_spi *dd = dev_id; |
| |
| dd->stat_tx++; |
| |
| if (dd->mode == SPI_MODE_NONE) |
| return IRQ_HANDLED; |
| |
| if (dd->mode == SPI_DMOV_MODE) { |
| /* TX_ONLY transaction is handled here |
| This is the only place we send complete at tx and not rx */ |
| if (dd->read_buf == NULL && |
| readl_relaxed(dd->base + SPI_OPERATIONAL) & |
| SPI_OP_MAX_OUTPUT_DONE_FLAG) { |
| msm_spi_ack_transfer(dd); |
| if (atomic_inc_return(&dd->tx_irq_called) == 1) |
| return IRQ_HANDLED; |
| msm_spi_complete(dd); |
| return IRQ_HANDLED; |
| } |
| return IRQ_NONE; |
| } |
| |
| /* Output FIFO is empty. Transmit any outstanding write data. */ |
| if (dd->mode == SPI_FIFO_MODE) |
| msm_spi_write_rmn_to_fifo(dd); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t msm_spi_error_irq(int irq, void *dev_id) |
| { |
| struct spi_master *master = dev_id; |
| struct msm_spi *dd = spi_master_get_devdata(master); |
| u32 spi_err; |
| |
| spi_err = readl_relaxed(dd->base + SPI_ERROR_FLAGS); |
| if (spi_err & SPI_ERR_OUTPUT_OVER_RUN_ERR) |
| dev_warn(master->dev.parent, "SPI output overrun error\n"); |
| if (spi_err & SPI_ERR_INPUT_UNDER_RUN_ERR) |
| dev_warn(master->dev.parent, "SPI input underrun error\n"); |
| if (spi_err & SPI_ERR_OUTPUT_UNDER_RUN_ERR) |
| dev_warn(master->dev.parent, "SPI output underrun error\n"); |
| msm_spi_get_clk_err(dd, &spi_err); |
| if (spi_err & SPI_ERR_CLK_OVER_RUN_ERR) |
| dev_warn(master->dev.parent, "SPI clock overrun error\n"); |
| if (spi_err & SPI_ERR_CLK_UNDER_RUN_ERR) |
| dev_warn(master->dev.parent, "SPI clock underrun error\n"); |
| msm_spi_clear_error_flags(dd); |
| msm_spi_ack_clk_err(dd); |
| /* Ensure clearing of QUP_ERROR_FLAGS was completed */ |
| mb(); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * msm_spi_dma_map_buffers: prepares buffer for DMA transfer |
| * @return zero on success or negative error code |
| * |
| * calls dma_map_single() on the read/write buffers, effectively invalidating |
| * their cash entries. for For WR-WR and WR-RD transfers, allocates temporary |
| * buffer and copy the data to/from the client buffers |
| */ |
| static int msm_spi_dma_map_buffers(struct msm_spi *dd) |
| { |
| struct device *dev; |
| struct spi_transfer *first_xfr; |
| struct spi_transfer *nxt_xfr = NULL; |
| void *tx_buf, *rx_buf; |
| unsigned tx_len, rx_len; |
| int ret = -EINVAL; |
| |
| dev = &dd->cur_msg->spi->dev; |
| first_xfr = dd->cur_transfer; |
| tx_buf = (void *)first_xfr->tx_buf; |
| rx_buf = first_xfr->rx_buf; |
| tx_len = rx_len = first_xfr->len; |
| |
| /* |
| * For WR-WR and WR-RD transfers, we allocate our own temporary |
| * buffer and copy the data to/from the client buffers. |
| */ |
| if (dd->multi_xfr) { |
| dd->temp_buf = kzalloc(dd->cur_msg_len, |
| GFP_KERNEL | __GFP_DMA); |
| if (!dd->temp_buf) |
| return -ENOMEM; |
| nxt_xfr = list_entry(first_xfr->transfer_list.next, |
| struct spi_transfer, transfer_list); |
| |
| if (dd->write_len && !dd->read_len) { |
| if (!first_xfr->tx_buf || !nxt_xfr->tx_buf) |
| goto error; |
| |
| memcpy(dd->temp_buf, first_xfr->tx_buf, first_xfr->len); |
| memcpy(dd->temp_buf + first_xfr->len, nxt_xfr->tx_buf, |
| nxt_xfr->len); |
| tx_buf = dd->temp_buf; |
| tx_len = dd->cur_msg_len; |
| } else { |
| if (!first_xfr->tx_buf || !nxt_xfr->rx_buf) |
| goto error; |
| |
| rx_buf = dd->temp_buf; |
| rx_len = dd->cur_msg_len; |
| } |
| } |
| if (tx_buf != NULL) { |
| first_xfr->tx_dma = dma_map_single(dev, tx_buf, |
| tx_len, DMA_TO_DEVICE); |
| if (dma_mapping_error(NULL, first_xfr->tx_dma)) { |
| dev_err(dev, "dma %cX %d bytes error\n", |
| 'T', tx_len); |
| ret = -ENOMEM; |
| goto error; |
| } |
| } |
| if (rx_buf != NULL) { |
| dma_addr_t dma_handle; |
| dma_handle = dma_map_single(dev, rx_buf, |
| rx_len, DMA_FROM_DEVICE); |
| if (dma_mapping_error(NULL, dma_handle)) { |
| dev_err(dev, "dma %cX %d bytes error\n", |
| 'R', rx_len); |
| if (tx_buf != NULL) |
| dma_unmap_single(NULL, first_xfr->tx_dma, |
| tx_len, DMA_TO_DEVICE); |
| ret = -ENOMEM; |
| goto error; |
| } |
| if (dd->multi_xfr) |
| nxt_xfr->rx_dma = dma_handle; |
| else |
| first_xfr->rx_dma = dma_handle; |
| } |
| return 0; |
| |
| error: |
| kfree(dd->temp_buf); |
| dd->temp_buf = NULL; |
| return ret; |
| } |
| |
| static void msm_spi_dmov_unmap_buffers(struct msm_spi *dd) |
| { |
| struct device *dev; |
| u32 offset; |
| |
| dev = &dd->cur_msg->spi->dev; |
| if (dd->cur_msg->is_dma_mapped) |
| goto unmap_end; |
| |
| if (dd->multi_xfr) { |
| if (dd->write_len && !dd->read_len) { |
| dma_unmap_single(dev, |
| dd->cur_transfer->tx_dma, |
| dd->cur_msg_len, |
| DMA_TO_DEVICE); |
| } else { |
| struct spi_transfer *prev_xfr; |
| prev_xfr = list_entry( |
| dd->cur_transfer->transfer_list.prev, |
| struct spi_transfer, |
| transfer_list); |
| if (dd->cur_transfer->rx_buf) { |
| dma_unmap_single(dev, |
| dd->cur_transfer->rx_dma, |
| dd->cur_msg_len, |
| DMA_FROM_DEVICE); |
| } |
| if (prev_xfr->tx_buf) { |
| dma_unmap_single(dev, |
| prev_xfr->tx_dma, |
| prev_xfr->len, |
| DMA_TO_DEVICE); |
| } |
| if (dd->rx_unaligned_len && dd->read_buf) { |
| offset = dd->cur_msg_len - dd->rx_unaligned_len; |
| dma_coherent_post_ops(); |
| memcpy(dd->read_buf + offset, dd->rx_padding, |
| dd->rx_unaligned_len); |
| memcpy(dd->cur_transfer->rx_buf, |
| dd->read_buf + prev_xfr->len, |
| dd->cur_transfer->len); |
| } |
| } |
| kfree(dd->temp_buf); |
| dd->temp_buf = NULL; |
| return; |
| } else { |
| if (dd->cur_transfer->rx_buf) |
| dma_unmap_single(dev, dd->cur_transfer->rx_dma, |
| dd->cur_transfer->len, |
| DMA_FROM_DEVICE); |
| if (dd->cur_transfer->tx_buf) |
| dma_unmap_single(dev, dd->cur_transfer->tx_dma, |
| dd->cur_transfer->len, |
| DMA_TO_DEVICE); |
| } |
| |
| unmap_end: |
| /* If we padded the transfer, we copy it from the padding buf */ |
| if (dd->rx_unaligned_len && dd->read_buf) { |
| offset = dd->cur_transfer->len - dd->rx_unaligned_len; |
| dma_coherent_post_ops(); |
| memcpy(dd->read_buf + offset, dd->rx_padding, |
| dd->rx_unaligned_len); |
| } |
| } |
| |
| static void msm_spi_bam_unmap_buffers(struct msm_spi *dd) |
| { |
| struct device *dev; |
| |
| /* mapped by client */ |
| if (dd->cur_msg->is_dma_mapped) |
| return; |
| |
| dev = &dd->cur_msg->spi->dev; |
| if (dd->cur_transfer->rx_buf) |
| dma_unmap_single(dev, dd->cur_transfer->rx_dma, |
| dd->cur_transfer->len, |
| DMA_FROM_DEVICE); |
| |
| if (dd->cur_transfer->tx_buf) |
| dma_unmap_single(dev, dd->cur_transfer->tx_dma, |
| dd->cur_transfer->len, |
| DMA_TO_DEVICE); |
| } |
| |
| static inline void msm_spi_dma_unmap_buffers(struct msm_spi *dd) |
| { |
| if (dd->mode == SPI_DMOV_MODE) |
| msm_spi_dmov_unmap_buffers(dd); |
| else if (dd->mode == SPI_BAM_MODE) |
| msm_spi_bam_unmap_buffers(dd); |
| } |
| |
| /** |
| * msm_spi_use_dma - decides whether to use Data-Mover or BAM for |
| * the given transfer |
| * @dd: device |
| * @tr: transfer |
| * |
| * Start using DMA if: |
| * 1. Is supported by HW |
| * 2. Is not diabled by platfrom data |
| * 3. Transfer size is greater than 3*block size. |
| * 4. Buffers are aligned to cache line. |
| * 5. Bytes-per-word is 8,16 or 32. |
| */ |
| static inline bool |
| msm_spi_use_dma(struct msm_spi *dd, struct spi_transfer *tr, u8 bpw) |
| { |
| if (!dd->use_dma) |
| return false; |
| |
| /* check constraints from platform data */ |
| if ((dd->qup_ver == SPI_QUP_VERSION_BFAM) && !dd->pdata->use_bam) |
| return false; |
| |
| if (dd->cur_msg_len < 3*dd->input_block_size) |
| return false; |
| |
| if (dd->multi_xfr && !dd->read_len && !dd->write_len) |
| return false; |
| |
| if (dd->qup_ver == SPI_QUP_VERSION_NONE) { |
| u32 cache_line = dma_get_cache_alignment(); |
| |
| if (tr->tx_buf) { |
| if (!IS_ALIGNED((size_t)tr->tx_buf, cache_line)) |
| return 0; |
| } |
| if (tr->rx_buf) { |
| if (!IS_ALIGNED((size_t)tr->rx_buf, cache_line)) |
| return false; |
| } |
| |
| if (tr->cs_change && |
| ((bpw != 8) && (bpw != 16) && (bpw != 32))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * msm_spi_set_transfer_mode: Chooses optimal transfer mode. Sets dd->mode and |
| * prepares to process a transfer. |
| */ |
| static void |
| msm_spi_set_transfer_mode(struct msm_spi *dd, u8 bpw, u32 read_count) |
| { |
| if (msm_spi_use_dma(dd, dd->cur_transfer, bpw)) { |
| if (dd->qup_ver) { |
| dd->mode = SPI_BAM_MODE; |
| } else { |
| dd->mode = SPI_DMOV_MODE; |
| if (dd->write_len && dd->read_len) { |
| dd->tx_bytes_remaining = dd->write_len; |
| dd->rx_bytes_remaining = dd->read_len; |
| } |
| } |
| } else { |
| dd->mode = SPI_FIFO_MODE; |
| if (dd->multi_xfr) { |
| dd->read_len = dd->cur_transfer->len; |
| dd->write_len = dd->cur_transfer->len; |
| } |
| } |
| } |
| |
| /** |
| * msm_spi_set_qup_io_modes: prepares register QUP_IO_MODES to process a |
| * transfer |
| */ |
| static void msm_spi_set_qup_io_modes(struct msm_spi *dd) |
| { |
| u32 spi_iom; |
| spi_iom = readl_relaxed(dd->base + SPI_IO_MODES); |
| /* Set input and output transfer mode: FIFO, DMOV, or BAM */ |
| spi_iom &= ~(SPI_IO_M_INPUT_MODE | SPI_IO_M_OUTPUT_MODE); |
| spi_iom = (spi_iom | (dd->mode << OUTPUT_MODE_SHIFT)); |
| spi_iom = (spi_iom | (dd->mode << INPUT_MODE_SHIFT)); |
| /* Turn on packing for data mover */ |
| if ((dd->mode == SPI_DMOV_MODE) || (dd->mode == SPI_BAM_MODE)) |
| spi_iom |= SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN; |
| else |
| spi_iom &= ~(SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN); |
| |
| /*if (dd->mode == SPI_BAM_MODE) { |
| spi_iom |= SPI_IO_C_NO_TRI_STATE; |
| spi_iom &= ~(SPI_IO_C_CS_SELECT | SPI_IO_C_CS_N_POLARITY); |
| }*/ |
| writel_relaxed(spi_iom, dd->base + SPI_IO_MODES); |
| } |
| |
| static u32 msm_spi_calc_spi_ioc_clk_polarity(u32 spi_ioc, u8 mode) |
| { |
| if (mode & SPI_CPOL) |
| spi_ioc |= SPI_IO_C_CLK_IDLE_HIGH; |
| else |
| spi_ioc &= ~SPI_IO_C_CLK_IDLE_HIGH; |
| return spi_ioc; |
| } |
| |
| /** |
| * msm_spi_set_spi_io_control: prepares register SPI_IO_CONTROL to process the |
| * next transfer |
| * @return the new set value of SPI_IO_CONTROL |
| */ |
| static u32 msm_spi_set_spi_io_control(struct msm_spi *dd) |
| { |
| u32 spi_ioc, spi_ioc_orig, chip_select; |
| |
| spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL); |
| spi_ioc_orig = spi_ioc; |
| spi_ioc = msm_spi_calc_spi_ioc_clk_polarity(spi_ioc |
| , dd->cur_msg->spi->mode); |
| /* Set chip-select */ |
| chip_select = dd->cur_msg->spi->chip_select << 2; |
| if ((spi_ioc & SPI_IO_C_CS_SELECT) != chip_select) |
| spi_ioc = (spi_ioc & ~SPI_IO_C_CS_SELECT) | chip_select; |
| if (!dd->cur_transfer->cs_change) |
| spi_ioc |= SPI_IO_C_MX_CS_MODE; |
| |
| if (spi_ioc != spi_ioc_orig) |
| writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL); |
| |
| return spi_ioc; |
| } |
| |
| /** |
| * msm_spi_set_qup_op_mask: prepares register QUP_OPERATIONAL_MASK to process |
| * the next transfer |
| */ |
| static void msm_spi_set_qup_op_mask(struct msm_spi *dd) |
| { |
| /* mask INPUT and OUTPUT service flags in to prevent IRQs on FIFO status |
| * change in BAM mode */ |
| u32 mask = (dd->mode == SPI_BAM_MODE) ? |
| QUP_OP_MASK_OUTPUT_SERVICE_FLAG | QUP_OP_MASK_INPUT_SERVICE_FLAG |
| : 0; |
| writel_relaxed(mask, dd->base + QUP_OPERATIONAL_MASK); |
| } |
| |
| static void msm_spi_process_transfer(struct msm_spi *dd) |
| { |
| u8 bpw; |
| u32 max_speed; |
| u32 read_count; |
| u32 timeout; |
| u32 spi_ioc; |
| u32 int_loopback = 0; |
| |
| dd->tx_bytes_remaining = dd->cur_msg_len; |
| dd->rx_bytes_remaining = dd->cur_msg_len; |
| dd->read_buf = dd->cur_transfer->rx_buf; |
| dd->write_buf = dd->cur_transfer->tx_buf; |
| init_completion(&dd->transfer_complete); |
| if (dd->cur_transfer->bits_per_word) |
| bpw = dd->cur_transfer->bits_per_word; |
| else |
| if (dd->cur_msg->spi->bits_per_word) |
| bpw = dd->cur_msg->spi->bits_per_word; |
| else |
| bpw = 8; |
| dd->bytes_per_word = (bpw + 7) / 8; |
| |
| if (dd->cur_transfer->speed_hz) |
| max_speed = dd->cur_transfer->speed_hz; |
| else |
| max_speed = dd->cur_msg->spi->max_speed_hz; |
| if (!dd->clock_speed || max_speed != dd->clock_speed) |
| msm_spi_clock_set(dd, max_speed); |
| |
| timeout = 100 * msecs_to_jiffies( |
| DIV_ROUND_UP(dd->cur_msg_len * 8, |
| DIV_ROUND_UP(max_speed, MSEC_PER_SEC))); |
| |
| read_count = DIV_ROUND_UP(dd->cur_msg_len, dd->bytes_per_word); |
| if (dd->cur_msg->spi->mode & SPI_LOOP) |
| int_loopback = 1; |
| if (int_loopback && dd->multi_xfr && |
| (read_count > dd->input_fifo_size)) { |
| if (dd->read_len && dd->write_len) |
| pr_err( |
| "%s:Internal Loopback does not support > fifo size" |
| "for write-then-read transactions\n", |
| __func__); |
| else if (dd->write_len && !dd->read_len) |
| pr_err( |
| "%s:Internal Loopback does not support > fifo size" |
| "for write-then-write transactions\n", |
| __func__); |
| return; |
| } |
| |
| if (msm_spi_set_state(dd, SPI_OP_STATE_RESET)) |
| dev_err(dd->dev, |
| "%s: Error setting QUP to reset-state", |
| __func__); |
| |
| msm_spi_set_transfer_mode(dd, bpw, read_count); |
| msm_spi_set_mx_counts(dd, read_count); |
| if ((dd->mode == SPI_BAM_MODE) || (dd->mode == SPI_DMOV_MODE)) |
| if (msm_spi_dma_map_buffers(dd) < 0) { |
| pr_err("Mapping DMA buffers\n"); |
| return; |
| } |
| msm_spi_set_qup_io_modes(dd); |
| msm_spi_set_spi_config(dd, bpw); |
| msm_spi_set_qup_config(dd, bpw); |
| spi_ioc = msm_spi_set_spi_io_control(dd); |
| msm_spi_set_qup_op_mask(dd); |
| |
| if (dd->mode == SPI_DMOV_MODE) { |
| msm_spi_setup_dm_transfer(dd); |
| msm_spi_enqueue_dm_commands(dd); |
| } |
| /* The output fifo interrupt handler will handle all writes after |
| the first. Restricting this to one write avoids contention |
| issues and race conditions between this thread and the int handler |
| */ |
| else if (dd->mode == SPI_FIFO_MODE) { |
| if (msm_spi_prepare_for_write(dd)) |
| goto transfer_end; |
| msm_spi_start_write(dd, read_count); |
| } else if (dd->mode == SPI_BAM_MODE) { |
| if ((msm_spi_bam_begin_transfer(dd, timeout, bpw)) < 0) |
| dev_err(dd->dev, "%s: BAM transfer setup failed\n", |
| __func__); |
| } |
| |
| /* |
| * On BAM mode, current state here is run. |
| * Only enter the RUN state after the first word is written into |
| * the output FIFO. Otherwise, the output FIFO EMPTY interrupt |
| * might fire before the first word is written resulting in a |
| * possible race condition. |
| */ |
| if (dd->mode != SPI_BAM_MODE) |
| if (msm_spi_set_state(dd, SPI_OP_STATE_RUN)) { |
| dev_warn(dd->dev, |
| "%s: Failed to set QUP to run-state. Mode:%d", |
| __func__, dd->mode); |
| goto transfer_end; |
| } |
| |
| /* Assume success, this might change later upon transaction result */ |
| dd->cur_msg->status = 0; |
| do { |
| if (!wait_for_completion_timeout(&dd->transfer_complete, |
| timeout)) { |
| dev_err(dd->dev, |
| "%s: SPI transaction timeout\n", |
| __func__); |
| dd->cur_msg->status = -EIO; |
| if (dd->mode == SPI_DMOV_MODE) { |
| msm_dmov_flush(dd->tx_dma_chan, 1); |
| msm_dmov_flush(dd->rx_dma_chan, 1); |
| } |
| break; |
| } |
| } while (msm_spi_dm_send_next(dd)); |
| |
| msm_spi_udelay(dd->cur_transfer->delay_usecs); |
| transfer_end: |
| msm_spi_dma_unmap_buffers(dd); |
| dd->mode = SPI_MODE_NONE; |
| |
| msm_spi_set_state(dd, SPI_OP_STATE_RESET); |
| writel_relaxed(spi_ioc & ~SPI_IO_C_MX_CS_MODE, |
| dd->base + SPI_IO_CONTROL); |
| } |
| |
| static void get_transfer_length(struct msm_spi *dd) |
| { |
| struct spi_transfer *tr; |
| int num_xfrs = 0; |
| int readlen = 0; |
| int writelen = 0; |
| |
| dd->cur_msg_len = 0; |
| dd->multi_xfr = 0; |
| dd->read_len = dd->write_len = 0; |
| |
| list_for_each_entry(tr, &dd->cur_msg->transfers, transfer_list) { |
| if (tr->tx_buf) |
| writelen += tr->len; |
| if (tr->rx_buf) |
| readlen += tr->len; |
| dd->cur_msg_len += tr->len; |
| num_xfrs++; |
| } |
| |
| if (num_xfrs == 2) { |
| struct spi_transfer *first_xfr = dd->cur_transfer; |
| |
| dd->multi_xfr = 1; |
| tr = list_entry(first_xfr->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| /* |
| * We update dd->read_len and dd->write_len only |
| * for WR-WR and WR-RD transfers. |
| */ |
| if ((first_xfr->tx_buf) && (!first_xfr->rx_buf)) { |
| if (((tr->tx_buf) && (!tr->rx_buf)) || |
| ((!tr->tx_buf) && (tr->rx_buf))) { |
| dd->read_len = readlen; |
| dd->write_len = writelen; |
| } |
| } |
| } else if (num_xfrs > 1) |
| dd->multi_xfr = 1; |
| } |
| |
| static inline int combine_transfers(struct msm_spi *dd) |
| { |
| struct spi_transfer *t = dd->cur_transfer; |
| struct spi_transfer *nxt; |
| int xfrs_grped = 1; |
| |
| dd->cur_msg_len = dd->cur_transfer->len; |
| while (t->transfer_list.next != &dd->cur_msg->transfers) { |
| nxt = list_entry(t->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| if (t->cs_change != nxt->cs_change) |
| return xfrs_grped; |
| dd->cur_msg_len += nxt->len; |
| xfrs_grped++; |
| t = nxt; |
| } |
| return xfrs_grped; |
| } |
| |
| static inline void write_force_cs(struct msm_spi *dd, bool set_flag) |
| { |
| u32 spi_ioc; |
| u32 spi_ioc_orig; |
| |
| spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL); |
| spi_ioc_orig = spi_ioc; |
| if (set_flag) |
| spi_ioc |= SPI_IO_C_FORCE_CS; |
| else |
| spi_ioc &= ~SPI_IO_C_FORCE_CS; |
| |
| if (spi_ioc != spi_ioc_orig) |
| writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL); |
| } |
| |
| static void msm_spi_process_message(struct msm_spi *dd) |
| { |
| int xfrs_grped = 0; |
| int cs_num; |
| int rc; |
| bool xfer_delay = false; |
| struct spi_transfer *tr; |
| |
| dd->write_xfr_cnt = dd->read_xfr_cnt = 0; |
| cs_num = dd->cur_msg->spi->chip_select; |
| if ((!(dd->cur_msg->spi->mode & SPI_LOOP)) && |
| (!(dd->cs_gpios[cs_num].valid)) && |
| (dd->cs_gpios[cs_num].gpio_num >= 0)) { |
| rc = gpio_request(dd->cs_gpios[cs_num].gpio_num, |
| spi_cs_rsrcs[cs_num]); |
| if (rc) { |
| dev_err(dd->dev, "gpio_request for pin %d failed with " |
| "error %d\n", dd->cs_gpios[cs_num].gpio_num, |
| rc); |
| return; |
| } |
| dd->cs_gpios[cs_num].valid = 1; |
| } |
| |
| list_for_each_entry(tr, |
| &dd->cur_msg->transfers, |
| transfer_list) { |
| if (tr->delay_usecs) { |
| dev_info(dd->dev, "SPI slave requests delay per txn :%d", |
| tr->delay_usecs); |
| xfer_delay = true; |
| break; |
| } |
| } |
| |
| /* Don't combine xfers if delay is needed after every xfer */ |
| if (dd->qup_ver || xfer_delay) { |
| if (dd->qup_ver) |
| write_force_cs(dd, 0); |
| list_for_each_entry(dd->cur_transfer, |
| &dd->cur_msg->transfers, |
| transfer_list) { |
| struct spi_transfer *t = dd->cur_transfer; |
| struct spi_transfer *nxt; |
| |
| if (t->transfer_list.next != &dd->cur_msg->transfers) { |
| nxt = list_entry(t->transfer_list.next, |
| struct spi_transfer, |
| transfer_list); |
| |
| if (dd->qup_ver && |
| t->cs_change == nxt->cs_change) |
| write_force_cs(dd, 1); |
| else if (dd->qup_ver) |
| write_force_cs(dd, 0); |
| } |
| |
| dd->cur_msg_len = dd->cur_transfer->len; |
| msm_spi_process_transfer(dd); |
| } |
| } else { |
| dd->cur_transfer = list_first_entry(&dd->cur_msg->transfers, |
| struct spi_transfer, |
| transfer_list); |
| get_transfer_length(dd); |
| if (dd->multi_xfr && !dd->read_len && !dd->write_len) { |
| /* |
| * Handling of multi-transfers. |
| * FIFO mode is used by default |
| */ |
| list_for_each_entry(dd->cur_transfer, |
| &dd->cur_msg->transfers, |
| transfer_list) { |
| if (!dd->cur_transfer->len) |
| goto error; |
| if (xfrs_grped) { |
| xfrs_grped--; |
| continue; |
| } else { |
| dd->read_len = dd->write_len = 0; |
| xfrs_grped = combine_transfers(dd); |
| } |
| |
| dd->cur_tx_transfer = dd->cur_transfer; |
| dd->cur_rx_transfer = dd->cur_transfer; |
| msm_spi_process_transfer(dd); |
| xfrs_grped--; |
| } |
| } else { |
| /* Handling of a single transfer or |
| * WR-WR or WR-RD transfers |
| */ |
| if ((!dd->cur_msg->is_dma_mapped) && |
| (msm_spi_use_dma(dd, dd->cur_transfer, |
| dd->cur_transfer->bits_per_word))) { |
| /* Mapping of DMA buffers */ |
| int ret = msm_spi_dma_map_buffers(dd); |
| if (ret < 0) { |
| dd->cur_msg->status = ret; |
| goto error; |
| } |
| } |
| |
| dd->cur_tx_transfer = dd->cur_transfer; |
| dd->cur_rx_transfer = dd->cur_transfer; |
| msm_spi_process_transfer(dd); |
| } |
| } |
| |
| return; |
| |
| error: |
| if (dd->cs_gpios[cs_num].valid) { |
| gpio_free(dd->cs_gpios[cs_num].gpio_num); |
| dd->cs_gpios[cs_num].valid = 0; |
| } |
| } |
| |
| /* workqueue - pull messages from queue & process */ |
| static void msm_spi_workq(struct work_struct *work) |
| { |
| struct msm_spi *dd = |
| container_of(work, struct msm_spi, work_data); |
| unsigned long flags; |
| u32 status_error = 0; |
| |
| pm_runtime_get_sync(dd->dev); |
| |
| mutex_lock(&dd->core_lock); |
| |
| /* |
| * Counter-part of system-suspend when runtime-pm is not enabled. |
| * This way, resume can be left empty and device will be put in |
| * active mode only if client requests anything on the bus |
| */ |
| if (!pm_runtime_enabled(dd->dev)) |
| msm_spi_pm_resume_runtime(dd->dev); |
| |
| if (dd->use_rlock) |
| remote_mutex_lock(&dd->r_lock); |
| |
| if (!msm_spi_is_valid_state(dd)) { |
| dev_err(dd->dev, "%s: SPI operational state not valid\n", |
| __func__); |
| status_error = 1; |
| } |
| |
| spin_lock_irqsave(&dd->queue_lock, flags); |
| dd->transfer_pending = 1; |
| while (!list_empty(&dd->queue)) { |
| dd->cur_msg = list_entry(dd->queue.next, |
| struct spi_message, queue); |
| list_del_init(&dd->cur_msg->queue); |
| spin_unlock_irqrestore(&dd->queue_lock, flags); |
| if (status_error) |
| dd->cur_msg->status = -EIO; |
| else |
| msm_spi_process_message(dd); |
| if (dd->cur_msg->complete) |
| dd->cur_msg->complete(dd->cur_msg->context); |
| spin_lock_irqsave(&dd->queue_lock, flags); |
| } |
| dd->transfer_pending = 0; |
| spin_unlock_irqrestore(&dd->queue_lock, flags); |
| |
| if (dd->use_rlock) |
| remote_mutex_unlock(&dd->r_lock); |
| |
| mutex_unlock(&dd->core_lock); |
| |
| pm_runtime_mark_last_busy(dd->dev); |
| pm_runtime_put_autosuspend(dd->dev); |
| |
| /* If needed, this can be done after the current message is complete, |
| and work can be continued upon resume. No motivation for now. */ |
| if (dd->suspended) |
| wake_up_interruptible(&dd->continue_suspend); |
| } |
| |
| static int msm_spi_transfer(struct spi_device *spi, struct spi_message *msg) |
| { |
| struct msm_spi *dd; |
| unsigned long flags; |
| struct spi_transfer *tr; |
| |
| dd = spi_master_get_devdata(spi->master); |
| |
| if (list_empty(&msg->transfers) || !msg->complete) |
| return -EINVAL; |
| |
| list_for_each_entry(tr, &msg->transfers, transfer_list) { |
| /* Check message parameters */ |
| if (tr->speed_hz > dd->pdata->max_clock_speed || |
| (tr->bits_per_word && |
| (tr->bits_per_word < 4 || tr->bits_per_word > 32)) || |
| (tr->tx_buf == NULL && tr->rx_buf == NULL)) { |
| dev_err(&spi->dev, "Invalid transfer: %d Hz, %d bpw" |
| "tx=%p, rx=%p\n", |
| tr->speed_hz, tr->bits_per_word, |
| tr->tx_buf, tr->rx_buf); |
| return -EINVAL; |
| } |
| } |
| |
| spin_lock_irqsave(&dd->queue_lock, flags); |
| list_add_tail(&msg->queue, &dd->queue); |
| spin_unlock_irqrestore(&dd->queue_lock, flags); |
| queue_work(dd->workqueue, &dd->work_data); |
| return 0; |
| } |
| |
| static int msm_spi_setup(struct spi_device *spi) |
| { |
| struct msm_spi *dd; |
| int rc = 0; |
| u32 spi_ioc; |
| u32 spi_config; |
| u32 mask; |
| |
| if (spi->bits_per_word < 4 || spi->bits_per_word > 32) { |
| dev_err(&spi->dev, "%s: invalid bits_per_word %d\n", |
| __func__, spi->bits_per_word); |
| rc = -EINVAL; |
| } |
| if (spi->chip_select > SPI_NUM_CHIPSELECTS-1) { |
| dev_err(&spi->dev, "%s, chip select %d exceeds max value %d\n", |
| __func__, spi->chip_select, SPI_NUM_CHIPSELECTS - 1); |
| rc = -EINVAL; |
| } |
| |
| if (rc) |
| goto err_setup_exit; |
| |
| dd = spi_master_get_devdata(spi->master); |
| |
| pm_runtime_get_sync(dd->dev); |
| |
| mutex_lock(&dd->core_lock); |
| |
| /* Counter-part of system-suspend when runtime-pm is not enabled. */ |
| if (!pm_runtime_enabled(dd->dev)) |
| msm_spi_pm_resume_runtime(dd->dev); |
| |
| if (dd->suspended) { |
| mutex_unlock(&dd->core_lock); |
| return -EBUSY; |
| } |
| |
| if (dd->use_rlock) |
| remote_mutex_lock(&dd->r_lock); |
| |
| spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL); |
| mask = SPI_IO_C_CS_N_POLARITY_0 << spi->chip_select; |
| if (spi->mode & SPI_CS_HIGH) |
| spi_ioc |= mask; |
| else |
| spi_ioc &= ~mask; |
| spi_ioc = msm_spi_calc_spi_ioc_clk_polarity(spi_ioc, spi->mode); |
| |
| writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL); |
| |
| spi_config = readl_relaxed(dd->base + SPI_CONFIG); |
| spi_config = msm_spi_calc_spi_config_loopback_and_input_first( |
| spi_config, spi->mode); |
| writel_relaxed(spi_config, dd->base + SPI_CONFIG); |
| |
| /* Ensure previous write completed before disabling the clocks */ |
| mb(); |
| |
| if (dd->use_rlock) |
| remote_mutex_unlock(&dd->r_lock); |
| |
| /* Counter-part of system-resume when runtime-pm is not enabled. */ |
| if (!pm_runtime_enabled(dd->dev)) |
| msm_spi_pm_suspend_runtime(dd->dev); |
| |
| mutex_unlock(&dd->core_lock); |
| |
| pm_runtime_mark_last_busy(dd->dev); |
| pm_runtime_put_autosuspend(dd->dev); |
| |
| err_setup_exit: |
| return rc; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int debugfs_iomem_x32_set(void *data, u64 val) |
| { |
| writel_relaxed(val, data); |
| /* Ensure the previous write completed. */ |
| mb(); |
| return 0; |
| } |
| |
| static int debugfs_iomem_x32_get(void *data, u64 *val) |
| { |
| *val = readl_relaxed(data); |
| /* Ensure the previous read completed. */ |
| mb(); |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_iomem_x32, debugfs_iomem_x32_get, |
| debugfs_iomem_x32_set, "0x%08llx\n"); |
| |
| static void spi_debugfs_init(struct msm_spi *dd) |
| { |
| dd->dent_spi = debugfs_create_dir(dev_name(dd->dev), NULL); |
| if (dd->dent_spi) { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++) { |
| dd->debugfs_spi_regs[i] = |
| debugfs_create_file( |
| debugfs_spi_regs[i].name, |
| debugfs_spi_regs[i].mode, |
| dd->dent_spi, |
| dd->base + debugfs_spi_regs[i].offset, |
| &fops_iomem_x32); |
| } |
| } |
| } |
| |
| static void spi_debugfs_exit(struct msm_spi *dd) |
| { |
| if (dd->dent_spi) { |
| int i; |
| |
| debugfs_remove_recursive(dd->dent_spi); |
| dd->dent_spi = NULL; |
| for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++) |
| dd->debugfs_spi_regs[i] = NULL; |
| } |
| } |
| #else |
| static void spi_debugfs_init(struct msm_spi *dd) {} |
| static void spi_debugfs_exit(struct msm_spi *dd) {} |
| #endif |
| |
| /* ===Device attributes begin=== */ |
| static ssize_t show_stats(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct msm_spi *dd = spi_master_get_devdata(master); |
| |
| return snprintf(buf, PAGE_SIZE, |
| "Device %s\n" |
| "rx fifo_size = %d spi words\n" |
| "tx fifo_size = %d spi words\n" |
| "use_dma ? %s\n" |
| "rx block size = %d bytes\n" |
| "tx block size = %d bytes\n" |
| "input burst size = %d bytes\n" |
| "output burst size = %d bytes\n" |
| "DMA configuration:\n" |
| "tx_ch=%d, rx_ch=%d, tx_crci= %d, rx_crci=%d\n" |
| "--statistics--\n" |
| "Rx isrs = %d\n" |
| "Tx isrs = %d\n" |
| "DMA error = %d\n" |
| "--debug--\n" |
| "NA yet\n", |
| dev_name(dev), |
| dd->input_fifo_size, |
| dd->output_fifo_size, |
| dd->use_dma ? "yes" : "no", |
| dd->input_block_size, |
| dd->output_block_size, |
| dd->input_burst_size, |
| dd->output_burst_size, |
| dd->tx_dma_chan, |
| dd->rx_dma_chan, |
| dd->tx_dma_crci, |
| dd->rx_dma_crci, |
| dd->stat_rx + dd->stat_dmov_rx, |
| dd->stat_tx + dd->stat_dmov_tx, |
| dd->stat_dmov_tx_err + dd->stat_dmov_rx_err |
| ); |
| } |
| |
| /* Reset statistics on write */ |
| static ssize_t set_stats(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct msm_spi *dd = dev_get_drvdata(dev); |
| dd->stat_rx = 0; |
| dd->stat_tx = 0; |
| dd->stat_dmov_rx = 0; |
| dd->stat_dmov_tx = 0; |
| dd->stat_dmov_rx_err = 0; |
| dd->stat_dmov_tx_err = 0; |
| return count; |
| } |
| |
| static DEVICE_ATTR(stats, S_IRUGO | S_IWUSR, show_stats, set_stats); |
| |
| static struct attribute *dev_attrs[] = { |
| &dev_attr_stats.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group dev_attr_grp = { |
| .attrs = dev_attrs, |
| }; |
| /* ===Device attributes end=== */ |
| |
| /** |
| * spi_dmov_tx_complete_func - DataMover tx completion callback |
| * |
| * Executed in IRQ context (Data Mover's IRQ) DataMover's |
| * spinlock @msm_dmov_lock held. |
| */ |
| static void spi_dmov_tx_complete_func(struct msm_dmov_cmd *cmd, |
| unsigned int result, |
| struct msm_dmov_errdata *err) |
| { |
| struct msm_spi *dd; |
| |
| if (!(result & DMOV_RSLT_VALID)) { |
| pr_err("Invalid DMOV result: rc=0x%08x, cmd = %p", result, cmd); |
| return; |
| } |
| /* restore original context */ |
| dd = container_of(cmd, struct msm_spi, tx_hdr); |
| if (result & DMOV_RSLT_DONE) { |
| dd->stat_dmov_tx++; |
| if ((atomic_inc_return(&dd->tx_irq_called) == 1)) |
| return; |
| complete(&dd->transfer_complete); |
| } else { |
| /* Error or flush */ |
| if (result & DMOV_RSLT_ERROR) { |
| dev_err(dd->dev, "DMA error (0x%08x)\n", result); |
| dd->stat_dmov_tx_err++; |
| } |
| if (result & DMOV_RSLT_FLUSH) { |
| /* |
| * Flushing normally happens in process of |
| * removing, when we are waiting for outstanding |
| * DMA commands to be flushed. |
| */ |
| dev_info(dd->dev, |
| "DMA channel flushed (0x%08x)\n", result); |
| } |
| if (err) |
| dev_err(dd->dev, |
| "Flush data(%08x %08x %08x %08x %08x %08x)\n", |
| err->flush[0], err->flush[1], err->flush[2], |
| err->flush[3], err->flush[4], err->flush[5]); |
| dd->cur_msg->status = -EIO; |
| complete(&dd->transfer_complete); |
| } |
| } |
| |
| /** |
| * spi_dmov_rx_complete_func - DataMover rx completion callback |
| * |
| * Executed in IRQ context (Data Mover's IRQ) |
| * DataMover's spinlock @msm_dmov_lock held. |
| */ |
| static void spi_dmov_rx_complete_func(struct msm_dmov_cmd *cmd, |
| unsigned int result, |
| struct msm_dmov_errdata *err) |
| { |
| struct msm_spi *dd; |
| |
| if (!(result & DMOV_RSLT_VALID)) { |
| pr_err("Invalid DMOV result(rc = 0x%08x, cmd = %p)", |
| result, cmd); |
| return; |
| } |
| /* restore original context */ |
| dd = container_of(cmd, struct msm_spi, rx_hdr); |
| if (result & DMOV_RSLT_DONE) { |
| dd->stat_dmov_rx++; |
| if (atomic_inc_return(&dd->rx_irq_called) == 1) |
| return; |
| complete(&dd->transfer_complete); |
| } else { |
| /** Error or flush */ |
| if (result & DMOV_RSLT_ERROR) { |
| dev_err(dd->dev, "DMA error(0x%08x)\n", result); |
| dd->stat_dmov_rx_err++; |
| } |
| if (result & DMOV_RSLT_FLUSH) { |
| dev_info(dd->dev, |
| "DMA channel flushed(0x%08x)\n", result); |
| } |
| if (err) |
| dev_err(dd->dev, |
| "Flush data(%08x %08x %08x %08x %08x %08x)\n", |
| err->flush[0], err->flush[1], err->flush[2], |
| err->flush[3], err->flush[4], err->flush[5]); |
| dd->cur_msg->status = -EIO; |
| complete(&dd->transfer_complete); |
| } |
| } |
| |
| static inline u32 get_chunk_size(struct msm_spi *dd, int input_burst_size, |
| int output_burst_size) |
| { |
| u32 cache_line = dma_get_cache_alignment(); |
| int burst_size = (input_burst_size > output_burst_size) ? |
| input_burst_size : output_burst_size; |
| |
| return (roundup(sizeof(struct spi_dmov_cmd), DM_BYTE_ALIGN) + |
| roundup(burst_size, cache_line))*2; |
| } |
| |
| static void msm_spi_dmov_teardown(struct msm_spi *dd) |
| { |
| int limit = 0; |
| |
| if (!dd->use_dma) |
| return; |
| |
| while (dd->mode == SPI_DMOV_MODE && limit++ < 50) { |
| msm_dmov_flush(dd->tx_dma_chan, 1); |
| msm_dmov_flush(dd->rx_dma_chan, 1); |
| msleep(10); |
| } |
| |
| dma_free_coherent(NULL, |
| get_chunk_size(dd, dd->input_burst_size, dd->output_burst_size), |
| dd->tx_dmov_cmd, |
| dd->tx_dmov_cmd_dma); |
| dd->tx_dmov_cmd = dd->rx_dmov_cmd = NULL; |
| dd->tx_padding = dd->rx_padding = NULL; |
| } |
| |
| static void msm_spi_bam_pipe_teardown(struct msm_spi *dd, |
| enum msm_spi_pipe_direction pipe_dir) |
| { |
| struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ? |
| (&dd->bam.prod) : (&dd->bam.cons); |
| if (!pipe->teardown_required) |
| return; |
| |
| sps_disconnect(pipe->handle); |
| dma_free_coherent(dd->dev, pipe->config.desc.size, |
| pipe->config.desc.base, pipe->config.desc.phys_base); |
| sps_free_endpoint(pipe->handle); |
| pipe->handle = 0; |
| pipe->teardown_required = false; |
| } |
| |
| static int msm_spi_bam_pipe_init(struct msm_spi *dd, |
| enum msm_spi_pipe_direction pipe_dir) |
| { |
| int rc = 0; |
| struct sps_pipe *pipe_handle; |
| struct sps_register_event event = {0}; |
| struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ? |
| (&dd->bam.prod) : (&dd->bam.cons); |
| struct sps_connect *pipe_conf = &pipe->config; |
| |
| pipe->handle = 0; |
| pipe_handle = sps_alloc_endpoint(); |
| if (!pipe_handle) { |
| dev_err(dd->dev, "%s: Failed to allocate BAM endpoint\n" |
| , __func__); |
| return -ENOMEM; |
| } |
| |
| memset(pipe_conf, 0, sizeof(*pipe_conf)); |
| rc = sps_get_config(pipe_handle, pipe_conf); |
| if (rc) { |
| dev_err(dd->dev, "%s: Failed to get BAM pipe config\n" |
| , __func__); |
| goto config_err; |
| } |
| |
| if (pipe_dir == SPI_BAM_CONSUMER_PIPE) { |
| pipe_conf->source = dd->bam.handle; |
| pipe_conf->destination = SPS_DEV_HANDLE_MEM; |
| pipe_conf->mode = SPS_MODE_SRC; |
| pipe_conf->src_pipe_index = |
| dd->pdata->bam_producer_pipe_index; |
| pipe_conf->dest_pipe_index = 0; |
| } else { |
| pipe_conf->source = SPS_DEV_HANDLE_MEM; |
| pipe_conf->destination = dd->bam.handle; |
| pipe_conf->mode = SPS_MODE_DEST; |
| pipe_conf->src_pipe_index = 0; |
| pipe_conf->dest_pipe_index = |
| dd->pdata->bam_consumer_pipe_index; |
| } |
| pipe_conf->options = SPS_O_EOT | SPS_O_AUTO_ENABLE; |
| pipe_conf->desc.size = SPI_BAM_MAX_DESC_NUM * sizeof(struct sps_iovec); |
| pipe_conf->desc.base = dma_alloc_coherent(dd->dev, |
| pipe_conf->desc.size, |
| &pipe_conf->desc.phys_base, |
| GFP_KERNEL); |
| if (!pipe_conf->desc.base) { |
| dev_err(dd->dev, "%s: Failed allocate BAM pipe memory" |
| , __func__); |
| rc = -ENOMEM; |
| goto config_err; |
| } |
| |
| memset(pipe_conf->desc.base, 0x00, pipe_conf->desc.size); |
| |
| rc = sps_connect(pipe_handle, pipe_conf); |
| if (rc) { |
| dev_err(dd->dev, "%s: Failed to connect BAM pipe", __func__); |
| goto connect_err; |
| } |
| |
| event.mode = SPS_TRIGGER_WAIT; |
| event.options = SPS_O_EOT; |
| event.xfer_done = &dd->transfer_complete; |
| event.user = (void *)dd; |
| rc = sps_register_event(pipe_handle, &event); |
| if (rc) { |
| dev_err(dd->dev, "%s: Failed to register BAM EOT event", |
| __func__); |
| goto register_err; |
| } |
| |
| pipe->handle = pipe_handle; |
| pipe->teardown_required = true; |
| return 0; |
| |
| register_err: |
| sps_disconnect(pipe_handle); |
| connect_err: |
| dma_free_coherent(dd->dev, pipe_conf->desc.size, |
| pipe_conf->desc.base, pipe_conf->desc.phys_base); |
| config_err: |
| sps_free_endpoint(pipe_handle); |
| |
| return rc; |
| } |
| |
| static void msm_spi_bam_teardown(struct msm_spi *dd) |
| { |
| msm_spi_bam_pipe_teardown(dd, SPI_BAM_PRODUCER_PIPE); |
| msm_spi_bam_pipe_teardown(dd, SPI_BAM_CONSUMER_PIPE); |
| |
| if (dd->bam.deregister_required) { |
| sps_deregister_bam_device(dd->bam.handle); |
| dd->bam.deregister_required = false; |
| } |
| } |
| |
| static int msm_spi_bam_init(struct msm_spi *dd) |
| { |
| struct sps_bam_props bam_props = {0}; |
| u32 bam_handle; |
| int rc = 0; |
| |
| rc = sps_phy2h(dd->bam.phys_addr, &bam_handle); |
| if (rc || !bam_handle) { |
| bam_props.phys_addr = dd->bam.phys_addr; |
| bam_props.virt_addr = dd->bam.base; |
| bam_props.irq = dd->bam.irq; |
| bam_props.manage = SPS_BAM_MGR_DEVICE_REMOTE; |
| bam_props.summing_threshold = 0x10; |
| |
| rc = sps_register_bam_device(&bam_props, &bam_handle); |
| if (rc) { |
| dev_err(dd->dev, |
| "%s: Failed to register BAM device", |
| __func__); |
| return rc; |
| } |
| dd->bam.deregister_required = true; |
| } |
| |
| dd->bam.handle = bam_handle; |
| |
| rc = msm_spi_bam_pipe_init(dd, SPI_BAM_PRODUCER_PIPE); |
| if (rc) { |
| dev_err(dd->dev, |
| "%s: Failed to init producer BAM-pipe", |
| __func__); |
| goto bam_init_error; |
| } |
| |
| rc = msm_spi_bam_pipe_init(dd, SPI_BAM_CONSUMER_PIPE); |
| if (rc) { |
| dev_err(dd->dev, |
| "%s: Failed to init consumer BAM-pipe", |
| __func__); |
| goto bam_init_error; |
| } |
| |
| return 0; |
| |
| bam_init_error: |
| msm_spi_bam_teardown(dd); |
| return rc; |
| } |
| |
| static __init int msm_spi_dmov_init(struct msm_spi *dd) |
| { |
| dmov_box *box; |
| u32 cache_line = dma_get_cache_alignment(); |
| |
| /* Allocate all as one chunk, since all is smaller than page size */ |
| |
| /* We send NULL device, since it requires coherent_dma_mask id |
| device definition, we're okay with using system pool */ |
| dd->tx_dmov_cmd |
| = dma_alloc_coherent(NULL, |
| get_chunk_size(dd, dd->input_burst_size, |
| dd->output_burst_size), |
| &dd->tx_dmov_cmd_dma, GFP_KERNEL); |
| if (dd->tx_dmov_cmd == NULL) |
| return -ENOMEM; |
| |
| /* DMA addresses should be 64 bit aligned aligned */ |
| dd->rx_dmov_cmd = (struct spi_dmov_cmd *) |
| ALIGN((size_t)&dd->tx_dmov_cmd[1], DM_BYTE_ALIGN); |
| dd->rx_dmov_cmd_dma = ALIGN(dd->tx_dmov_cmd_dma + |
| sizeof(struct spi_dmov_cmd), DM_BYTE_ALIGN); |
| |
| /* Buffers should be aligned to cache line */ |
| dd->tx_padding = (u8 *)ALIGN((size_t)&dd->rx_dmov_cmd[1], cache_line); |
| dd->tx_padding_dma = ALIGN(dd->rx_dmov_cmd_dma + |
| sizeof(struct spi_dmov_cmd), cache_line); |
| dd->rx_padding = (u8 *)ALIGN((size_t)(dd->tx_padding + |
| dd->output_burst_size), cache_line); |
| dd->rx_padding_dma = ALIGN(dd->tx_padding_dma + dd->output_burst_size, |
| cache_line); |
| |
| /* Setup DM commands */ |
| box = &(dd->rx_dmov_cmd->box); |
| box->cmd = CMD_MODE_BOX | CMD_SRC_CRCI(dd->rx_dma_crci); |
| box->src_row_addr = (uint32_t)dd->mem_phys_addr + SPI_INPUT_FIFO; |
| dd->rx_hdr.cmdptr = DMOV_CMD_PTR_LIST | |
| DMOV_CMD_ADDR(dd->rx_dmov_cmd_dma + |
| offsetof(struct spi_dmov_cmd, cmd_ptr)); |
| dd->rx_hdr.complete_func = spi_dmov_rx_complete_func; |
| |
| box = &(dd->tx_dmov_cmd->box); |
| box->cmd = CMD_MODE_BOX | CMD_DST_CRCI(dd->tx_dma_crci); |
| box->dst_row_addr = (uint32_t)dd->mem_phys_addr + SPI_OUTPUT_FIFO; |
| dd->tx_hdr.cmdptr = DMOV_CMD_PTR_LIST | |
| DMOV_CMD_ADDR(dd->tx_dmov_cmd_dma + |
| offsetof(struct spi_dmov_cmd, cmd_ptr)); |
| dd->tx_hdr.complete_func = spi_dmov_tx_complete_func; |
| |
| dd->tx_dmov_cmd->single_pad.cmd = CMD_MODE_SINGLE | CMD_LC | |
| CMD_DST_CRCI(dd->tx_dma_crci); |
| dd->tx_dmov_cmd->single_pad.dst = (uint32_t)dd->mem_phys_addr + |
| SPI_OUTPUT_FIFO; |
| dd->rx_dmov_cmd->single_pad.cmd = CMD_MODE_SINGLE | CMD_LC | |
| CMD_SRC_CRCI(dd->rx_dma_crci); |
| dd->rx_dmov_cmd->single_pad.src = (uint32_t)dd->mem_phys_addr + |
| SPI_INPUT_FIFO; |
| |
| /* Clear remaining activities on channel */ |
| msm_dmov_flush(dd->tx_dma_chan, 1); |
| msm_dmov_flush(dd->rx_dma_chan, 1); |
| |
| return 0; |
| } |
| |
| enum msm_spi_dt_entry_status { |
| DT_REQ, /* Required: fail if missing */ |
| DT_SGST, /* Suggested: warn if missing */ |
| DT_OPT, /* Optional: don't warn if missing */ |
| }; |
| |
| enum msm_spi_dt_entry_type { |
| DT_U32, |
| DT_GPIO, |
| DT_BOOL, |
| }; |
| |
| struct msm_spi_dt_to_pdata_map { |
| const char *dt_name; |
| void *ptr_data; |
| enum msm_spi_dt_entry_status status; |
| enum msm_spi_dt_entry_type type; |
| int default_val; |
| }; |
| |
| static int __init msm_spi_dt_to_pdata_populate(struct platform_device *pdev, |
| struct msm_spi_platform_data *pdata, |
| struct msm_spi_dt_to_pdata_map *itr) |
| { |
| int ret, err = 0; |
| struct device_node *node = pdev->dev.of_node; |
| |
| for (; itr->dt_name ; ++itr) { |
| switch (itr->type) { |
| case DT_GPIO: |
| ret = of_get_named_gpio(node, itr->dt_name, 0); |
| if (ret >= 0) { |
| *((int *) itr->ptr_data) = ret; |
| ret = 0; |
| } |
| break; |
| case DT_U32: |
| ret = of_property_read_u32(node, itr->dt_name, |
| (u32 *) itr->ptr_data); |
| break; |
| case DT_BOOL: |
| *((bool *) itr->ptr_data) = |
| of_property_read_bool(node, itr->dt_name); |
| ret = 0; |
| break; |
| default: |
| dev_err(&pdev->dev, "%d is an unknown DT entry type\n", |
| itr->type); |
| ret = -EBADE; |
| } |
| |
| dev_dbg(&pdev->dev, "DT entry ret:%d name:%s val:%d\n", |
| ret, itr->dt_name, *((int *)itr->ptr_data)); |
| |
| if (ret) { |
| *((int *)itr->ptr_data) = itr->default_val; |
| |
| if (itr->status < DT_OPT) { |
| dev_err(&pdev->dev, "Missing '%s' DT entry\n", |
| itr->dt_name); |
| |
| /* cont on err to dump all missing entries */ |
| if (itr->status == DT_REQ && !err) |
| err = ret; |
| } |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * msm_spi_dt_to_pdata: create pdata and read gpio config from device tree |
| */ |
| struct msm_spi_platform_data * __init msm_spi_dt_to_pdata( |
| struct platform_device *pdev, struct msm_spi *dd) |
| { |
| int i; |
| struct msm_spi_platform_data *pdata; |
| |
| pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) { |
| pr_err("Unable to allocate platform data\n"); |
| return NULL; |
| } else { |
| struct msm_spi_dt_to_pdata_map map[] = { |
| {"spi-max-frequency", |
| &pdata->max_clock_speed, DT_SGST, DT_U32, 0}, |
| {"qcom,infinite-mode", |
| &pdata->infinite_mode, DT_OPT, DT_U32, 0}, |
| {"qcom,active-only", |
| &pdata->active_only, DT_OPT, DT_BOOL, 0}, |
| {"qcom,master-id", |
| &pdata->master_id, DT_SGST, DT_U32, 0}, |
| {"qcom,ver-reg-exists", |
| &pdata->ver_reg_exists, DT_OPT, DT_BOOL, 0}, |
| {"qcom,use-bam", |
| &pdata->use_bam, DT_OPT, DT_BOOL, 0}, |
| {"qcom,bam-consumer-pipe-index", |
| &pdata->bam_consumer_pipe_index, DT_OPT, DT_U32, 0}, |
| {"qcom,bam-producer-pipe-index", |
| &pdata->bam_producer_pipe_index, DT_OPT, DT_U32, 0}, |
| {"qcom,gpio-clk", |
| &dd->spi_gpios[0], DT_OPT, DT_GPIO, -1}, |
| {"qcom,gpio-miso", |
| &dd->spi_gpios[1], DT_OPT, DT_GPIO, -1}, |
| {"qcom,gpio-mosi", |
| &dd->spi_gpios[2], DT_OPT, DT_GPIO, -1}, |
| {"qcom,gpio-cs0", |
| &dd->cs_gpios[0].gpio_num, DT_OPT, DT_GPIO, -1}, |
| {"qcom,gpio-cs1", |
| &dd->cs_gpios[1].gpio_num, DT_OPT, DT_GPIO, -1}, |
| {"qcom,gpio-cs2", |
| &dd->cs_gpios[2].gpio_num, DT_OPT, DT_GPIO, -1}, |
| {"qcom,gpio-cs3", |
| &dd->cs_gpios[3].gpio_num, DT_OPT, DT_GPIO, -1}, |
| {NULL, NULL, 0, 0, 0}, |
| }; |
| |
| if (msm_spi_dt_to_pdata_populate(pdev, pdata, map)) { |
| devm_kfree(&pdev->dev, pdata); |
| return NULL; |
| } |
| } |
| |
| if (pdata->use_bam) { |
| if (!pdata->bam_consumer_pipe_index) { |
| dev_warn(&pdev->dev, |
| "missing qcom,bam-consumer-pipe-index entry in device-tree\n"); |
| pdata->use_bam = false; |
| } |
| |
| if (pdata->bam_producer_pipe_index) { |
| dev_warn(&pdev->dev, |
| "missing qcom,bam-producer-pipe-index entry in device-tree\n"); |
| pdata->use_bam = false; |
| } |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) |
| dd->cs_gpios[i].valid = (dd->cs_gpios[i].gpio_num >= 0); |
| |
| return pdata; |
| } |
| |
| static int __init msm_spi_get_qup_hw_ver(struct device *dev, struct msm_spi *dd) |
| { |
| u32 data = readl_relaxed(dd->base + QUP_HARDWARE_VER); |
| return (data >= QUP_HARDWARE_VER_2_1_1) ? SPI_QUP_VERSION_BFAM |
| : SPI_QUP_VERSION_NONE; |
| } |
| |
| static int __init msm_spi_bam_get_resources(struct msm_spi *dd, |
| struct platform_device *pdev, struct spi_master *master) |
| { |
| struct resource *resource; |
| size_t bam_mem_size; |
| |
| resource = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| "spi_bam_physical"); |
| if (!resource) { |
| dev_warn(&pdev->dev, |
| "%s: Missing spi_bam_physical entry in DT", |
| __func__); |
| return -ENXIO; |
| } |
| |
| dd->bam.phys_addr = resource->start; |
| bam_mem_size = resource_size(resource); |
| dd->bam.base = devm_ioremap(&pdev->dev, dd->bam.phys_addr, |
| bam_mem_size); |
| if (!dd->bam.base) { |
| dev_warn(&pdev->dev, |
| "%s: Failed to ioremap(spi_bam_physical)", |
| __func__); |
| return -ENXIO; |
| } |
| |
| dd->bam.irq = platform_get_irq_byname(pdev, "spi_bam_irq"); |
| if (dd->bam.irq < 0) { |
| dev_warn(&pdev->dev, "%s: Missing spi_bam_irq entry in DT", |
| __func__); |
| return -EINVAL; |
| } |
| |
| dd->dma_init = msm_spi_bam_init; |
| dd->dma_teardown = msm_spi_bam_teardown; |
| return 0; |
| } |
| |
| static int __init msm_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct msm_spi *dd; |
| struct resource *resource; |
| int rc = -ENXIO; |
| int locked = 0; |
| int i = 0; |
| int clk_enabled = 0; |
| int pclk_enabled = 0; |
| struct msm_spi_platform_data *pdata; |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(struct msm_spi)); |
| if (!master) { |
| rc = -ENOMEM; |
| dev_err(&pdev->dev, "master allocation failed\n"); |
| goto err_probe_exit; |
| } |
| |
| master->bus_num = pdev->id; |
| master->mode_bits = SPI_SUPPORTED_MODES; |
| master->num_chipselect = SPI_NUM_CHIPSELECTS; |
| master->setup = msm_spi_setup; |
| master->transfer = msm_spi_transfer; |
| platform_set_drvdata(pdev, master); |
| dd = spi_master_get_devdata(master); |
| |
| if (pdev->dev.of_node) { |
| dd->qup_ver = SPI_QUP_VERSION_BFAM; |
| master->dev.of_node = pdev->dev.of_node; |
| pdata = msm_spi_dt_to_pdata(pdev, dd); |
| if (!pdata) { |
| rc = -ENOMEM; |
| goto err_probe_exit; |
| } |
| |
| rc = of_alias_get_id(pdev->dev.of_node, "spi"); |
| if (rc < 0) |
| dev_warn(&pdev->dev, |
| "using default bus_num %d\n", pdev->id); |
| else |
| master->bus_num = pdev->id = rc; |
| } else { |
| pdata = pdev->dev.platform_data; |
| dd->qup_ver = SPI_QUP_VERSION_NONE; |
| |
| for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) { |
| resource = platform_get_resource(pdev, IORESOURCE_IO, |
| i); |
| dd->spi_gpios[i] = resource ? resource->start : -1; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) { |
| resource = platform_get_resource(pdev, IORESOURCE_IO, |
| i + ARRAY_SIZE(spi_rsrcs)); |
| dd->cs_gpios[i].gpio_num = resource ? |
| resource->start : -1; |
| dd->cs_gpios[i].valid = 0; |
| } |
| } |
| |
| dd->pdata = pdata; |
| resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!resource) { |
| rc = -ENXIO; |
| goto err_probe_res; |
| } |
| |
| dd->mem_phys_addr = resource->start; |
| dd->mem_size = resource_size(resource); |
| |
| if (pdata) { |
| if (pdata->dma_config) { |
| rc = pdata->dma_config(); |
| if (rc) { |
| dev_warn(&pdev->dev, |
| "%s: DM mode not supported\n", |
| __func__); |
| dd->use_dma = 0; |
| goto skip_dma_resources; |
| } |
| } |
| if (dd->qup_ver == SPI_QUP_VERSION_NONE) { |
| resource = platform_get_resource(pdev, |
| IORESOURCE_DMA, 0); |
| if (resource) { |
| dd->rx_dma_chan = resource->start; |
| dd->tx_dma_chan = resource->end; |
| resource = platform_get_resource(pdev, |
| IORESOURCE_DMA, 1); |
| if (!resource) { |
| rc = -ENXIO; |
| goto err_probe_res; |
| } |
| |
| dd->rx_dma_crci = resource->start; |
| dd->tx_dma_crci = resource->end; |
| dd->use_dma = 1; |
| master->dma_alignment = |
| dma_get_cache_alignment(); |
| dd->dma_init = msm_spi_dmov_init ; |
| dd->dma_teardown = msm_spi_dmov_teardown; |
| } |
| } else { |
| if (!dd->pdata->use_bam) |
| goto skip_dma_resources; |
| |
| rc = msm_spi_bam_get_resources(dd, pdev, master); |
| if (rc) { |
| dev_warn(dd->dev, |
| "%s: Faild to get BAM resources", |
| __func__); |
| goto skip_dma_resources; |
| } |
| dd->use_dma = 1; |
| } |
| } |
| |
| skip_dma_resources: |
| |
| spin_lock_init(&dd->queue_lock); |
| mutex_init(&dd->core_lock); |
| INIT_LIST_HEAD(&dd->queue); |
| INIT_WORK(&dd->work_data, msm_spi_workq); |
| init_waitqueue_head(&dd->continue_suspend); |
| dd->workqueue = create_singlethread_workqueue( |
| dev_name(master->dev.parent)); |
| if (!dd->workqueue) |
| goto err_probe_workq; |
| |
| if (!devm_request_mem_region(&pdev->dev, dd->mem_phys_addr, |
| dd->mem_size, SPI_DRV_NAME)) { |
| rc = -ENXIO; |
| goto err_probe_reqmem; |
| } |
| |
| dd->base = devm_ioremap(&pdev->dev, dd->mem_phys_addr, dd->mem_size); |
| if (!dd->base) { |
| rc = -ENOMEM; |
| goto err_probe_reqmem; |
| } |
| |
| if (pdata && pdata->ver_reg_exists) { |
| enum msm_spi_qup_version ver = |
| msm_spi_get_qup_hw_ver(&pdev->dev, dd); |
| if (dd->qup_ver != ver) |
| dev_warn(&pdev->dev, |
| "%s: HW version different then initially assumed by probe", |
| __func__); |
| } |
| |
| if (pdata && pdata->rsl_id) { |
| struct remote_mutex_id rmid; |
| rmid.r_spinlock_id = pdata->rsl_id; |
| rmid.delay_us = SPI_TRYLOCK_DELAY; |
| |
| rc = remote_mutex_init(&dd->r_lock, &rmid); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: unable to init remote_mutex " |
| "(%s), (rc=%d)\n", rmid.r_spinlock_id, |
| __func__, rc); |
| goto err_probe_rlock_init; |
| } |
| |
| dd->use_rlock = 1; |
| dd->pm_lat = pdata->pm_lat; |
| pm_qos_add_request(&qos_req_list, PM_QOS_CPU_DMA_LATENCY, |
| PM_QOS_DEFAULT_VALUE); |
| } |
| |
| mutex_lock(&dd->core_lock); |
| if (dd->use_rlock) |
| remote_mutex_lock(&dd->r_lock); |
| |
| locked = 1; |
| dd->dev = &pdev->dev; |
| dd->clk = clk_get(&pdev->dev, "core_clk"); |
| if (IS_ERR(dd->clk)) { |
| dev_err(&pdev->dev, "%s: unable to get core_clk\n", __func__); |
| rc = PTR_ERR(dd->clk); |
| goto err_probe_clk_get; |
| } |
| |
| dd->pclk = clk_get(&pdev->dev, "iface_clk"); |
| if (IS_ERR(dd->pclk)) { |
| dev_err(&pdev->dev, "%s: unable to get iface_clk\n", __func__); |
| rc = PTR_ERR(dd->pclk); |
| goto err_probe_pclk_get; |
| } |
| |
| if (pdata && pdata->max_clock_speed) |
| msm_spi_clock_set(dd, dd->pdata->max_clock_speed); |
| |
| rc = clk_prepare_enable(dd->clk); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: unable to enable core_clk\n", |
| __func__); |
| goto err_probe_clk_enable; |
| } |
| |
| clk_enabled = 1; |
| rc = clk_prepare_enable(dd->pclk); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: unable to enable iface_clk\n", |
| __func__); |
| goto err_probe_pclk_enable; |
| } |
| |
| pclk_enabled = 1; |
| /* GSBI dose not exists on B-family MSM-chips */ |
| if (dd->qup_ver != SPI_QUP_VERSION_BFAM) { |
| rc = msm_spi_configure_gsbi(dd, pdev); |
| if (rc) |
| goto err_probe_gsbi; |
| } |
| |
| msm_spi_calculate_fifo_size(dd); |
| if (dd->use_dma) { |
| rc = dd->dma_init(dd); |
| if (rc) |
| goto err_probe_dma; |
| } |
| |
| msm_spi_register_init(dd); |
| /* |
| * The SPI core generates a bogus input overrun error on some targets, |
| * when a transition from run to reset state occurs and if the FIFO has |
| * an odd number of entries. Hence we disable the INPUT_OVER_RUN_ERR_EN |
| * bit. |
| */ |
| msm_spi_enable_error_flags(dd); |
| |
| writel_relaxed(SPI_IO_C_NO_TRI_STATE, dd->base + SPI_IO_CONTROL); |
| rc = msm_spi_set_state(dd, SPI_OP_STATE_RESET); |
| if (rc) |
| goto err_probe_state; |
| |
| clk_disable_unprepare(dd->clk); |
| clk_disable_unprepare(dd->pclk); |
| clk_enabled = 0; |
| pclk_enabled = 0; |
| |
| dd->suspended = 1; |
| dd->transfer_pending = 0; |
| dd->multi_xfr = 0; |
| dd->mode = SPI_MODE_NONE; |
| |
| rc = msm_spi_request_irq(dd, pdev, master); |
| if (rc) |
| goto err_probe_irq; |
| |
| msm_spi_disable_irqs(dd); |
| if (dd->use_rlock) |
| remote_mutex_unlock(&dd->r_lock); |
| |
| mutex_unlock(&dd->core_lock); |
| locked = 0; |
| |
| pm_runtime_set_autosuspend_delay(&pdev->dev, MSEC_PER_SEC); |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| |
| rc = spi_register_master(master); |
| if (rc) |
| goto err_probe_reg_master; |
| |
| rc = sysfs_create_group(&(dd->dev->kobj), &dev_attr_grp); |
| if (rc) { |
| dev_err(&pdev->dev, "failed to create dev. attrs : %d\n", rc); |
| goto err_attrs; |
| } |
| |
| spi_debugfs_init(dd); |
| |
| return 0; |
| |
| err_attrs: |
| spi_unregister_master(master); |
| err_probe_reg_master: |
| pm_runtime_disable(&pdev->dev); |
| err_probe_irq: |
| err_probe_state: |
| if (dd->dma_teardown) |
| dd->dma_teardown(dd); |
| err_probe_dma: |
| err_probe_gsbi: |
| if (pclk_enabled) |
| clk_disable_unprepare(dd->pclk); |
| err_probe_pclk_enable: |
| if (clk_enabled) |
| clk_disable_unprepare(dd->clk); |
| err_probe_clk_enable: |
| clk_put(dd->pclk); |
| err_probe_pclk_get: |
| clk_put(dd->clk); |
| err_probe_clk_get: |
| if (locked) { |
| if (dd->use_rlock) |
| remote_mutex_unlock(&dd->r_lock); |
| |
| mutex_unlock(&dd->core_lock); |
| } |
| err_probe_rlock_init: |
| err_probe_reqmem: |
| destroy_workqueue(dd->workqueue); |
| err_probe_workq: |
| err_probe_res: |
| spi_master_put(master); |
| err_probe_exit: |
| return rc; |
| } |
| |
| #ifdef CONFIG_PM |
| static int msm_spi_pm_suspend_runtime(struct device *device) |
| { |
| struct platform_device *pdev = to_platform_device(device); |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct msm_spi *dd; |
| unsigned long flags; |
| |
| dev_dbg(device, "pm_runtime: suspending...\n"); |
| if (!master) |
| goto suspend_exit; |
| dd = spi_master_get_devdata(master); |
| if (!dd) |
| goto suspend_exit; |
| |
| if (dd->suspended) |
| return 0; |
| |
| /* |
| * Make sure nothing is added to the queue while we're |
| * suspending |
| */ |
| spin_lock_irqsave(&dd->queue_lock, flags); |
| dd->suspended = 1; |
| spin_unlock_irqrestore(&dd->queue_lock, flags); |
| |
| /* Wait for transactions to end, or time out */ |
| wait_event_interruptible(dd->continue_suspend, |
| !dd->transfer_pending); |
| |
| msm_spi_disable_irqs(dd); |
| clk_disable_unprepare(dd->clk); |
| clk_disable_unprepare(dd->pclk); |
| if (!dd->pdata->active_only) |
| msm_spi_clk_path_unvote(dd); |
| |
| /* Free the spi clk, miso, mosi, cs gpio */ |
| if (dd->pdata && dd->pdata->gpio_release) |
| dd->pdata->gpio_release(); |
| |
| msm_spi_free_gpios(dd); |
| |
| if (pm_qos_request_active(&qos_req_list)) |
| pm_qos_update_request(&qos_req_list, |
| PM_QOS_DEFAULT_VALUE); |
| suspend_exit: |
| return 0; |
| } |
| |
| static int msm_spi_pm_resume_runtime(struct device *device) |
| { |
| struct platform_device *pdev = to_platform_device(device); |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct msm_spi *dd; |
| int ret = 0; |
| |
| dev_dbg(device, "pm_runtime: resuming...\n"); |
| if (!master) |
| goto resume_exit; |
| dd = spi_master_get_devdata(master); |
| if (!dd) |
| goto resume_exit; |
| |
| if (!dd->suspended) |
| return 0; |
| |
| if (pm_qos_request_active(&qos_req_list)) |
| pm_qos_update_request(&qos_req_list, |
| dd->pm_lat); |
| |
| /* Configure the spi clk, miso, mosi and cs gpio */ |
| if (dd->pdata->gpio_config) { |
| ret = dd->pdata->gpio_config(); |
| if (ret) { |
| dev_err(dd->dev, |
| "%s: error configuring GPIOs\n", |
| __func__); |
| return ret; |
| } |
| } |
| |
| ret = msm_spi_request_gpios(dd); |
| if (ret) |
| return ret; |
| |
| msm_spi_clk_path_init(dd); |
| if (!dd->pdata->active_only) |
| msm_spi_clk_path_vote(dd); |
| clk_prepare_enable(dd->clk); |
| clk_prepare_enable(dd->pclk); |
| msm_spi_enable_irqs(dd); |
| dd->suspended = 0; |
| |
| resume_exit: |
| return 0; |
| } |
| |
| static int msm_spi_suspend(struct device *device) |
| { |
| if (!pm_runtime_enabled(device) || !pm_runtime_suspended(device)) { |
| struct platform_device *pdev = to_platform_device(device); |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct msm_spi *dd; |
| |
| dev_dbg(device, "system suspend"); |
| if (!master) |
| goto suspend_exit; |
| dd = spi_master_get_devdata(master); |
| if (!dd) |
| goto suspend_exit; |
| msm_spi_pm_suspend_runtime(device); |
| } |
| suspend_exit: |
| return 0; |
| } |
| |
| static int msm_spi_resume(struct device *device) |
| { |
| /* |
| * Rely on runtime-PM to call resume in case it is enabled |
| * Even if it's not enabled, rely on 1st client transaction to do |
| * clock ON and gpio configuration |
| */ |
| dev_dbg(device, "system resume"); |
| return 0; |
| } |
| #else |
| #define msm_spi_suspend NULL |
| #define msm_spi_resume NULL |
| #define msm_spi_pm_suspend_runtime NULL |
| #define msm_spi_pm_resume_runtime NULL |
| #endif /* CONFIG_PM */ |
| |
| static int __devexit msm_spi_remove(struct platform_device *pdev) |
| { |
| struct spi_master *master = platform_get_drvdata(pdev); |
| struct msm_spi *dd = spi_master_get_devdata(master); |
| |
| pm_qos_remove_request(&qos_req_list); |
| spi_debugfs_exit(dd); |
| sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp); |
| |
| if (dd->dma_teardown) |
| dd->dma_teardown(dd); |
| pm_runtime_disable(&pdev->dev); |
| pm_runtime_set_suspended(&pdev->dev); |
| clk_put(dd->clk); |
| clk_put(dd->pclk); |
| msm_spi_clk_path_teardown(dd); |
| destroy_workqueue(dd->workqueue); |
| platform_set_drvdata(pdev, 0); |
| spi_unregister_master(master); |
| spi_master_put(master); |
| |
| return 0; |
| } |
| |
| static struct of_device_id msm_spi_dt_match[] = { |
| { |
| .compatible = "qcom,spi-qup-v2", |
| }, |
| {} |
| }; |
| |
| static const struct dev_pm_ops msm_spi_dev_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(msm_spi_suspend, msm_spi_resume) |
| SET_RUNTIME_PM_OPS(msm_spi_pm_suspend_runtime, |
| msm_spi_pm_resume_runtime, NULL) |
| }; |
| |
| static struct platform_driver msm_spi_driver = { |
| .driver = { |
| .name = SPI_DRV_NAME, |
| .owner = THIS_MODULE, |
| .pm = &msm_spi_dev_pm_ops, |
| .of_match_table = msm_spi_dt_match, |
| }, |
| .remove = __exit_p(msm_spi_remove), |
| }; |
| |
| static int __init msm_spi_init(void) |
| { |
| return platform_driver_probe(&msm_spi_driver, msm_spi_probe); |
| } |
| module_init(msm_spi_init); |
| |
| static void __exit msm_spi_exit(void) |
| { |
| platform_driver_unregister(&msm_spi_driver); |
| } |
| module_exit(msm_spi_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_VERSION("0.4"); |
| MODULE_ALIAS("platform:"SPI_DRV_NAME); |