| /* |
| * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card |
| * and other Tigon based cards. |
| * |
| * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. |
| * |
| * Thanks to Alteon and 3Com for providing hardware and documentation |
| * enabling me to write this driver. |
| * |
| * A mailing list for discussing the use of this driver has been |
| * setup, please subscribe to the lists if you have any questions |
| * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to |
| * see how to subscribe. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * Additional credits: |
| * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace |
| * dump support. The trace dump support has not been |
| * integrated yet however. |
| * Troy Benjegerdes: Big Endian (PPC) patches. |
| * Nate Stahl: Better out of memory handling and stats support. |
| * Aman Singla: Nasty race between interrupt handler and tx code dealing |
| * with 'testing the tx_ret_csm and setting tx_full' |
| * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping |
| * infrastructure and Sparc support |
| * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the |
| * driver under Linux/Sparc64 |
| * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards |
| * ETHTOOL_GDRVINFO support |
| * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx |
| * handler and close() cleanup. |
| * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether |
| * memory mapped IO is enabled to |
| * make the driver work on RS/6000. |
| * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem |
| * where the driver would disable |
| * bus master mode if it had to disable |
| * write and invalidate. |
| * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little |
| * endian systems. |
| * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and |
| * rx producer index when |
| * flushing the Jumbo ring. |
| * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the |
| * driver init path. |
| * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/version.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/sockios.h> |
| |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) |
| #include <linux/if_vlan.h> |
| #endif |
| |
| #ifdef SIOCETHTOOL |
| #include <linux/ethtool.h> |
| #endif |
| |
| #include <net/sock.h> |
| #include <net/ip.h> |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/byteorder.h> |
| #include <asm/uaccess.h> |
| |
| |
| #define DRV_NAME "acenic" |
| |
| #undef INDEX_DEBUG |
| |
| #ifdef CONFIG_ACENIC_OMIT_TIGON_I |
| #define ACE_IS_TIGON_I(ap) 0 |
| #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES |
| #else |
| #define ACE_IS_TIGON_I(ap) (ap->version == 1) |
| #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries |
| #endif |
| |
| #ifndef PCI_VENDOR_ID_ALTEON |
| #define PCI_VENDOR_ID_ALTEON 0x12ae |
| #endif |
| #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE |
| #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 |
| #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 |
| #endif |
| #ifndef PCI_DEVICE_ID_3COM_3C985 |
| #define PCI_DEVICE_ID_3COM_3C985 0x0001 |
| #endif |
| #ifndef PCI_VENDOR_ID_NETGEAR |
| #define PCI_VENDOR_ID_NETGEAR 0x1385 |
| #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a |
| #endif |
| #ifndef PCI_DEVICE_ID_NETGEAR_GA620T |
| #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a |
| #endif |
| |
| |
| /* |
| * Farallon used the DEC vendor ID by mistake and they seem not |
| * to care - stinky! |
| */ |
| #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX |
| #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a |
| #endif |
| #ifndef PCI_DEVICE_ID_FARALLON_PN9100T |
| #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa |
| #endif |
| #ifndef PCI_VENDOR_ID_SGI |
| #define PCI_VENDOR_ID_SGI 0x10a9 |
| #endif |
| #ifndef PCI_DEVICE_ID_SGI_ACENIC |
| #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 |
| #endif |
| |
| static struct pci_device_id acenic_pci_tbl[] = { |
| { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| /* |
| * Farallon used the DEC vendor ID on their cards incorrectly, |
| * then later Alteon's ID. |
| */ |
| { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, |
| PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); |
| |
| #ifndef SET_NETDEV_DEV |
| #define SET_NETDEV_DEV(net, pdev) do{} while(0) |
| #endif |
| |
| #define ace_sync_irq(irq) synchronize_irq(irq) |
| |
| #ifndef offset_in_page |
| #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) |
| #endif |
| |
| #define ACE_MAX_MOD_PARMS 8 |
| #define BOARD_IDX_STATIC 0 |
| #define BOARD_IDX_OVERFLOW -1 |
| |
| #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \ |
| defined(NETIF_F_HW_VLAN_RX) |
| #define ACENIC_DO_VLAN 1 |
| #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST |
| #else |
| #define ACENIC_DO_VLAN 0 |
| #define ACE_RCB_VLAN_FLAG 0 |
| #endif |
| |
| #include "acenic.h" |
| |
| /* |
| * These must be defined before the firmware is included. |
| */ |
| #define MAX_TEXT_LEN 96*1024 |
| #define MAX_RODATA_LEN 8*1024 |
| #define MAX_DATA_LEN 2*1024 |
| |
| #include "acenic_firmware.h" |
| |
| #ifndef tigon2FwReleaseLocal |
| #define tigon2FwReleaseLocal 0 |
| #endif |
| |
| /* |
| * This driver currently supports Tigon I and Tigon II based cards |
| * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear |
| * GA620. The driver should also work on the SGI, DEC and Farallon |
| * versions of the card, however I have not been able to test that |
| * myself. |
| * |
| * This card is really neat, it supports receive hardware checksumming |
| * and jumbo frames (up to 9000 bytes) and does a lot of work in the |
| * firmware. Also the programming interface is quite neat, except for |
| * the parts dealing with the i2c eeprom on the card ;-) |
| * |
| * Using jumbo frames: |
| * |
| * To enable jumbo frames, simply specify an mtu between 1500 and 9000 |
| * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time |
| * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet |
| * interface number and <MTU> being the MTU value. |
| * |
| * Module parameters: |
| * |
| * When compiled as a loadable module, the driver allows for a number |
| * of module parameters to be specified. The driver supports the |
| * following module parameters: |
| * |
| * trace=<val> - Firmware trace level. This requires special traced |
| * firmware to replace the firmware supplied with |
| * the driver - for debugging purposes only. |
| * |
| * link=<val> - Link state. Normally you want to use the default link |
| * parameters set by the driver. This can be used to |
| * override these in case your switch doesn't negotiate |
| * the link properly. Valid values are: |
| * 0x0001 - Force half duplex link. |
| * 0x0002 - Do not negotiate line speed with the other end. |
| * 0x0010 - 10Mbit/sec link. |
| * 0x0020 - 100Mbit/sec link. |
| * 0x0040 - 1000Mbit/sec link. |
| * 0x0100 - Do not negotiate flow control. |
| * 0x0200 - Enable RX flow control Y |
| * 0x0400 - Enable TX flow control Y (Tigon II NICs only). |
| * Default value is 0x0270, ie. enable link+flow |
| * control negotiation. Negotiating the highest |
| * possible link speed with RX flow control enabled. |
| * |
| * When disabling link speed negotiation, only one link |
| * speed is allowed to be specified! |
| * |
| * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed |
| * to wait for more packets to arive before |
| * interrupting the host, from the time the first |
| * packet arrives. |
| * |
| * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed |
| * to wait for more packets to arive in the transmit ring, |
| * before interrupting the host, after transmitting the |
| * first packet in the ring. |
| * |
| * max_tx_desc=<val> - maximum number of transmit descriptors |
| * (packets) transmitted before interrupting the host. |
| * |
| * max_rx_desc=<val> - maximum number of receive descriptors |
| * (packets) received before interrupting the host. |
| * |
| * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th |
| * increments of the NIC's on board memory to be used for |
| * transmit and receive buffers. For the 1MB NIC app. 800KB |
| * is available, on the 1/2MB NIC app. 300KB is available. |
| * 68KB will always be available as a minimum for both |
| * directions. The default value is a 50/50 split. |
| * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate |
| * operations, default (1) is to always disable this as |
| * that is what Alteon does on NT. I have not been able |
| * to measure any real performance differences with |
| * this on my systems. Set <val>=0 if you want to |
| * enable these operations. |
| * |
| * If you use more than one NIC, specify the parameters for the |
| * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to |
| * run tracing on NIC #2 but not on NIC #1 and #3. |
| * |
| * TODO: |
| * |
| * - Proper multicast support. |
| * - NIC dump support. |
| * - More tuning parameters. |
| * |
| * The mini ring is not used under Linux and I am not sure it makes sense |
| * to actually use it. |
| * |
| * New interrupt handler strategy: |
| * |
| * The old interrupt handler worked using the traditional method of |
| * replacing an skbuff with a new one when a packet arrives. However |
| * the rx rings do not need to contain a static number of buffer |
| * descriptors, thus it makes sense to move the memory allocation out |
| * of the main interrupt handler and do it in a bottom half handler |
| * and only allocate new buffers when the number of buffers in the |
| * ring is below a certain threshold. In order to avoid starving the |
| * NIC under heavy load it is however necessary to force allocation |
| * when hitting a minimum threshold. The strategy for alloction is as |
| * follows: |
| * |
| * RX_LOW_BUF_THRES - allocate buffers in the bottom half |
| * RX_PANIC_LOW_THRES - we are very low on buffers, allocate |
| * the buffers in the interrupt handler |
| * RX_RING_THRES - maximum number of buffers in the rx ring |
| * RX_MINI_THRES - maximum number of buffers in the mini ring |
| * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring |
| * |
| * One advantagous side effect of this allocation approach is that the |
| * entire rx processing can be done without holding any spin lock |
| * since the rx rings and registers are totally independent of the tx |
| * ring and its registers. This of course includes the kmalloc's of |
| * new skb's. Thus start_xmit can run in parallel with rx processing |
| * and the memory allocation on SMP systems. |
| * |
| * Note that running the skb reallocation in a bottom half opens up |
| * another can of races which needs to be handled properly. In |
| * particular it can happen that the interrupt handler tries to run |
| * the reallocation while the bottom half is either running on another |
| * CPU or was interrupted on the same CPU. To get around this the |
| * driver uses bitops to prevent the reallocation routines from being |
| * reentered. |
| * |
| * TX handling can also be done without holding any spin lock, wheee |
| * this is fun! since tx_ret_csm is only written to by the interrupt |
| * handler. The case to be aware of is when shutting down the device |
| * and cleaning up where it is necessary to make sure that |
| * start_xmit() is not running while this is happening. Well DaveM |
| * informs me that this case is already protected against ... bye bye |
| * Mr. Spin Lock, it was nice to know you. |
| * |
| * TX interrupts are now partly disabled so the NIC will only generate |
| * TX interrupts for the number of coal ticks, not for the number of |
| * TX packets in the queue. This should reduce the number of TX only, |
| * ie. when no RX processing is done, interrupts seen. |
| */ |
| |
| /* |
| * Threshold values for RX buffer allocation - the low water marks for |
| * when to start refilling the rings are set to 75% of the ring |
| * sizes. It seems to make sense to refill the rings entirely from the |
| * intrrupt handler once it gets below the panic threshold, that way |
| * we don't risk that the refilling is moved to another CPU when the |
| * one running the interrupt handler just got the slab code hot in its |
| * cache. |
| */ |
| #define RX_RING_SIZE 72 |
| #define RX_MINI_SIZE 64 |
| #define RX_JUMBO_SIZE 48 |
| |
| #define RX_PANIC_STD_THRES 16 |
| #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 |
| #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 |
| #define RX_PANIC_MINI_THRES 12 |
| #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 |
| #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 |
| #define RX_PANIC_JUMBO_THRES 6 |
| #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 |
| #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 |
| |
| |
| /* |
| * Size of the mini ring entries, basically these just should be big |
| * enough to take TCP ACKs |
| */ |
| #define ACE_MINI_SIZE 100 |
| |
| #define ACE_MINI_BUFSIZE ACE_MINI_SIZE |
| #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) |
| #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) |
| |
| /* |
| * There seems to be a magic difference in the effect between 995 and 996 |
| * but little difference between 900 and 995 ... no idea why. |
| * |
| * There is now a default set of tuning parameters which is set, depending |
| * on whether or not the user enables Jumbo frames. It's assumed that if |
| * Jumbo frames are enabled, the user wants optimal tuning for that case. |
| */ |
| #define DEF_TX_COAL 400 /* 996 */ |
| #define DEF_TX_MAX_DESC 60 /* was 40 */ |
| #define DEF_RX_COAL 120 /* 1000 */ |
| #define DEF_RX_MAX_DESC 25 |
| #define DEF_TX_RATIO 21 /* 24 */ |
| |
| #define DEF_JUMBO_TX_COAL 20 |
| #define DEF_JUMBO_TX_MAX_DESC 60 |
| #define DEF_JUMBO_RX_COAL 30 |
| #define DEF_JUMBO_RX_MAX_DESC 6 |
| #define DEF_JUMBO_TX_RATIO 21 |
| |
| #if tigon2FwReleaseLocal < 20001118 |
| /* |
| * Standard firmware and early modifications duplicate |
| * IRQ load without this flag (coal timer is never reset). |
| * Note that with this flag tx_coal should be less than |
| * time to xmit full tx ring. |
| * 400usec is not so bad for tx ring size of 128. |
| */ |
| #define TX_COAL_INTS_ONLY 1 /* worth it */ |
| #else |
| /* |
| * With modified firmware, this is not necessary, but still useful. |
| */ |
| #define TX_COAL_INTS_ONLY 1 |
| #endif |
| |
| #define DEF_TRACE 0 |
| #define DEF_STAT (2 * TICKS_PER_SEC) |
| |
| |
| static int link[ACE_MAX_MOD_PARMS]; |
| static int trace[ACE_MAX_MOD_PARMS]; |
| static int tx_coal_tick[ACE_MAX_MOD_PARMS]; |
| static int rx_coal_tick[ACE_MAX_MOD_PARMS]; |
| static int max_tx_desc[ACE_MAX_MOD_PARMS]; |
| static int max_rx_desc[ACE_MAX_MOD_PARMS]; |
| static int tx_ratio[ACE_MAX_MOD_PARMS]; |
| static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; |
| |
| MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); |
| |
| module_param_array(link, int, NULL, 0); |
| module_param_array(trace, int, NULL, 0); |
| module_param_array(tx_coal_tick, int, NULL, 0); |
| module_param_array(max_tx_desc, int, NULL, 0); |
| module_param_array(rx_coal_tick, int, NULL, 0); |
| module_param_array(max_rx_desc, int, NULL, 0); |
| module_param_array(tx_ratio, int, NULL, 0); |
| MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); |
| MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); |
| MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); |
| MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); |
| MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); |
| MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); |
| MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); |
| |
| |
| static char version[] __devinitdata = |
| "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" |
| " http://home.cern.ch/~jes/gige/acenic.html\n"; |
| |
| static int ace_get_settings(struct net_device *, struct ethtool_cmd *); |
| static int ace_set_settings(struct net_device *, struct ethtool_cmd *); |
| static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); |
| |
| static const struct ethtool_ops ace_ethtool_ops = { |
| .get_settings = ace_get_settings, |
| .set_settings = ace_set_settings, |
| .get_drvinfo = ace_get_drvinfo, |
| }; |
| |
| static void ace_watchdog(struct net_device *dev); |
| |
| static int __devinit acenic_probe_one(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| struct net_device *dev; |
| struct ace_private *ap; |
| static int boards_found; |
| |
| dev = alloc_etherdev(sizeof(struct ace_private)); |
| if (dev == NULL) { |
| printk(KERN_ERR "acenic: Unable to allocate " |
| "net_device structure!\n"); |
| return -ENOMEM; |
| } |
| |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| ap = dev->priv; |
| ap->pdev = pdev; |
| ap->name = pci_name(pdev); |
| |
| dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; |
| #if ACENIC_DO_VLAN |
| dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; |
| dev->vlan_rx_register = ace_vlan_rx_register; |
| dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid; |
| #endif |
| if (1) { |
| dev->tx_timeout = &ace_watchdog; |
| dev->watchdog_timeo = 5*HZ; |
| } |
| |
| dev->open = &ace_open; |
| dev->stop = &ace_close; |
| dev->hard_start_xmit = &ace_start_xmit; |
| dev->get_stats = &ace_get_stats; |
| dev->set_multicast_list = &ace_set_multicast_list; |
| SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); |
| dev->set_mac_address = &ace_set_mac_addr; |
| dev->change_mtu = &ace_change_mtu; |
| |
| /* we only display this string ONCE */ |
| if (!boards_found) |
| printk(version); |
| |
| if (pci_enable_device(pdev)) |
| goto fail_free_netdev; |
| |
| /* |
| * Enable master mode before we start playing with the |
| * pci_command word since pci_set_master() will modify |
| * it. |
| */ |
| pci_set_master(pdev); |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); |
| |
| /* OpenFirmware on Mac's does not set this - DOH.. */ |
| if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { |
| printk(KERN_INFO "%s: Enabling PCI Memory Mapped " |
| "access - was not enabled by BIOS/Firmware\n", |
| ap->name); |
| ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; |
| pci_write_config_word(ap->pdev, PCI_COMMAND, |
| ap->pci_command); |
| wmb(); |
| } |
| |
| pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); |
| if (ap->pci_latency <= 0x40) { |
| ap->pci_latency = 0x40; |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); |
| } |
| |
| /* |
| * Remap the regs into kernel space - this is abuse of |
| * dev->base_addr since it was means for I/O port |
| * addresses but who gives a damn. |
| */ |
| dev->base_addr = pci_resource_start(pdev, 0); |
| ap->regs = ioremap(dev->base_addr, 0x4000); |
| if (!ap->regs) { |
| printk(KERN_ERR "%s: Unable to map I/O register, " |
| "AceNIC %i will be disabled.\n", |
| ap->name, boards_found); |
| goto fail_free_netdev; |
| } |
| |
| switch(pdev->vendor) { |
| case PCI_VENDOR_ID_ALTEON: |
| if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { |
| printk(KERN_INFO "%s: Farallon PN9100-T ", |
| ap->name); |
| } else { |
| printk(KERN_INFO "%s: Alteon AceNIC ", |
| ap->name); |
| } |
| break; |
| case PCI_VENDOR_ID_3COM: |
| printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); |
| break; |
| case PCI_VENDOR_ID_NETGEAR: |
| printk(KERN_INFO "%s: NetGear GA620 ", ap->name); |
| break; |
| case PCI_VENDOR_ID_DEC: |
| if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { |
| printk(KERN_INFO "%s: Farallon PN9000-SX ", |
| ap->name); |
| break; |
| } |
| case PCI_VENDOR_ID_SGI: |
| printk(KERN_INFO "%s: SGI AceNIC ", ap->name); |
| break; |
| default: |
| printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); |
| break; |
| } |
| |
| printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); |
| printk("irq %d\n", pdev->irq); |
| |
| #ifdef CONFIG_ACENIC_OMIT_TIGON_I |
| if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { |
| printk(KERN_ERR "%s: Driver compiled without Tigon I" |
| " support - NIC disabled\n", dev->name); |
| goto fail_uninit; |
| } |
| #endif |
| |
| if (ace_allocate_descriptors(dev)) |
| goto fail_free_netdev; |
| |
| #ifdef MODULE |
| if (boards_found >= ACE_MAX_MOD_PARMS) |
| ap->board_idx = BOARD_IDX_OVERFLOW; |
| else |
| ap->board_idx = boards_found; |
| #else |
| ap->board_idx = BOARD_IDX_STATIC; |
| #endif |
| |
| if (ace_init(dev)) |
| goto fail_free_netdev; |
| |
| if (register_netdev(dev)) { |
| printk(KERN_ERR "acenic: device registration failed\n"); |
| goto fail_uninit; |
| } |
| ap->name = dev->name; |
| |
| if (ap->pci_using_dac) |
| dev->features |= NETIF_F_HIGHDMA; |
| |
| pci_set_drvdata(pdev, dev); |
| |
| boards_found++; |
| return 0; |
| |
| fail_uninit: |
| ace_init_cleanup(dev); |
| fail_free_netdev: |
| free_netdev(dev); |
| return -ENODEV; |
| } |
| |
| static void __devexit acenic_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| short i; |
| |
| unregister_netdev(dev); |
| |
| writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); |
| if (ap->version >= 2) |
| writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); |
| |
| /* |
| * This clears any pending interrupts |
| */ |
| writel(1, ®s->Mb0Lo); |
| readl(®s->CpuCtrl); /* flush */ |
| |
| /* |
| * Make sure no other CPUs are processing interrupts |
| * on the card before the buffers are being released. |
| * Otherwise one might experience some `interesting' |
| * effects. |
| * |
| * Then release the RX buffers - jumbo buffers were |
| * already released in ace_close(). |
| */ |
| ace_sync_irq(dev->irq); |
| |
| for (i = 0; i < RX_STD_RING_ENTRIES; i++) { |
| struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; |
| |
| if (skb) { |
| struct ring_info *ringp; |
| dma_addr_t mapping; |
| |
| ringp = &ap->skb->rx_std_skbuff[i]; |
| mapping = pci_unmap_addr(ringp, mapping); |
| pci_unmap_page(ap->pdev, mapping, |
| ACE_STD_BUFSIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| ap->rx_std_ring[i].size = 0; |
| ap->skb->rx_std_skbuff[i].skb = NULL; |
| dev_kfree_skb(skb); |
| } |
| } |
| |
| if (ap->version >= 2) { |
| for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { |
| struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; |
| |
| if (skb) { |
| struct ring_info *ringp; |
| dma_addr_t mapping; |
| |
| ringp = &ap->skb->rx_mini_skbuff[i]; |
| mapping = pci_unmap_addr(ringp,mapping); |
| pci_unmap_page(ap->pdev, mapping, |
| ACE_MINI_BUFSIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| ap->rx_mini_ring[i].size = 0; |
| ap->skb->rx_mini_skbuff[i].skb = NULL; |
| dev_kfree_skb(skb); |
| } |
| } |
| } |
| |
| for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { |
| struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; |
| if (skb) { |
| struct ring_info *ringp; |
| dma_addr_t mapping; |
| |
| ringp = &ap->skb->rx_jumbo_skbuff[i]; |
| mapping = pci_unmap_addr(ringp, mapping); |
| pci_unmap_page(ap->pdev, mapping, |
| ACE_JUMBO_BUFSIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| ap->rx_jumbo_ring[i].size = 0; |
| ap->skb->rx_jumbo_skbuff[i].skb = NULL; |
| dev_kfree_skb(skb); |
| } |
| } |
| |
| ace_init_cleanup(dev); |
| free_netdev(dev); |
| } |
| |
| static struct pci_driver acenic_pci_driver = { |
| .name = "acenic", |
| .id_table = acenic_pci_tbl, |
| .probe = acenic_probe_one, |
| .remove = __devexit_p(acenic_remove_one), |
| }; |
| |
| static int __init acenic_init(void) |
| { |
| return pci_register_driver(&acenic_pci_driver); |
| } |
| |
| static void __exit acenic_exit(void) |
| { |
| pci_unregister_driver(&acenic_pci_driver); |
| } |
| |
| module_init(acenic_init); |
| module_exit(acenic_exit); |
| |
| static void ace_free_descriptors(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| int size; |
| |
| if (ap->rx_std_ring != NULL) { |
| size = (sizeof(struct rx_desc) * |
| (RX_STD_RING_ENTRIES + |
| RX_JUMBO_RING_ENTRIES + |
| RX_MINI_RING_ENTRIES + |
| RX_RETURN_RING_ENTRIES)); |
| pci_free_consistent(ap->pdev, size, ap->rx_std_ring, |
| ap->rx_ring_base_dma); |
| ap->rx_std_ring = NULL; |
| ap->rx_jumbo_ring = NULL; |
| ap->rx_mini_ring = NULL; |
| ap->rx_return_ring = NULL; |
| } |
| if (ap->evt_ring != NULL) { |
| size = (sizeof(struct event) * EVT_RING_ENTRIES); |
| pci_free_consistent(ap->pdev, size, ap->evt_ring, |
| ap->evt_ring_dma); |
| ap->evt_ring = NULL; |
| } |
| if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { |
| size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); |
| pci_free_consistent(ap->pdev, size, ap->tx_ring, |
| ap->tx_ring_dma); |
| } |
| ap->tx_ring = NULL; |
| |
| if (ap->evt_prd != NULL) { |
| pci_free_consistent(ap->pdev, sizeof(u32), |
| (void *)ap->evt_prd, ap->evt_prd_dma); |
| ap->evt_prd = NULL; |
| } |
| if (ap->rx_ret_prd != NULL) { |
| pci_free_consistent(ap->pdev, sizeof(u32), |
| (void *)ap->rx_ret_prd, |
| ap->rx_ret_prd_dma); |
| ap->rx_ret_prd = NULL; |
| } |
| if (ap->tx_csm != NULL) { |
| pci_free_consistent(ap->pdev, sizeof(u32), |
| (void *)ap->tx_csm, ap->tx_csm_dma); |
| ap->tx_csm = NULL; |
| } |
| } |
| |
| |
| static int ace_allocate_descriptors(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| int size; |
| |
| size = (sizeof(struct rx_desc) * |
| (RX_STD_RING_ENTRIES + |
| RX_JUMBO_RING_ENTRIES + |
| RX_MINI_RING_ENTRIES + |
| RX_RETURN_RING_ENTRIES)); |
| |
| ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, |
| &ap->rx_ring_base_dma); |
| if (ap->rx_std_ring == NULL) |
| goto fail; |
| |
| ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; |
| ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; |
| ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; |
| |
| size = (sizeof(struct event) * EVT_RING_ENTRIES); |
| |
| ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); |
| |
| if (ap->evt_ring == NULL) |
| goto fail; |
| |
| /* |
| * Only allocate a host TX ring for the Tigon II, the Tigon I |
| * has to use PCI registers for this ;-( |
| */ |
| if (!ACE_IS_TIGON_I(ap)) { |
| size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); |
| |
| ap->tx_ring = pci_alloc_consistent(ap->pdev, size, |
| &ap->tx_ring_dma); |
| |
| if (ap->tx_ring == NULL) |
| goto fail; |
| } |
| |
| ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), |
| &ap->evt_prd_dma); |
| if (ap->evt_prd == NULL) |
| goto fail; |
| |
| ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), |
| &ap->rx_ret_prd_dma); |
| if (ap->rx_ret_prd == NULL) |
| goto fail; |
| |
| ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), |
| &ap->tx_csm_dma); |
| if (ap->tx_csm == NULL) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| /* Clean up. */ |
| ace_init_cleanup(dev); |
| return 1; |
| } |
| |
| |
| /* |
| * Generic cleanup handling data allocated during init. Used when the |
| * module is unloaded or if an error occurs during initialization |
| */ |
| static void ace_init_cleanup(struct net_device *dev) |
| { |
| struct ace_private *ap; |
| |
| ap = netdev_priv(dev); |
| |
| ace_free_descriptors(dev); |
| |
| if (ap->info) |
| pci_free_consistent(ap->pdev, sizeof(struct ace_info), |
| ap->info, ap->info_dma); |
| kfree(ap->skb); |
| kfree(ap->trace_buf); |
| |
| if (dev->irq) |
| free_irq(dev->irq, dev); |
| |
| iounmap(ap->regs); |
| } |
| |
| |
| /* |
| * Commands are considered to be slow. |
| */ |
| static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) |
| { |
| u32 idx; |
| |
| idx = readl(®s->CmdPrd); |
| |
| writel(*(u32 *)(cmd), ®s->CmdRng[idx]); |
| idx = (idx + 1) % CMD_RING_ENTRIES; |
| |
| writel(idx, ®s->CmdPrd); |
| } |
| |
| |
| static int __devinit ace_init(struct net_device *dev) |
| { |
| struct ace_private *ap; |
| struct ace_regs __iomem *regs; |
| struct ace_info *info = NULL; |
| struct pci_dev *pdev; |
| unsigned long myjif; |
| u64 tmp_ptr; |
| u32 tig_ver, mac1, mac2, tmp, pci_state; |
| int board_idx, ecode = 0; |
| short i; |
| unsigned char cache_size; |
| |
| ap = netdev_priv(dev); |
| regs = ap->regs; |
| |
| board_idx = ap->board_idx; |
| |
| /* |
| * aman@sgi.com - its useful to do a NIC reset here to |
| * address the `Firmware not running' problem subsequent |
| * to any crashes involving the NIC |
| */ |
| writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); |
| readl(®s->HostCtrl); /* PCI write posting */ |
| udelay(5); |
| |
| /* |
| * Don't access any other registers before this point! |
| */ |
| #ifdef __BIG_ENDIAN |
| /* |
| * This will most likely need BYTE_SWAP once we switch |
| * to using __raw_writel() |
| */ |
| writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), |
| ®s->HostCtrl); |
| #else |
| writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), |
| ®s->HostCtrl); |
| #endif |
| readl(®s->HostCtrl); /* PCI write posting */ |
| |
| /* |
| * Stop the NIC CPU and clear pending interrupts |
| */ |
| writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); |
| readl(®s->CpuCtrl); /* PCI write posting */ |
| writel(0, ®s->Mb0Lo); |
| |
| tig_ver = readl(®s->HostCtrl) >> 28; |
| |
| switch(tig_ver){ |
| #ifndef CONFIG_ACENIC_OMIT_TIGON_I |
| case 4: |
| case 5: |
| printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", |
| tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor, |
| tigonFwReleaseFix); |
| writel(0, ®s->LocalCtrl); |
| ap->version = 1; |
| ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; |
| break; |
| #endif |
| case 6: |
| printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", |
| tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, |
| tigon2FwReleaseFix); |
| writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); |
| readl(®s->CpuBCtrl); /* PCI write posting */ |
| /* |
| * The SRAM bank size does _not_ indicate the amount |
| * of memory on the card, it controls the _bank_ size! |
| * Ie. a 1MB AceNIC will have two banks of 512KB. |
| */ |
| writel(SRAM_BANK_512K, ®s->LocalCtrl); |
| writel(SYNC_SRAM_TIMING, ®s->MiscCfg); |
| ap->version = 2; |
| ap->tx_ring_entries = MAX_TX_RING_ENTRIES; |
| break; |
| default: |
| printk(KERN_WARNING " Unsupported Tigon version detected " |
| "(%i)\n", tig_ver); |
| ecode = -ENODEV; |
| goto init_error; |
| } |
| |
| /* |
| * ModeStat _must_ be set after the SRAM settings as this change |
| * seems to corrupt the ModeStat and possible other registers. |
| * The SRAM settings survive resets and setting it to the same |
| * value a second time works as well. This is what caused the |
| * `Firmware not running' problem on the Tigon II. |
| */ |
| #ifdef __BIG_ENDIAN |
| writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | |
| ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); |
| #else |
| writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | |
| ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); |
| #endif |
| readl(®s->ModeStat); /* PCI write posting */ |
| |
| mac1 = 0; |
| for(i = 0; i < 4; i++) { |
| int tmp; |
| |
| mac1 = mac1 << 8; |
| tmp = read_eeprom_byte(dev, 0x8c+i); |
| if (tmp < 0) { |
| ecode = -EIO; |
| goto init_error; |
| } else |
| mac1 |= (tmp & 0xff); |
| } |
| mac2 = 0; |
| for(i = 4; i < 8; i++) { |
| int tmp; |
| |
| mac2 = mac2 << 8; |
| tmp = read_eeprom_byte(dev, 0x8c+i); |
| if (tmp < 0) { |
| ecode = -EIO; |
| goto init_error; |
| } else |
| mac2 |= (tmp & 0xff); |
| } |
| |
| writel(mac1, ®s->MacAddrHi); |
| writel(mac2, ®s->MacAddrLo); |
| |
| printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff, |
| (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff); |
| |
| dev->dev_addr[0] = (mac1 >> 8) & 0xff; |
| dev->dev_addr[1] = mac1 & 0xff; |
| dev->dev_addr[2] = (mac2 >> 24) & 0xff; |
| dev->dev_addr[3] = (mac2 >> 16) & 0xff; |
| dev->dev_addr[4] = (mac2 >> 8) & 0xff; |
| dev->dev_addr[5] = mac2 & 0xff; |
| |
| /* |
| * Looks like this is necessary to deal with on all architectures, |
| * even this %$#%$# N440BX Intel based thing doesn't get it right. |
| * Ie. having two NICs in the machine, one will have the cache |
| * line set at boot time, the other will not. |
| */ |
| pdev = ap->pdev; |
| pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); |
| cache_size <<= 2; |
| if (cache_size != SMP_CACHE_BYTES) { |
| printk(KERN_INFO " PCI cache line size set incorrectly " |
| "(%i bytes) by BIOS/FW, ", cache_size); |
| if (cache_size > SMP_CACHE_BYTES) |
| printk("expecting %i\n", SMP_CACHE_BYTES); |
| else { |
| printk("correcting to %i\n", SMP_CACHE_BYTES); |
| pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
| SMP_CACHE_BYTES >> 2); |
| } |
| } |
| |
| pci_state = readl(®s->PciState); |
| printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " |
| "latency: %i clks\n", |
| (pci_state & PCI_32BIT) ? 32 : 64, |
| (pci_state & PCI_66MHZ) ? 66 : 33, |
| ap->pci_latency); |
| |
| /* |
| * Set the max DMA transfer size. Seems that for most systems |
| * the performance is better when no MAX parameter is |
| * set. However for systems enabling PCI write and invalidate, |
| * DMA writes must be set to the L1 cache line size to get |
| * optimal performance. |
| * |
| * The default is now to turn the PCI write and invalidate off |
| * - that is what Alteon does for NT. |
| */ |
| tmp = READ_CMD_MEM | WRITE_CMD_MEM; |
| if (ap->version >= 2) { |
| tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); |
| /* |
| * Tuning parameters only supported for 8 cards |
| */ |
| if (board_idx == BOARD_IDX_OVERFLOW || |
| dis_pci_mem_inval[board_idx]) { |
| if (ap->pci_command & PCI_COMMAND_INVALIDATE) { |
| ap->pci_command &= ~PCI_COMMAND_INVALIDATE; |
| pci_write_config_word(pdev, PCI_COMMAND, |
| ap->pci_command); |
| printk(KERN_INFO " Disabling PCI memory " |
| "write and invalidate\n"); |
| } |
| } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { |
| printk(KERN_INFO " PCI memory write & invalidate " |
| "enabled by BIOS, enabling counter measures\n"); |
| |
| switch(SMP_CACHE_BYTES) { |
| case 16: |
| tmp |= DMA_WRITE_MAX_16; |
| break; |
| case 32: |
| tmp |= DMA_WRITE_MAX_32; |
| break; |
| case 64: |
| tmp |= DMA_WRITE_MAX_64; |
| break; |
| case 128: |
| tmp |= DMA_WRITE_MAX_128; |
| break; |
| default: |
| printk(KERN_INFO " Cache line size %i not " |
| "supported, PCI write and invalidate " |
| "disabled\n", SMP_CACHE_BYTES); |
| ap->pci_command &= ~PCI_COMMAND_INVALIDATE; |
| pci_write_config_word(pdev, PCI_COMMAND, |
| ap->pci_command); |
| } |
| } |
| } |
| |
| #ifdef __sparc__ |
| /* |
| * On this platform, we know what the best dma settings |
| * are. We use 64-byte maximum bursts, because if we |
| * burst larger than the cache line size (or even cross |
| * a 64byte boundary in a single burst) the UltraSparc |
| * PCI controller will disconnect at 64-byte multiples. |
| * |
| * Read-multiple will be properly enabled above, and when |
| * set will give the PCI controller proper hints about |
| * prefetching. |
| */ |
| tmp &= ~DMA_READ_WRITE_MASK; |
| tmp |= DMA_READ_MAX_64; |
| tmp |= DMA_WRITE_MAX_64; |
| #endif |
| #ifdef __alpha__ |
| tmp &= ~DMA_READ_WRITE_MASK; |
| tmp |= DMA_READ_MAX_128; |
| /* |
| * All the docs say MUST NOT. Well, I did. |
| * Nothing terrible happens, if we load wrong size. |
| * Bit w&i still works better! |
| */ |
| tmp |= DMA_WRITE_MAX_128; |
| #endif |
| writel(tmp, ®s->PciState); |
| |
| #if 0 |
| /* |
| * The Host PCI bus controller driver has to set FBB. |
| * If all devices on that PCI bus support FBB, then the controller |
| * can enable FBB support in the Host PCI Bus controller (or on |
| * the PCI-PCI bridge if that applies). |
| * -ggg |
| */ |
| /* |
| * I have received reports from people having problems when this |
| * bit is enabled. |
| */ |
| if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { |
| printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); |
| ap->pci_command |= PCI_COMMAND_FAST_BACK; |
| pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); |
| } |
| #endif |
| |
| /* |
| * Configure DMA attributes. |
| */ |
| if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| ap->pci_using_dac = 1; |
| } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { |
| ap->pci_using_dac = 0; |
| } else { |
| ecode = -ENODEV; |
| goto init_error; |
| } |
| |
| /* |
| * Initialize the generic info block and the command+event rings |
| * and the control blocks for the transmit and receive rings |
| * as they need to be setup once and for all. |
| */ |
| if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), |
| &ap->info_dma))) { |
| ecode = -EAGAIN; |
| goto init_error; |
| } |
| ap->info = info; |
| |
| /* |
| * Get the memory for the skb rings. |
| */ |
| if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { |
| ecode = -EAGAIN; |
| goto init_error; |
| } |
| |
| ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, |
| DRV_NAME, dev); |
| if (ecode) { |
| printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", |
| DRV_NAME, pdev->irq); |
| goto init_error; |
| } else |
| dev->irq = pdev->irq; |
| |
| #ifdef INDEX_DEBUG |
| spin_lock_init(&ap->debug_lock); |
| ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; |
| ap->last_std_rx = 0; |
| ap->last_mini_rx = 0; |
| #endif |
| |
| memset(ap->info, 0, sizeof(struct ace_info)); |
| memset(ap->skb, 0, sizeof(struct ace_skb)); |
| |
| ace_load_firmware(dev); |
| ap->fw_running = 0; |
| |
| tmp_ptr = ap->info_dma; |
| writel(tmp_ptr >> 32, ®s->InfoPtrHi); |
| writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); |
| |
| memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); |
| |
| set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); |
| info->evt_ctrl.flags = 0; |
| |
| *(ap->evt_prd) = 0; |
| wmb(); |
| set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); |
| writel(0, ®s->EvtCsm); |
| |
| set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); |
| info->cmd_ctrl.flags = 0; |
| info->cmd_ctrl.max_len = 0; |
| |
| for (i = 0; i < CMD_RING_ENTRIES; i++) |
| writel(0, ®s->CmdRng[i]); |
| |
| writel(0, ®s->CmdPrd); |
| writel(0, ®s->CmdCsm); |
| |
| tmp_ptr = ap->info_dma; |
| tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); |
| set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); |
| |
| set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); |
| info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; |
| info->rx_std_ctrl.flags = |
| RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; |
| |
| memset(ap->rx_std_ring, 0, |
| RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); |
| |
| for (i = 0; i < RX_STD_RING_ENTRIES; i++) |
| ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; |
| |
| ap->rx_std_skbprd = 0; |
| atomic_set(&ap->cur_rx_bufs, 0); |
| |
| set_aceaddr(&info->rx_jumbo_ctrl.rngptr, |
| (ap->rx_ring_base_dma + |
| (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); |
| info->rx_jumbo_ctrl.max_len = 0; |
| info->rx_jumbo_ctrl.flags = |
| RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; |
| |
| memset(ap->rx_jumbo_ring, 0, |
| RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); |
| |
| for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) |
| ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; |
| |
| ap->rx_jumbo_skbprd = 0; |
| atomic_set(&ap->cur_jumbo_bufs, 0); |
| |
| memset(ap->rx_mini_ring, 0, |
| RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); |
| |
| if (ap->version >= 2) { |
| set_aceaddr(&info->rx_mini_ctrl.rngptr, |
| (ap->rx_ring_base_dma + |
| (sizeof(struct rx_desc) * |
| (RX_STD_RING_ENTRIES + |
| RX_JUMBO_RING_ENTRIES)))); |
| info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; |
| info->rx_mini_ctrl.flags = |
| RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG; |
| |
| for (i = 0; i < RX_MINI_RING_ENTRIES; i++) |
| ap->rx_mini_ring[i].flags = |
| BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; |
| } else { |
| set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); |
| info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; |
| info->rx_mini_ctrl.max_len = 0; |
| } |
| |
| ap->rx_mini_skbprd = 0; |
| atomic_set(&ap->cur_mini_bufs, 0); |
| |
| set_aceaddr(&info->rx_return_ctrl.rngptr, |
| (ap->rx_ring_base_dma + |
| (sizeof(struct rx_desc) * |
| (RX_STD_RING_ENTRIES + |
| RX_JUMBO_RING_ENTRIES + |
| RX_MINI_RING_ENTRIES)))); |
| info->rx_return_ctrl.flags = 0; |
| info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; |
| |
| memset(ap->rx_return_ring, 0, |
| RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); |
| |
| set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); |
| *(ap->rx_ret_prd) = 0; |
| |
| writel(TX_RING_BASE, ®s->WinBase); |
| |
| if (ACE_IS_TIGON_I(ap)) { |
| ap->tx_ring = (struct tx_desc *) regs->Window; |
| for (i = 0; i < (TIGON_I_TX_RING_ENTRIES |
| * sizeof(struct tx_desc)) / sizeof(u32); i++) |
| writel(0, (void __iomem *)ap->tx_ring + i * 4); |
| |
| set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); |
| } else { |
| memset(ap->tx_ring, 0, |
| MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); |
| |
| set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); |
| } |
| |
| info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); |
| tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; |
| |
| /* |
| * The Tigon I does not like having the TX ring in host memory ;-( |
| */ |
| if (!ACE_IS_TIGON_I(ap)) |
| tmp |= RCB_FLG_TX_HOST_RING; |
| #if TX_COAL_INTS_ONLY |
| tmp |= RCB_FLG_COAL_INT_ONLY; |
| #endif |
| info->tx_ctrl.flags = tmp; |
| |
| set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); |
| |
| /* |
| * Potential item for tuning parameter |
| */ |
| #if 0 /* NO */ |
| writel(DMA_THRESH_16W, ®s->DmaReadCfg); |
| writel(DMA_THRESH_16W, ®s->DmaWriteCfg); |
| #else |
| writel(DMA_THRESH_8W, ®s->DmaReadCfg); |
| writel(DMA_THRESH_8W, ®s->DmaWriteCfg); |
| #endif |
| |
| writel(0, ®s->MaskInt); |
| writel(1, ®s->IfIdx); |
| #if 0 |
| /* |
| * McKinley boxes do not like us fiddling with AssistState |
| * this early |
| */ |
| writel(1, ®s->AssistState); |
| #endif |
| |
| writel(DEF_STAT, ®s->TuneStatTicks); |
| writel(DEF_TRACE, ®s->TuneTrace); |
| |
| ace_set_rxtx_parms(dev, 0); |
| |
| if (board_idx == BOARD_IDX_OVERFLOW) { |
| printk(KERN_WARNING "%s: more than %i NICs detected, " |
| "ignoring module parameters!\n", |
| ap->name, ACE_MAX_MOD_PARMS); |
| } else if (board_idx >= 0) { |
| if (tx_coal_tick[board_idx]) |
| writel(tx_coal_tick[board_idx], |
| ®s->TuneTxCoalTicks); |
| if (max_tx_desc[board_idx]) |
| writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); |
| |
| if (rx_coal_tick[board_idx]) |
| writel(rx_coal_tick[board_idx], |
| ®s->TuneRxCoalTicks); |
| if (max_rx_desc[board_idx]) |
| writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); |
| |
| if (trace[board_idx]) |
| writel(trace[board_idx], ®s->TuneTrace); |
| |
| if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) |
| writel(tx_ratio[board_idx], ®s->TxBufRat); |
| } |
| |
| /* |
| * Default link parameters |
| */ |
| tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | |
| LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; |
| if(ap->version >= 2) |
| tmp |= LNK_TX_FLOW_CTL_Y; |
| |
| /* |
| * Override link default parameters |
| */ |
| if ((board_idx >= 0) && link[board_idx]) { |
| int option = link[board_idx]; |
| |
| tmp = LNK_ENABLE; |
| |
| if (option & 0x01) { |
| printk(KERN_INFO "%s: Setting half duplex link\n", |
| ap->name); |
| tmp &= ~LNK_FULL_DUPLEX; |
| } |
| if (option & 0x02) |
| tmp &= ~LNK_NEGOTIATE; |
| if (option & 0x10) |
| tmp |= LNK_10MB; |
| if (option & 0x20) |
| tmp |= LNK_100MB; |
| if (option & 0x40) |
| tmp |= LNK_1000MB; |
| if ((option & 0x70) == 0) { |
| printk(KERN_WARNING "%s: No media speed specified, " |
| "forcing auto negotiation\n", ap->name); |
| tmp |= LNK_NEGOTIATE | LNK_1000MB | |
| LNK_100MB | LNK_10MB; |
| } |
| if ((option & 0x100) == 0) |
| tmp |= LNK_NEG_FCTL; |
| else |
| printk(KERN_INFO "%s: Disabling flow control " |
| "negotiation\n", ap->name); |
| if (option & 0x200) |
| tmp |= LNK_RX_FLOW_CTL_Y; |
| if ((option & 0x400) && (ap->version >= 2)) { |
| printk(KERN_INFO "%s: Enabling TX flow control\n", |
| ap->name); |
| tmp |= LNK_TX_FLOW_CTL_Y; |
| } |
| } |
| |
| ap->link = tmp; |
| writel(tmp, ®s->TuneLink); |
| if (ap->version >= 2) |
| writel(tmp, ®s->TuneFastLink); |
| |
| if (ACE_IS_TIGON_I(ap)) |
| writel(tigonFwStartAddr, ®s->Pc); |
| if (ap->version == 2) |
| writel(tigon2FwStartAddr, ®s->Pc); |
| |
| writel(0, ®s->Mb0Lo); |
| |
| /* |
| * Set tx_csm before we start receiving interrupts, otherwise |
| * the interrupt handler might think it is supposed to process |
| * tx ints before we are up and running, which may cause a null |
| * pointer access in the int handler. |
| */ |
| ap->cur_rx = 0; |
| ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; |
| |
| wmb(); |
| ace_set_txprd(regs, ap, 0); |
| writel(0, ®s->RxRetCsm); |
| |
| /* |
| * Zero the stats before starting the interface |
| */ |
| memset(&ap->stats, 0, sizeof(ap->stats)); |
| |
| /* |
| * Enable DMA engine now. |
| * If we do this sooner, Mckinley box pukes. |
| * I assume it's because Tigon II DMA engine wants to check |
| * *something* even before the CPU is started. |
| */ |
| writel(1, ®s->AssistState); /* enable DMA */ |
| |
| /* |
| * Start the NIC CPU |
| */ |
| writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); |
| readl(®s->CpuCtrl); |
| |
| /* |
| * Wait for the firmware to spin up - max 3 seconds. |
| */ |
| myjif = jiffies + 3 * HZ; |
| while (time_before(jiffies, myjif) && !ap->fw_running) |
| cpu_relax(); |
| |
| if (!ap->fw_running) { |
| printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); |
| |
| ace_dump_trace(ap); |
| writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); |
| readl(®s->CpuCtrl); |
| |
| /* aman@sgi.com - account for badly behaving firmware/NIC: |
| * - have observed that the NIC may continue to generate |
| * interrupts for some reason; attempt to stop it - halt |
| * second CPU for Tigon II cards, and also clear Mb0 |
| * - if we're a module, we'll fail to load if this was |
| * the only GbE card in the system => if the kernel does |
| * see an interrupt from the NIC, code to handle it is |
| * gone and OOps! - so free_irq also |
| */ |
| if (ap->version >= 2) |
| writel(readl(®s->CpuBCtrl) | CPU_HALT, |
| ®s->CpuBCtrl); |
| writel(0, ®s->Mb0Lo); |
| readl(®s->Mb0Lo); |
| |
| ecode = -EBUSY; |
| goto init_error; |
| } |
| |
| /* |
| * We load the ring here as there seem to be no way to tell the |
| * firmware to wipe the ring without re-initializing it. |
| */ |
| if (!test_and_set_bit(0, &ap->std_refill_busy)) |
| ace_load_std_rx_ring(ap, RX_RING_SIZE); |
| else |
| printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", |
| ap->name); |
| if (ap->version >= 2) { |
| if (!test_and_set_bit(0, &ap->mini_refill_busy)) |
| ace_load_mini_rx_ring(ap, RX_MINI_SIZE); |
| else |
| printk(KERN_ERR "%s: Someone is busy refilling " |
| "the RX mini ring\n", ap->name); |
| } |
| return 0; |
| |
| init_error: |
| ace_init_cleanup(dev); |
| return ecode; |
| } |
| |
| |
| static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| int board_idx = ap->board_idx; |
| |
| if (board_idx >= 0) { |
| if (!jumbo) { |
| if (!tx_coal_tick[board_idx]) |
| writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); |
| if (!max_tx_desc[board_idx]) |
| writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); |
| if (!rx_coal_tick[board_idx]) |
| writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); |
| if (!max_rx_desc[board_idx]) |
| writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); |
| if (!tx_ratio[board_idx]) |
| writel(DEF_TX_RATIO, ®s->TxBufRat); |
| } else { |
| if (!tx_coal_tick[board_idx]) |
| writel(DEF_JUMBO_TX_COAL, |
| ®s->TuneTxCoalTicks); |
| if (!max_tx_desc[board_idx]) |
| writel(DEF_JUMBO_TX_MAX_DESC, |
| ®s->TuneMaxTxDesc); |
| if (!rx_coal_tick[board_idx]) |
| writel(DEF_JUMBO_RX_COAL, |
| ®s->TuneRxCoalTicks); |
| if (!max_rx_desc[board_idx]) |
| writel(DEF_JUMBO_RX_MAX_DESC, |
| ®s->TuneMaxRxDesc); |
| if (!tx_ratio[board_idx]) |
| writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); |
| } |
| } |
| } |
| |
| |
| static void ace_watchdog(struct net_device *data) |
| { |
| struct net_device *dev = data; |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| |
| /* |
| * We haven't received a stats update event for more than 2.5 |
| * seconds and there is data in the transmit queue, thus we |
| * asume the card is stuck. |
| */ |
| if (*ap->tx_csm != ap->tx_ret_csm) { |
| printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", |
| dev->name, (unsigned int)readl(®s->HostCtrl)); |
| /* This can happen due to ieee flow control. */ |
| } else { |
| printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", |
| dev->name); |
| #if 0 |
| netif_wake_queue(dev); |
| #endif |
| } |
| } |
| |
| |
| static void ace_tasklet(unsigned long dev) |
| { |
| struct ace_private *ap = netdev_priv((struct net_device *)dev); |
| int cur_size; |
| |
| cur_size = atomic_read(&ap->cur_rx_bufs); |
| if ((cur_size < RX_LOW_STD_THRES) && |
| !test_and_set_bit(0, &ap->std_refill_busy)) { |
| #ifdef DEBUG |
| printk("refilling buffers (current %i)\n", cur_size); |
| #endif |
| ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size); |
| } |
| |
| if (ap->version >= 2) { |
| cur_size = atomic_read(&ap->cur_mini_bufs); |
| if ((cur_size < RX_LOW_MINI_THRES) && |
| !test_and_set_bit(0, &ap->mini_refill_busy)) { |
| #ifdef DEBUG |
| printk("refilling mini buffers (current %i)\n", |
| cur_size); |
| #endif |
| ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); |
| } |
| } |
| |
| cur_size = atomic_read(&ap->cur_jumbo_bufs); |
| if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && |
| !test_and_set_bit(0, &ap->jumbo_refill_busy)) { |
| #ifdef DEBUG |
| printk("refilling jumbo buffers (current %i)\n", cur_size); |
| #endif |
| ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); |
| } |
| ap->tasklet_pending = 0; |
| } |
| |
| |
| /* |
| * Copy the contents of the NIC's trace buffer to kernel memory. |
| */ |
| static void ace_dump_trace(struct ace_private *ap) |
| { |
| #if 0 |
| if (!ap->trace_buf) |
| if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) |
| return; |
| #endif |
| } |
| |
| |
| /* |
| * Load the standard rx ring. |
| * |
| * Loading rings is safe without holding the spin lock since this is |
| * done only before the device is enabled, thus no interrupts are |
| * generated and by the interrupt handler/tasklet handler. |
| */ |
| static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs) |
| { |
| struct ace_regs __iomem *regs = ap->regs; |
| short i, idx; |
| |
| |
| prefetchw(&ap->cur_rx_bufs); |
| |
| idx = ap->rx_std_skbprd; |
| |
| for (i = 0; i < nr_bufs; i++) { |
| struct sk_buff *skb; |
| struct rx_desc *rd; |
| dma_addr_t mapping; |
| |
| skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); |
| if (!skb) |
| break; |
| |
| skb_reserve(skb, NET_IP_ALIGN); |
| mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| ACE_STD_BUFSIZE, |
| PCI_DMA_FROMDEVICE); |
| ap->skb->rx_std_skbuff[idx].skb = skb; |
| pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], |
| mapping, mapping); |
| |
| rd = &ap->rx_std_ring[idx]; |
| set_aceaddr(&rd->addr, mapping); |
| rd->size = ACE_STD_BUFSIZE; |
| rd->idx = idx; |
| idx = (idx + 1) % RX_STD_RING_ENTRIES; |
| } |
| |
| if (!i) |
| goto error_out; |
| |
| atomic_add(i, &ap->cur_rx_bufs); |
| ap->rx_std_skbprd = idx; |
| |
| if (ACE_IS_TIGON_I(ap)) { |
| struct cmd cmd; |
| cmd.evt = C_SET_RX_PRD_IDX; |
| cmd.code = 0; |
| cmd.idx = ap->rx_std_skbprd; |
| ace_issue_cmd(regs, &cmd); |
| } else { |
| writel(idx, ®s->RxStdPrd); |
| wmb(); |
| } |
| |
| out: |
| clear_bit(0, &ap->std_refill_busy); |
| return; |
| |
| error_out: |
| printk(KERN_INFO "Out of memory when allocating " |
| "standard receive buffers\n"); |
| goto out; |
| } |
| |
| |
| static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs) |
| { |
| struct ace_regs __iomem *regs = ap->regs; |
| short i, idx; |
| |
| prefetchw(&ap->cur_mini_bufs); |
| |
| idx = ap->rx_mini_skbprd; |
| for (i = 0; i < nr_bufs; i++) { |
| struct sk_buff *skb; |
| struct rx_desc *rd; |
| dma_addr_t mapping; |
| |
| skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); |
| if (!skb) |
| break; |
| |
| skb_reserve(skb, NET_IP_ALIGN); |
| mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| ACE_MINI_BUFSIZE, |
| PCI_DMA_FROMDEVICE); |
| ap->skb->rx_mini_skbuff[idx].skb = skb; |
| pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], |
| mapping, mapping); |
| |
| rd = &ap->rx_mini_ring[idx]; |
| set_aceaddr(&rd->addr, mapping); |
| rd->size = ACE_MINI_BUFSIZE; |
| rd->idx = idx; |
| idx = (idx + 1) % RX_MINI_RING_ENTRIES; |
| } |
| |
| if (!i) |
| goto error_out; |
| |
| atomic_add(i, &ap->cur_mini_bufs); |
| |
| ap->rx_mini_skbprd = idx; |
| |
| writel(idx, ®s->RxMiniPrd); |
| wmb(); |
| |
| out: |
| clear_bit(0, &ap->mini_refill_busy); |
| return; |
| error_out: |
| printk(KERN_INFO "Out of memory when allocating " |
| "mini receive buffers\n"); |
| goto out; |
| } |
| |
| |
| /* |
| * Load the jumbo rx ring, this may happen at any time if the MTU |
| * is changed to a value > 1500. |
| */ |
| static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs) |
| { |
| struct ace_regs __iomem *regs = ap->regs; |
| short i, idx; |
| |
| idx = ap->rx_jumbo_skbprd; |
| |
| for (i = 0; i < nr_bufs; i++) { |
| struct sk_buff *skb; |
| struct rx_desc *rd; |
| dma_addr_t mapping; |
| |
| skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); |
| if (!skb) |
| break; |
| |
| skb_reserve(skb, NET_IP_ALIGN); |
| mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| ACE_JUMBO_BUFSIZE, |
| PCI_DMA_FROMDEVICE); |
| ap->skb->rx_jumbo_skbuff[idx].skb = skb; |
| pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], |
| mapping, mapping); |
| |
| rd = &ap->rx_jumbo_ring[idx]; |
| set_aceaddr(&rd->addr, mapping); |
| rd->size = ACE_JUMBO_BUFSIZE; |
| rd->idx = idx; |
| idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; |
| } |
| |
| if (!i) |
| goto error_out; |
| |
| atomic_add(i, &ap->cur_jumbo_bufs); |
| ap->rx_jumbo_skbprd = idx; |
| |
| if (ACE_IS_TIGON_I(ap)) { |
| struct cmd cmd; |
| cmd.evt = C_SET_RX_JUMBO_PRD_IDX; |
| cmd.code = 0; |
| cmd.idx = ap->rx_jumbo_skbprd; |
| ace_issue_cmd(regs, &cmd); |
| } else { |
| writel(idx, ®s->RxJumboPrd); |
| wmb(); |
| } |
| |
| out: |
| clear_bit(0, &ap->jumbo_refill_busy); |
| return; |
| error_out: |
| if (net_ratelimit()) |
| printk(KERN_INFO "Out of memory when allocating " |
| "jumbo receive buffers\n"); |
| goto out; |
| } |
| |
| |
| /* |
| * All events are considered to be slow (RX/TX ints do not generate |
| * events) and are handled here, outside the main interrupt handler, |
| * to reduce the size of the handler. |
| */ |
| static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) |
| { |
| struct ace_private *ap; |
| |
| ap = netdev_priv(dev); |
| |
| while (evtcsm != evtprd) { |
| switch (ap->evt_ring[evtcsm].evt) { |
| case E_FW_RUNNING: |
| printk(KERN_INFO "%s: Firmware up and running\n", |
| ap->name); |
| ap->fw_running = 1; |
| wmb(); |
| break; |
| case E_STATS_UPDATED: |
| break; |
| case E_LNK_STATE: |
| { |
| u16 code = ap->evt_ring[evtcsm].code; |
| switch (code) { |
| case E_C_LINK_UP: |
| { |
| u32 state = readl(&ap->regs->GigLnkState); |
| printk(KERN_WARNING "%s: Optical link UP " |
| "(%s Duplex, Flow Control: %s%s)\n", |
| ap->name, |
| state & LNK_FULL_DUPLEX ? "Full":"Half", |
| state & LNK_TX_FLOW_CTL_Y ? "TX " : "", |
| state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); |
| break; |
| } |
| case E_C_LINK_DOWN: |
| printk(KERN_WARNING "%s: Optical link DOWN\n", |
| ap->name); |
| break; |
| case E_C_LINK_10_100: |
| printk(KERN_WARNING "%s: 10/100BaseT link " |
| "UP\n", ap->name); |
| break; |
| default: |
| printk(KERN_ERR "%s: Unknown optical link " |
| "state %02x\n", ap->name, code); |
| } |
| break; |
| } |
| case E_ERROR: |
| switch(ap->evt_ring[evtcsm].code) { |
| case E_C_ERR_INVAL_CMD: |
| printk(KERN_ERR "%s: invalid command error\n", |
| ap->name); |
| break; |
| case E_C_ERR_UNIMP_CMD: |
| printk(KERN_ERR "%s: unimplemented command " |
| "error\n", ap->name); |
| break; |
| case E_C_ERR_BAD_CFG: |
| printk(KERN_ERR "%s: bad config error\n", |
| ap->name); |
| break; |
| default: |
| printk(KERN_ERR "%s: unknown error %02x\n", |
| ap->name, ap->evt_ring[evtcsm].code); |
| } |
| break; |
| case E_RESET_JUMBO_RNG: |
| { |
| int i; |
| for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { |
| if (ap->skb->rx_jumbo_skbuff[i].skb) { |
| ap->rx_jumbo_ring[i].size = 0; |
| set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); |
| dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); |
| ap->skb->rx_jumbo_skbuff[i].skb = NULL; |
| } |
| } |
| |
| if (ACE_IS_TIGON_I(ap)) { |
| struct cmd cmd; |
| cmd.evt = C_SET_RX_JUMBO_PRD_IDX; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(ap->regs, &cmd); |
| } else { |
| writel(0, &((ap->regs)->RxJumboPrd)); |
| wmb(); |
| } |
| |
| ap->jumbo = 0; |
| ap->rx_jumbo_skbprd = 0; |
| printk(KERN_INFO "%s: Jumbo ring flushed\n", |
| ap->name); |
| clear_bit(0, &ap->jumbo_refill_busy); |
| break; |
| } |
| default: |
| printk(KERN_ERR "%s: Unhandled event 0x%02x\n", |
| ap->name, ap->evt_ring[evtcsm].evt); |
| } |
| evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; |
| } |
| |
| return evtcsm; |
| } |
| |
| |
| static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| u32 idx; |
| int mini_count = 0, std_count = 0; |
| |
| idx = rxretcsm; |
| |
| prefetchw(&ap->cur_rx_bufs); |
| prefetchw(&ap->cur_mini_bufs); |
| |
| while (idx != rxretprd) { |
| struct ring_info *rip; |
| struct sk_buff *skb; |
| struct rx_desc *rxdesc, *retdesc; |
| u32 skbidx; |
| int bd_flags, desc_type, mapsize; |
| u16 csum; |
| |
| |
| /* make sure the rx descriptor isn't read before rxretprd */ |
| if (idx == rxretcsm) |
| rmb(); |
| |
| retdesc = &ap->rx_return_ring[idx]; |
| skbidx = retdesc->idx; |
| bd_flags = retdesc->flags; |
| desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); |
| |
| switch(desc_type) { |
| /* |
| * Normal frames do not have any flags set |
| * |
| * Mini and normal frames arrive frequently, |
| * so use a local counter to avoid doing |
| * atomic operations for each packet arriving. |
| */ |
| case 0: |
| rip = &ap->skb->rx_std_skbuff[skbidx]; |
| mapsize = ACE_STD_BUFSIZE; |
| rxdesc = &ap->rx_std_ring[skbidx]; |
| std_count++; |
| break; |
| case BD_FLG_JUMBO: |
| rip = &ap->skb->rx_jumbo_skbuff[skbidx]; |
| mapsize = ACE_JUMBO_BUFSIZE; |
| rxdesc = &ap->rx_jumbo_ring[skbidx]; |
| atomic_dec(&ap->cur_jumbo_bufs); |
| break; |
| case BD_FLG_MINI: |
| rip = &ap->skb->rx_mini_skbuff[skbidx]; |
| mapsize = ACE_MINI_BUFSIZE; |
| rxdesc = &ap->rx_mini_ring[skbidx]; |
| mini_count++; |
| break; |
| default: |
| printk(KERN_INFO "%s: unknown frame type (0x%02x) " |
| "returned by NIC\n", dev->name, |
| retdesc->flags); |
| goto error; |
| } |
| |
| skb = rip->skb; |
| rip->skb = NULL; |
| pci_unmap_page(ap->pdev, |
| pci_unmap_addr(rip, mapping), |
| mapsize, |
| PCI_DMA_FROMDEVICE); |
| skb_put(skb, retdesc->size); |
| |
| /* |
| * Fly baby, fly! |
| */ |
| csum = retdesc->tcp_udp_csum; |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* |
| * Instead of forcing the poor tigon mips cpu to calculate |
| * pseudo hdr checksum, we do this ourselves. |
| */ |
| if (bd_flags & BD_FLG_TCP_UDP_SUM) { |
| skb->csum = htons(csum); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } else { |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| |
| /* send it up */ |
| #if ACENIC_DO_VLAN |
| if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) { |
| vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan); |
| } else |
| #endif |
| netif_rx(skb); |
| |
| dev->last_rx = jiffies; |
| ap->stats.rx_packets++; |
| ap->stats.rx_bytes += retdesc->size; |
| |
| idx = (idx + 1) % RX_RETURN_RING_ENTRIES; |
| } |
| |
| atomic_sub(std_count, &ap->cur_rx_bufs); |
| if (!ACE_IS_TIGON_I(ap)) |
| atomic_sub(mini_count, &ap->cur_mini_bufs); |
| |
| out: |
| /* |
| * According to the documentation RxRetCsm is obsolete with |
| * the 12.3.x Firmware - my Tigon I NICs seem to disagree! |
| */ |
| if (ACE_IS_TIGON_I(ap)) { |
| writel(idx, &ap->regs->RxRetCsm); |
| } |
| ap->cur_rx = idx; |
| |
| return; |
| error: |
| idx = rxretprd; |
| goto out; |
| } |
| |
| |
| static inline void ace_tx_int(struct net_device *dev, |
| u32 txcsm, u32 idx) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| |
| do { |
| struct sk_buff *skb; |
| dma_addr_t mapping; |
| struct tx_ring_info *info; |
| |
| info = ap->skb->tx_skbuff + idx; |
| skb = info->skb; |
| mapping = pci_unmap_addr(info, mapping); |
| |
| if (mapping) { |
| pci_unmap_page(ap->pdev, mapping, |
| pci_unmap_len(info, maplen), |
| PCI_DMA_TODEVICE); |
| pci_unmap_addr_set(info, mapping, 0); |
| } |
| |
| if (skb) { |
| ap->stats.tx_packets++; |
| ap->stats.tx_bytes += skb->len; |
| dev_kfree_skb_irq(skb); |
| info->skb = NULL; |
| } |
| |
| idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); |
| } while (idx != txcsm); |
| |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| |
| wmb(); |
| ap->tx_ret_csm = txcsm; |
| |
| /* So... tx_ret_csm is advanced _after_ check for device wakeup. |
| * |
| * We could try to make it before. In this case we would get |
| * the following race condition: hard_start_xmit on other cpu |
| * enters after we advanced tx_ret_csm and fills space, |
| * which we have just freed, so that we make illegal device wakeup. |
| * There is no good way to workaround this (at entry |
| * to ace_start_xmit detects this condition and prevents |
| * ring corruption, but it is not a good workaround.) |
| * |
| * When tx_ret_csm is advanced after, we wake up device _only_ |
| * if we really have some space in ring (though the core doing |
| * hard_start_xmit can see full ring for some period and has to |
| * synchronize.) Superb. |
| * BUT! We get another subtle race condition. hard_start_xmit |
| * may think that ring is full between wakeup and advancing |
| * tx_ret_csm and will stop device instantly! It is not so bad. |
| * We are guaranteed that there is something in ring, so that |
| * the next irq will resume transmission. To speedup this we could |
| * mark descriptor, which closes ring with BD_FLG_COAL_NOW |
| * (see ace_start_xmit). |
| * |
| * Well, this dilemma exists in all lock-free devices. |
| * We, following scheme used in drivers by Donald Becker, |
| * select the least dangerous. |
| * --ANK |
| */ |
| } |
| |
| |
| static irqreturn_t ace_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = (struct net_device *)dev_id; |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| u32 idx; |
| u32 txcsm, rxretcsm, rxretprd; |
| u32 evtcsm, evtprd; |
| |
| /* |
| * In case of PCI shared interrupts or spurious interrupts, |
| * we want to make sure it is actually our interrupt before |
| * spending any time in here. |
| */ |
| if (!(readl(®s->HostCtrl) & IN_INT)) |
| return IRQ_NONE; |
| |
| /* |
| * ACK intr now. Otherwise we will lose updates to rx_ret_prd, |
| * which happened _after_ rxretprd = *ap->rx_ret_prd; but before |
| * writel(0, ®s->Mb0Lo). |
| * |
| * "IRQ avoidance" recommended in docs applies to IRQs served |
| * threads and it is wrong even for that case. |
| */ |
| writel(0, ®s->Mb0Lo); |
| readl(®s->Mb0Lo); |
| |
| /* |
| * There is no conflict between transmit handling in |
| * start_xmit and receive processing, thus there is no reason |
| * to take a spin lock for RX handling. Wait until we start |
| * working on the other stuff - hey we don't need a spin lock |
| * anymore. |
| */ |
| rxretprd = *ap->rx_ret_prd; |
| rxretcsm = ap->cur_rx; |
| |
| if (rxretprd != rxretcsm) |
| ace_rx_int(dev, rxretprd, rxretcsm); |
| |
| txcsm = *ap->tx_csm; |
| idx = ap->tx_ret_csm; |
| |
| if (txcsm != idx) { |
| /* |
| * If each skb takes only one descriptor this check degenerates |
| * to identity, because new space has just been opened. |
| * But if skbs are fragmented we must check that this index |
| * update releases enough of space, otherwise we just |
| * wait for device to make more work. |
| */ |
| if (!tx_ring_full(ap, txcsm, ap->tx_prd)) |
| ace_tx_int(dev, txcsm, idx); |
| } |
| |
| evtcsm = readl(®s->EvtCsm); |
| evtprd = *ap->evt_prd; |
| |
| if (evtcsm != evtprd) { |
| evtcsm = ace_handle_event(dev, evtcsm, evtprd); |
| writel(evtcsm, ®s->EvtCsm); |
| } |
| |
| /* |
| * This has to go last in the interrupt handler and run with |
| * the spin lock released ... what lock? |
| */ |
| if (netif_running(dev)) { |
| int cur_size; |
| int run_tasklet = 0; |
| |
| cur_size = atomic_read(&ap->cur_rx_bufs); |
| if (cur_size < RX_LOW_STD_THRES) { |
| if ((cur_size < RX_PANIC_STD_THRES) && |
| !test_and_set_bit(0, &ap->std_refill_busy)) { |
| #ifdef DEBUG |
| printk("low on std buffers %i\n", cur_size); |
| #endif |
| ace_load_std_rx_ring(ap, |
| RX_RING_SIZE - cur_size); |
| } else |
| run_tasklet = 1; |
| } |
| |
| if (!ACE_IS_TIGON_I(ap)) { |
| cur_size = atomic_read(&ap->cur_mini_bufs); |
| if (cur_size < RX_LOW_MINI_THRES) { |
| if ((cur_size < RX_PANIC_MINI_THRES) && |
| !test_and_set_bit(0, |
| &ap->mini_refill_busy)) { |
| #ifdef DEBUG |
| printk("low on mini buffers %i\n", |
| cur_size); |
| #endif |
| ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); |
| } else |
| run_tasklet = 1; |
| } |
| } |
| |
| if (ap->jumbo) { |
| cur_size = atomic_read(&ap->cur_jumbo_bufs); |
| if (cur_size < RX_LOW_JUMBO_THRES) { |
| if ((cur_size < RX_PANIC_JUMBO_THRES) && |
| !test_and_set_bit(0, |
| &ap->jumbo_refill_busy)){ |
| #ifdef DEBUG |
| printk("low on jumbo buffers %i\n", |
| cur_size); |
| #endif |
| ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); |
| } else |
| run_tasklet = 1; |
| } |
| } |
| if (run_tasklet && !ap->tasklet_pending) { |
| ap->tasklet_pending = 1; |
| tasklet_schedule(&ap->ace_tasklet); |
| } |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| #if ACENIC_DO_VLAN |
| static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| ace_mask_irq(dev); |
| |
| ap->vlgrp = grp; |
| |
| ace_unmask_irq(dev); |
| local_irq_restore(flags); |
| } |
| |
| |
| static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| ace_mask_irq(dev); |
| vlan_group_set_device(ap->vlgrp, vid, NULL); |
| ace_unmask_irq(dev); |
| local_irq_restore(flags); |
| } |
| #endif /* ACENIC_DO_VLAN */ |
| |
| |
| static int ace_open(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| struct cmd cmd; |
| |
| if (!(ap->fw_running)) { |
| printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); |
| return -EBUSY; |
| } |
| |
| writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); |
| |
| cmd.evt = C_CLEAR_STATS; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| |
| cmd.evt = C_HOST_STATE; |
| cmd.code = C_C_STACK_UP; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| |
| if (ap->jumbo && |
| !test_and_set_bit(0, &ap->jumbo_refill_busy)) |
| ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); |
| |
| if (dev->flags & IFF_PROMISC) { |
| cmd.evt = C_SET_PROMISC_MODE; |
| cmd.code = C_C_PROMISC_ENABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| |
| ap->promisc = 1; |
| }else |
| ap->promisc = 0; |
| ap->mcast_all = 0; |
| |
| #if 0 |
| cmd.evt = C_LNK_NEGOTIATION; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| #endif |
| |
| netif_start_queue(dev); |
| |
| /* |
| * Setup the bottom half rx ring refill handler |
| */ |
| tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); |
| return 0; |
| } |
| |
| |
| static int ace_close(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| struct cmd cmd; |
| unsigned long flags; |
| short i; |
| |
| /* |
| * Without (or before) releasing irq and stopping hardware, this |
| * is an absolute non-sense, by the way. It will be reset instantly |
| * by the first irq. |
| */ |
| netif_stop_queue(dev); |
| |
| |
| if (ap->promisc) { |
| cmd.evt = C_SET_PROMISC_MODE; |
| cmd.code = C_C_PROMISC_DISABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| ap->promisc = 0; |
| } |
| |
| cmd.evt = C_HOST_STATE; |
| cmd.code = C_C_STACK_DOWN; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| |
| tasklet_kill(&ap->ace_tasklet); |
| |
| /* |
| * Make sure one CPU is not processing packets while |
| * buffers are being released by another. |
| */ |
| |
| local_irq_save(flags); |
| ace_mask_irq(dev); |
| |
| for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { |
| struct sk_buff *skb; |
| dma_addr_t mapping; |
| struct tx_ring_info *info; |
| |
| info = ap->skb->tx_skbuff + i; |
| skb = info->skb; |
| mapping = pci_unmap_addr(info, mapping); |
| |
| if (mapping) { |
| if (ACE_IS_TIGON_I(ap)) { |
| struct tx_desc __iomem *tx |
| = (struct tx_desc __iomem *) &ap->tx_ring[i]; |
| writel(0, &tx->addr.addrhi); |
| writel(0, &tx->addr.addrlo); |
| writel(0, &tx->flagsize); |
| } else |
| memset(ap->tx_ring + i, 0, |
| sizeof(struct tx_desc)); |
| pci_unmap_page(ap->pdev, mapping, |
| pci_unmap_len(info, maplen), |
| PCI_DMA_TODEVICE); |
| pci_unmap_addr_set(info, mapping, 0); |
| } |
| if (skb) { |
| dev_kfree_skb(skb); |
| info->skb = NULL; |
| } |
| } |
| |
| if (ap->jumbo) { |
| cmd.evt = C_RESET_JUMBO_RNG; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| } |
| |
| ace_unmask_irq(dev); |
| local_irq_restore(flags); |
| |
| return 0; |
| } |
| |
| |
| static inline dma_addr_t |
| ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, |
| struct sk_buff *tail, u32 idx) |
| { |
| dma_addr_t mapping; |
| struct tx_ring_info *info; |
| |
| mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), |
| offset_in_page(skb->data), |
| skb->len, PCI_DMA_TODEVICE); |
| |
| info = ap->skb->tx_skbuff + idx; |
| info->skb = tail; |
| pci_unmap_addr_set(info, mapping, mapping); |
| pci_unmap_len_set(info, maplen, skb->len); |
| return mapping; |
| } |
| |
| |
| static inline void |
| ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, |
| u32 flagsize, u32 vlan_tag) |
| { |
| #if !USE_TX_COAL_NOW |
| flagsize &= ~BD_FLG_COAL_NOW; |
| #endif |
| |
| if (ACE_IS_TIGON_I(ap)) { |
| struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc; |
| writel(addr >> 32, &io->addr.addrhi); |
| writel(addr & 0xffffffff, &io->addr.addrlo); |
| writel(flagsize, &io->flagsize); |
| #if ACENIC_DO_VLAN |
| writel(vlan_tag, &io->vlanres); |
| #endif |
| } else { |
| desc->addr.addrhi = addr >> 32; |
| desc->addr.addrlo = addr; |
| desc->flagsize = flagsize; |
| #if ACENIC_DO_VLAN |
| desc->vlanres = vlan_tag; |
| #endif |
| } |
| } |
| |
| |
| static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| struct tx_desc *desc; |
| u32 idx, flagsize; |
| unsigned long maxjiff = jiffies + 3*HZ; |
| |
| restart: |
| idx = ap->tx_prd; |
| |
| if (tx_ring_full(ap, ap->tx_ret_csm, idx)) |
| goto overflow; |
| |
| if (!skb_shinfo(skb)->nr_frags) { |
| dma_addr_t mapping; |
| u32 vlan_tag = 0; |
| |
| mapping = ace_map_tx_skb(ap, skb, skb, idx); |
| flagsize = (skb->len << 16) | (BD_FLG_END); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| flagsize |= BD_FLG_TCP_UDP_SUM; |
| #if ACENIC_DO_VLAN |
| if (vlan_tx_tag_present(skb)) { |
| flagsize |= BD_FLG_VLAN_TAG; |
| vlan_tag = vlan_tx_tag_get(skb); |
| } |
| #endif |
| desc = ap->tx_ring + idx; |
| idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); |
| |
| /* Look at ace_tx_int for explanations. */ |
| if (tx_ring_full(ap, ap->tx_ret_csm, idx)) |
| flagsize |= BD_FLG_COAL_NOW; |
| |
| ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); |
| } else { |
| dma_addr_t mapping; |
| u32 vlan_tag = 0; |
| int i, len = 0; |
| |
| mapping = ace_map_tx_skb(ap, skb, NULL, idx); |
| flagsize = (skb_headlen(skb) << 16); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| flagsize |= BD_FLG_TCP_UDP_SUM; |
| #if ACENIC_DO_VLAN |
| if (vlan_tx_tag_present(skb)) { |
| flagsize |= BD_FLG_VLAN_TAG; |
| vlan_tag = vlan_tx_tag_get(skb); |
| } |
| #endif |
| |
| ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); |
| |
| idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| struct tx_ring_info *info; |
| |
| len += frag->size; |
| info = ap->skb->tx_skbuff + idx; |
| desc = ap->tx_ring + idx; |
| |
| mapping = pci_map_page(ap->pdev, frag->page, |
| frag->page_offset, frag->size, |
| PCI_DMA_TODEVICE); |
| |
| flagsize = (frag->size << 16); |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| flagsize |= BD_FLG_TCP_UDP_SUM; |
| idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); |
| |
| if (i == skb_shinfo(skb)->nr_frags - 1) { |
| flagsize |= BD_FLG_END; |
| if (tx_ring_full(ap, ap->tx_ret_csm, idx)) |
| flagsize |= BD_FLG_COAL_NOW; |
| |
| /* |
| * Only the last fragment frees |
| * the skb! |
| */ |
| info->skb = skb; |
| } else { |
| info->skb = NULL; |
| } |
| pci_unmap_addr_set(info, mapping, mapping); |
| pci_unmap_len_set(info, maplen, frag->size); |
| ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); |
| } |
| } |
| |
| wmb(); |
| ap->tx_prd = idx; |
| ace_set_txprd(regs, ap, idx); |
| |
| if (flagsize & BD_FLG_COAL_NOW) { |
| netif_stop_queue(dev); |
| |
| /* |
| * A TX-descriptor producer (an IRQ) might have gotten |
| * inbetween, making the ring free again. Since xmit is |
| * serialized, this is the only situation we have to |
| * re-test. |
| */ |
| if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) |
| netif_wake_queue(dev); |
| } |
| |
| dev->trans_start = jiffies; |
| return NETDEV_TX_OK; |
| |
| overflow: |
| /* |
| * This race condition is unavoidable with lock-free drivers. |
| * We wake up the queue _before_ tx_prd is advanced, so that we can |
| * enter hard_start_xmit too early, while tx ring still looks closed. |
| * This happens ~1-4 times per 100000 packets, so that we can allow |
| * to loop syncing to other CPU. Probably, we need an additional |
| * wmb() in ace_tx_intr as well. |
| * |
| * Note that this race is relieved by reserving one more entry |
| * in tx ring than it is necessary (see original non-SG driver). |
| * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which |
| * is already overkill. |
| * |
| * Alternative is to return with 1 not throttling queue. In this |
| * case loop becomes longer, no more useful effects. |
| */ |
| if (time_before(jiffies, maxjiff)) { |
| barrier(); |
| cpu_relax(); |
| goto restart; |
| } |
| |
| /* The ring is stuck full. */ |
| printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); |
| return NETDEV_TX_BUSY; |
| } |
| |
| |
| static int ace_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| |
| if (new_mtu > ACE_JUMBO_MTU) |
| return -EINVAL; |
| |
| writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); |
| dev->mtu = new_mtu; |
| |
| if (new_mtu > ACE_STD_MTU) { |
| if (!(ap->jumbo)) { |
| printk(KERN_INFO "%s: Enabling Jumbo frame " |
| "support\n", dev->name); |
| ap->jumbo = 1; |
| if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) |
| ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); |
| ace_set_rxtx_parms(dev, 1); |
| } |
| } else { |
| while (test_and_set_bit(0, &ap->jumbo_refill_busy)); |
| ace_sync_irq(dev->irq); |
| ace_set_rxtx_parms(dev, 0); |
| if (ap->jumbo) { |
| struct cmd cmd; |
| |
| cmd.evt = C_RESET_JUMBO_RNG; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| u32 link; |
| |
| memset(ecmd, 0, sizeof(struct ethtool_cmd)); |
| ecmd->supported = |
| (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | |
| SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | |
| SUPPORTED_Autoneg | SUPPORTED_FIBRE); |
| |
| ecmd->port = PORT_FIBRE; |
| ecmd->transceiver = XCVR_INTERNAL; |
| |
| link = readl(®s->GigLnkState); |
| if (link & LNK_1000MB) |
| ecmd->speed = SPEED_1000; |
| else { |
| link = readl(®s->FastLnkState); |
| if (link & LNK_100MB) |
| ecmd->speed = SPEED_100; |
| else if (link & LNK_10MB) |
| ecmd->speed = SPEED_10; |
| else |
| ecmd->speed = 0; |
| } |
| if (link & LNK_FULL_DUPLEX) |
| ecmd->duplex = DUPLEX_FULL; |
| else |
| ecmd->duplex = DUPLEX_HALF; |
| |
| if (link & LNK_NEGOTIATE) |
| ecmd->autoneg = AUTONEG_ENABLE; |
| else |
| ecmd->autoneg = AUTONEG_DISABLE; |
| |
| #if 0 |
| /* |
| * Current struct ethtool_cmd is insufficient |
| */ |
| ecmd->trace = readl(®s->TuneTrace); |
| |
| ecmd->txcoal = readl(®s->TuneTxCoalTicks); |
| ecmd->rxcoal = readl(®s->TuneRxCoalTicks); |
| #endif |
| ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); |
| ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); |
| |
| return 0; |
| } |
| |
| static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| u32 link, speed; |
| |
| link = readl(®s->GigLnkState); |
| if (link & LNK_1000MB) |
| speed = SPEED_1000; |
| else { |
| link = readl(®s->FastLnkState); |
| if (link & LNK_100MB) |
| speed = SPEED_100; |
| else if (link & LNK_10MB) |
| speed = SPEED_10; |
| else |
| speed = SPEED_100; |
| } |
| |
| link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | |
| LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; |
| if (!ACE_IS_TIGON_I(ap)) |
| link |= LNK_TX_FLOW_CTL_Y; |
| if (ecmd->autoneg == AUTONEG_ENABLE) |
| link |= LNK_NEGOTIATE; |
| if (ecmd->speed != speed) { |
| link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); |
| switch (speed) { |
| case SPEED_1000: |
| link |= LNK_1000MB; |
| break; |
| case SPEED_100: |
| link |= LNK_100MB; |
| break; |
| case SPEED_10: |
| link |= LNK_10MB; |
| break; |
| } |
| } |
| |
| if (ecmd->duplex == DUPLEX_FULL) |
| link |= LNK_FULL_DUPLEX; |
| |
| if (link != ap->link) { |
| struct cmd cmd; |
| printk(KERN_INFO "%s: Renegotiating link state\n", |
| dev->name); |
| |
| ap->link = link; |
| writel(link, ®s->TuneLink); |
| if (!ACE_IS_TIGON_I(ap)) |
| writel(link, ®s->TuneFastLink); |
| wmb(); |
| |
| cmd.evt = C_LNK_NEGOTIATION; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| } |
| return 0; |
| } |
| |
| static void ace_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| |
| strlcpy(info->driver, "acenic", sizeof(info->driver)); |
| snprintf(info->version, sizeof(info->version), "%i.%i.%i", |
| tigonFwReleaseMajor, tigonFwReleaseMinor, |
| tigonFwReleaseFix); |
| |
| if (ap->pdev) |
| strlcpy(info->bus_info, pci_name(ap->pdev), |
| sizeof(info->bus_info)); |
| |
| } |
| |
| /* |
| * Set the hardware MAC address. |
| */ |
| static int ace_set_mac_addr(struct net_device *dev, void *p) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| struct sockaddr *addr=p; |
| u8 *da; |
| struct cmd cmd; |
| |
| if(netif_running(dev)) |
| return -EBUSY; |
| |
| memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); |
| |
| da = (u8 *)dev->dev_addr; |
| |
| writel(da[0] << 8 | da[1], ®s->MacAddrHi); |
| writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], |
| ®s->MacAddrLo); |
| |
| cmd.evt = C_SET_MAC_ADDR; |
| cmd.code = 0; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| |
| return 0; |
| } |
| |
| |
| static void ace_set_multicast_list(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| struct cmd cmd; |
| |
| if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { |
| cmd.evt = C_SET_MULTICAST_MODE; |
| cmd.code = C_C_MCAST_ENABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| ap->mcast_all = 1; |
| } else if (ap->mcast_all) { |
| cmd.evt = C_SET_MULTICAST_MODE; |
| cmd.code = C_C_MCAST_DISABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| ap->mcast_all = 0; |
| } |
| |
| if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { |
| cmd.evt = C_SET_PROMISC_MODE; |
| cmd.code = C_C_PROMISC_ENABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| ap->promisc = 1; |
| }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { |
| cmd.evt = C_SET_PROMISC_MODE; |
| cmd.code = C_C_PROMISC_DISABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| ap->promisc = 0; |
| } |
| |
| /* |
| * For the time being multicast relies on the upper layers |
| * filtering it properly. The Firmware does not allow one to |
| * set the entire multicast list at a time and keeping track of |
| * it here is going to be messy. |
| */ |
| if ((dev->mc_count) && !(ap->mcast_all)) { |
| cmd.evt = C_SET_MULTICAST_MODE; |
| cmd.code = C_C_MCAST_ENABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| }else if (!ap->mcast_all) { |
| cmd.evt = C_SET_MULTICAST_MODE; |
| cmd.code = C_C_MCAST_DISABLE; |
| cmd.idx = 0; |
| ace_issue_cmd(regs, &cmd); |
| } |
| } |
| |
| |
| static struct net_device_stats *ace_get_stats(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_mac_stats __iomem *mac_stats = |
| (struct ace_mac_stats __iomem *)ap->regs->Stats; |
| |
| ap->stats.rx_missed_errors = readl(&mac_stats->drop_space); |
| ap->stats.multicast = readl(&mac_stats->kept_mc); |
| ap->stats.collisions = readl(&mac_stats->coll); |
| |
| return &ap->stats; |
| } |
| |
| |
| static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src, |
| u32 dest, int size) |
| { |
| void __iomem *tdest; |
| u32 *wsrc; |
| short tsize, i; |
| |
| if (size <= 0) |
| return; |
| |
| while (size > 0) { |
| tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), |
| min_t(u32, size, ACE_WINDOW_SIZE)); |
| tdest = (void __iomem *) ®s->Window + |
| (dest & (ACE_WINDOW_SIZE - 1)); |
| writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); |
| /* |
| * This requires byte swapping on big endian, however |
| * writel does that for us |
| */ |
| wsrc = src; |
| for (i = 0; i < (tsize / 4); i++) { |
| writel(wsrc[i], tdest + i*4); |
| } |
| dest += tsize; |
| src += tsize; |
| size -= tsize; |
| } |
| |
| return; |
| } |
| |
| |
| static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) |
| { |
| void __iomem *tdest; |
| short tsize = 0, i; |
| |
| if (size <= 0) |
| return; |
| |
| while (size > 0) { |
| tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), |
| min_t(u32, size, ACE_WINDOW_SIZE)); |
| tdest = (void __iomem *) ®s->Window + |
| (dest & (ACE_WINDOW_SIZE - 1)); |
| writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); |
| |
| for (i = 0; i < (tsize / 4); i++) { |
| writel(0, tdest + i*4); |
| } |
| |
| dest += tsize; |
| size -= tsize; |
| } |
| |
| return; |
| } |
| |
| |
| /* |
| * Download the firmware into the SRAM on the NIC |
| * |
| * This operation requires the NIC to be halted and is performed with |
| * interrupts disabled and with the spinlock hold. |
| */ |
| int __devinit ace_load_firmware(struct net_device *dev) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| |
| if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { |
| printk(KERN_ERR "%s: trying to download firmware while the " |
| "CPU is running!\n", ap->name); |
| return -EFAULT; |
| } |
| |
| /* |
| * Do not try to clear more than 512KB or we end up seeing |
| * funny things on NICs with only 512KB SRAM |
| */ |
| ace_clear(regs, 0x2000, 0x80000-0x2000); |
| if (ACE_IS_TIGON_I(ap)) { |
| ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); |
| ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); |
| ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, |
| tigonFwRodataLen); |
| ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); |
| ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); |
| }else if (ap->version == 2) { |
| ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); |
| ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); |
| ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); |
| ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, |
| tigon2FwRodataLen); |
| ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * The eeprom on the AceNIC is an Atmel i2c EEPROM. |
| * |
| * Accessing the EEPROM is `interesting' to say the least - don't read |
| * this code right after dinner. |
| * |
| * This is all about black magic and bit-banging the device .... I |
| * wonder in what hospital they have put the guy who designed the i2c |
| * specs. |
| * |
| * Oh yes, this is only the beginning! |
| * |
| * Thanks to Stevarino Webinski for helping tracking down the bugs in the |
| * code i2c readout code by beta testing all my hacks. |
| */ |
| static void __devinit eeprom_start(struct ace_regs __iomem *regs) |
| { |
| u32 local; |
| |
| readl(®s->LocalCtrl); |
| udelay(ACE_SHORT_DELAY); |
| local = readl(®s->LocalCtrl); |
| local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local |= EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local &= ~EEPROM_DATA_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local &= ~EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| } |
| |
| |
| static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) |
| { |
| short i; |
| u32 local; |
| |
| udelay(ACE_SHORT_DELAY); |
| local = readl(®s->LocalCtrl); |
| local &= ~EEPROM_DATA_OUT; |
| local |= EEPROM_WRITE_ENABLE; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| |
| for (i = 0; i < 8; i++, magic <<= 1) { |
| udelay(ACE_SHORT_DELAY); |
| if (magic & 0x80) |
| local |= EEPROM_DATA_OUT; |
| else |
| local &= ~EEPROM_DATA_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| |
| udelay(ACE_SHORT_DELAY); |
| local |= EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| } |
| } |
| |
| |
| static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) |
| { |
| int state; |
| u32 local; |
| |
| local = readl(®s->LocalCtrl); |
| local &= ~EEPROM_WRITE_ENABLE; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_LONG_DELAY); |
| local |= EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| /* sample data in middle of high clk */ |
| state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; |
| udelay(ACE_SHORT_DELAY); |
| mb(); |
| writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| |
| return state; |
| } |
| |
| |
| static void __devinit eeprom_stop(struct ace_regs __iomem *regs) |
| { |
| u32 local; |
| |
| udelay(ACE_SHORT_DELAY); |
| local = readl(®s->LocalCtrl); |
| local |= EEPROM_WRITE_ENABLE; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local &= ~EEPROM_DATA_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local |= EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| local |= EEPROM_DATA_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_LONG_DELAY); |
| local &= ~EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| mb(); |
| } |
| |
| |
| /* |
| * Read a whole byte from the EEPROM. |
| */ |
| static int __devinit read_eeprom_byte(struct net_device *dev, |
| unsigned long offset) |
| { |
| struct ace_private *ap = netdev_priv(dev); |
| struct ace_regs __iomem *regs = ap->regs; |
| unsigned long flags; |
| u32 local; |
| int result = 0; |
| short i; |
| |
| if (!dev) { |
| printk(KERN_ERR "No device!\n"); |
| result = -ENODEV; |
| goto out; |
| } |
| |
| /* |
| * Don't take interrupts on this CPU will bit banging |
| * the %#%#@$ I2C device |
| */ |
| local_irq_save(flags); |
| |
| eeprom_start(regs); |
| |
| eeprom_prep(regs, EEPROM_WRITE_SELECT); |
| if (eeprom_check_ack(regs)) { |
| local_irq_restore(flags); |
| printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); |
| result = -EIO; |
| goto eeprom_read_error; |
| } |
| |
| eeprom_prep(regs, (offset >> 8) & 0xff); |
| if (eeprom_check_ack(regs)) { |
| local_irq_restore(flags); |
| printk(KERN_ERR "%s: Unable to set address byte 0\n", |
| ap->name); |
| result = -EIO; |
| goto eeprom_read_error; |
| } |
| |
| eeprom_prep(regs, offset & 0xff); |
| if (eeprom_check_ack(regs)) { |
| local_irq_restore(flags); |
| printk(KERN_ERR "%s: Unable to set address byte 1\n", |
| ap->name); |
| result = -EIO; |
| goto eeprom_read_error; |
| } |
| |
| eeprom_start(regs); |
| eeprom_prep(regs, EEPROM_READ_SELECT); |
| if (eeprom_check_ack(regs)) { |
| local_irq_restore(flags); |
| printk(KERN_ERR "%s: Unable to set READ_SELECT\n", |
| ap->name); |
| result = -EIO; |
| goto eeprom_read_error; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| local = readl(®s->LocalCtrl); |
| local &= ~EEPROM_WRITE_ENABLE; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| udelay(ACE_LONG_DELAY); |
| mb(); |
| local |= EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| /* sample data mid high clk */ |
| result = (result << 1) | |
| ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); |
| udelay(ACE_SHORT_DELAY); |
| mb(); |
| local = readl(®s->LocalCtrl); |
| local &= ~EEPROM_CLK_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| udelay(ACE_SHORT_DELAY); |
| mb(); |
| if (i == 7) { |
| local |= EEPROM_WRITE_ENABLE; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| } |
| } |
| |
| local |= EEPROM_DATA_OUT; |
| writel(local, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| udelay(ACE_LONG_DELAY); |
| writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); |
| readl(®s->LocalCtrl); |
| mb(); |
| udelay(ACE_SHORT_DELAY); |
| eeprom_stop(regs); |
| |
| local_irq_restore(flags); |
| out: |
| return result; |
| |
| eeprom_read_error: |
| printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", |
| ap->name, offset); |
| goto out; |
| } |
| |
| |
| /* |
| * Local variables: |
| * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c" |
| * End: |
| */ |