blob: 00801dfccb9128ce3cd4cd37cac56bd5e85df04d [file] [log] [blame]
/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s:%s " fmt, KBUILD_MODNAME, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/msm_tsens.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/msm_tsens.h>
#include <linux/msm_thermal.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/android_alarm.h>
#include <linux/thermal.h>
#include <mach/rpm-regulator.h>
#include <mach/rpm-regulator-smd.h>
#include <linux/regulator/consumer.h>
#include <linux/msm_thermal_ioctl.h>
#include <mach/rpm-smd.h>
#include <mach/scm.h>
#include <linux/sched.h>
#define MAX_CURRENT_UA 1000000
#define MAX_RAILS 5
#define MAX_THRESHOLD 2
#define MONITOR_ALL_TSENS -1
#define BYTES_PER_FUSE_ROW 8
#define MAX_EFUSE_VALUE 16
#define THERM_SECURE_BITE_CMD 8
static struct msm_thermal_data msm_thermal_info;
static struct delayed_work check_temp_work;
static bool core_control_enabled;
static uint32_t cpus_offlined;
static DEFINE_MUTEX(core_control_mutex);
static uint32_t wakeup_ms;
static struct alarm thermal_rtc;
static struct kobject *tt_kobj;
static struct kobject *cc_kobj;
static struct work_struct timer_work;
static struct task_struct *hotplug_task;
static struct task_struct *freq_mitigation_task;
static struct task_struct *thermal_monitor_task;
static struct completion hotplug_notify_complete;
static struct completion freq_mitigation_complete;
static struct completion thermal_monitor_complete;
static int enabled;
static int polling_enabled;
static int rails_cnt;
static int psm_rails_cnt;
static int ocr_rail_cnt;
static int limit_idx;
static int limit_idx_low;
static int limit_idx_high;
static int max_tsens_num;
static struct cpufreq_frequency_table *table;
static uint32_t usefreq;
static int freq_table_get;
static bool vdd_rstr_enabled;
static bool vdd_rstr_nodes_called;
static bool vdd_rstr_probed;
static bool psm_enabled;
static bool psm_nodes_called;
static bool psm_probed;
static bool hotplug_enabled;
static bool freq_mitigation_enabled;
static bool ocr_enabled;
static bool ocr_nodes_called;
static bool ocr_probed;
static bool interrupt_mode_enable;
static bool msm_thermal_probed;
static bool therm_reset_enabled;
static int *tsens_id_map;
static DEFINE_MUTEX(vdd_rstr_mutex);
static DEFINE_MUTEX(psm_mutex);
static DEFINE_MUTEX(ocr_mutex);
static uint32_t min_freq_limit;
static uint32_t default_cpu_temp_limit;
static bool default_temp_limit_enabled;
static bool default_temp_limit_probed;
static bool default_temp_limit_nodes_called;
enum thermal_threshold {
HOTPLUG_THRESHOLD_HIGH,
HOTPLUG_THRESHOLD_LOW,
FREQ_THRESHOLD_HIGH,
FREQ_THRESHOLD_LOW,
THRESHOLD_MAX_NR,
};
enum sensor_id_type {
THERM_ZONE_ID,
THERM_TSENS_ID,
THERM_ID_MAX_NR,
};
struct cpu_info {
uint32_t cpu;
const char *sensor_type;
enum sensor_id_type id_type;
uint32_t sensor_id;
bool offline;
bool user_offline;
bool hotplug_thresh_clear;
struct sensor_threshold threshold[THRESHOLD_MAX_NR];
bool max_freq;
uint32_t user_max_freq;
uint32_t user_min_freq;
uint32_t limited_max_freq;
uint32_t limited_min_freq;
bool freq_thresh_clear;
};
struct threshold_info;
struct therm_threshold {
int32_t sensor_id;
struct sensor_threshold threshold[MAX_THRESHOLD];
int32_t trip_triggered;
void (*notify)(struct therm_threshold *);
struct threshold_info *parent;
};
struct threshold_info {
uint32_t thresh_ct;
bool thresh_triggered;
struct therm_threshold *thresh_list;
};
struct rail {
const char *name;
uint32_t freq_req;
uint32_t min_level;
uint32_t num_levels;
int32_t curr_level;
uint32_t levels[3];
struct kobj_attribute value_attr;
struct kobj_attribute level_attr;
struct regulator *reg;
struct attribute_group attr_gp;
};
struct psm_rail {
const char *name;
uint8_t init;
uint8_t mode;
struct kobj_attribute mode_attr;
struct rpm_regulator *reg;
struct regulator *phase_reg;
struct attribute_group attr_gp;
};
enum msm_thresh_list {
MSM_THERM_RESET,
MSM_VDD_RESTRICTION,
MSM_LIST_MAX_NR,
};
static struct psm_rail *psm_rails;
static struct psm_rail *ocr_rails;
static struct rail *rails;
static struct cpu_info cpus[NR_CPUS];
static struct threshold_info *thresh;
struct vdd_rstr_enable {
struct kobj_attribute ko_attr;
uint32_t enabled;
};
enum efuse_data {
EFUSE_ADDRESS = 0,
EFUSE_SIZE,
EFUSE_ROW,
EFUSE_START_BIT,
EFUSE_BIT_MASK,
EFUSE_DATA_MAX,
};
/* For SMPS only*/
enum PMIC_SW_MODE {
PMIC_AUTO_MODE = RPM_REGULATOR_MODE_AUTO,
PMIC_IPEAK_MODE = RPM_REGULATOR_MODE_IPEAK,
PMIC_PWM_MODE = RPM_REGULATOR_MODE_HPM,
};
enum ocr_request {
OPTIMUM_CURRENT_MIN,
OPTIMUM_CURRENT_MAX,
OPTIMUM_CURRENT_NR,
};
#define VDD_RES_RO_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0444; \
ko_attr.show = vdd_rstr_reg_##_name##_show; \
ko_attr.store = NULL; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define VDD_RES_RW_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = vdd_rstr_reg_##_name##_show; \
ko_attr.store = vdd_rstr_reg_##_name##_store; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define VDD_RSTR_ENABLE_FROM_ATTRIBS(attr) \
(container_of(attr, struct vdd_rstr_enable, ko_attr));
#define VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr) \
(container_of(attr, struct rail, value_attr));
#define VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr) \
(container_of(attr, struct rail, level_attr));
#define OCR_RW_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = ocr_reg_##_name##_show; \
ko_attr.store = ocr_reg_##_name##_store; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define PSM_RW_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = psm_reg_##_name##_show; \
ko_attr.store = psm_reg_##_name##_store; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define PSM_REG_MODE_FROM_ATTRIBS(attr) \
(container_of(attr, struct psm_rail, mode_attr));
static int msm_thermal_cpufreq_callback(struct notifier_block *nfb,
unsigned long event, void *data)
{
struct cpufreq_policy *policy = data;
uint32_t max_freq_req = cpus[policy->cpu].limited_max_freq;
uint32_t min_freq_req = cpus[policy->cpu].limited_min_freq;
switch (event) {
case CPUFREQ_INCOMPATIBLE:
pr_debug("mitigating CPU%d to freq max: %u min: %u\n",
policy->cpu, max_freq_req, min_freq_req);
cpufreq_verify_within_limits(policy, min_freq_req,
max_freq_req);
if (max_freq_req < min_freq_req)
pr_err("Invalid frequency request Max:%u Min:%u\n",
max_freq_req, min_freq_req);
break;
}
return NOTIFY_OK;
}
static struct notifier_block msm_thermal_cpufreq_notifier = {
.notifier_call = msm_thermal_cpufreq_callback,
};
/* If freq table exists, then we can send freq request */
static int check_freq_table(void)
{
int ret = 0;
struct cpufreq_frequency_table *table = NULL;
table = cpufreq_frequency_get_table(0);
if (!table) {
pr_debug("error reading cpufreq table\n");
return -EINVAL;
}
freq_table_get = 1;
return ret;
}
static void update_cpu_freq(int cpu)
{
int ret = 0;
if (cpu_online(cpu)) {
ret = cpufreq_update_policy(cpu);
if (ret)
pr_err("Unable to update policy for cpu:%d. err:%d\n",
cpu, ret);
}
}
static int update_cpu_min_freq_all(uint32_t min)
{
uint32_t cpu = 0;
int ret = 0;
if (!freq_table_get) {
ret = check_freq_table();
if (ret) {
pr_err("Fail to get freq table. err:%d\n", ret);
return ret;
}
}
/* If min is larger than allowed max */
min = min(min, table[limit_idx_high].frequency);
pr_debug("Requesting min freq:%u for all CPU's\n", min);
if (freq_mitigation_task) {
min_freq_limit = min;
complete(&freq_mitigation_complete);
} else {
get_online_cpus();
for_each_possible_cpu(cpu) {
cpus[cpu].limited_min_freq = min;
update_cpu_freq(cpu);
}
put_online_cpus();
}
return ret;
}
static int vdd_restriction_apply_freq(struct rail *r, int level)
{
int ret = 0;
if (level == r->curr_level)
return ret;
/* level = -1: disable, level = 0,1,2..n: enable */
if (level == -1) {
ret = update_cpu_min_freq_all(r->min_level);
if (ret)
return ret;
else
r->curr_level = -1;
} else if (level >= 0 && level < (r->num_levels)) {
ret = update_cpu_min_freq_all(r->levels[level]);
if (ret)
return ret;
else
r->curr_level = level;
} else {
pr_err("level input:%d is not within range\n", level);
return -EINVAL;
}
return ret;
}
static int vdd_restriction_apply_voltage(struct rail *r, int level)
{
int ret = 0;
if (r->reg == NULL) {
pr_err("%s don't have regulator handle. can't apply vdd\n",
r->name);
return -EFAULT;
}
if (level == r->curr_level)
return ret;
/* level = -1: disable, level = 0,1,2..n: enable */
if (level == -1) {
ret = regulator_set_voltage(r->reg, r->min_level,
r->levels[r->num_levels - 1]);
if (!ret)
r->curr_level = -1;
pr_debug("Requested min level for %s. curr level: %d\n",
r->name, r->curr_level);
} else if (level >= 0 && level < (r->num_levels)) {
ret = regulator_set_voltage(r->reg, r->levels[level],
r->levels[r->num_levels - 1]);
if (!ret)
r->curr_level = level;
pr_debug("Requesting level %d for %s. curr level: %d\n",
r->levels[level], r->name, r->levels[r->curr_level]);
} else {
pr_err("level input:%d is not within range\n", level);
return -EINVAL;
}
return ret;
}
/* Setting all rails the same mode */
static int psm_set_mode_all(int mode)
{
int i = 0;
int fail_cnt = 0;
int ret = 0;
pr_debug("Requesting PMIC Mode: %d\n", mode);
for (i = 0; i < psm_rails_cnt; i++) {
if (psm_rails[i].mode != mode) {
ret = rpm_regulator_set_mode(psm_rails[i].reg, mode);
if (ret) {
pr_err("Cannot set mode:%d for %s. err:%d",
mode, psm_rails[i].name, ret);
fail_cnt++;
} else
psm_rails[i].mode = mode;
}
}
return fail_cnt ? (-EFAULT) : ret;
}
static ssize_t default_cpu_temp_limit_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", default_cpu_temp_limit);
}
static int vdd_rstr_en_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", en->enabled);
}
static ssize_t vdd_rstr_en_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int i = 0;
uint8_t en_cnt = 0;
uint8_t dis_cnt = 0;
uint32_t val = 0;
struct kernel_param kp;
struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr);
mutex_lock(&vdd_rstr_mutex);
kp.arg = &val;
ret = param_set_bool(buf, &kp);
if (ret) {
pr_err("Invalid input %s for enabled\n", buf);
goto done_vdd_rstr_en;
}
if ((val == 0) && (en->enabled == 0))
goto done_vdd_rstr_en;
for (i = 0; i < rails_cnt; i++) {
if (rails[i].freq_req == 1 && freq_table_get)
ret = vdd_restriction_apply_freq(&rails[i],
(val) ? 0 : -1);
else
ret = vdd_restriction_apply_voltage(&rails[i],
(val) ? 0 : -1);
/*
* Even if fail to set one rail, still try to set the
* others. Continue the loop
*/
if (ret)
pr_err("Set vdd restriction for %s failed\n",
rails[i].name);
else {
if (val)
en_cnt++;
else
dis_cnt++;
}
}
/* As long as one rail is enabled, vdd rstr is enabled */
if (val && en_cnt)
en->enabled = 1;
else if (!val && (dis_cnt == rails_cnt))
en->enabled = 0;
pr_debug("%s vdd restriction. curr: %d\n",
(val) ? "Enable" : "Disable", en->enabled);
done_vdd_rstr_en:
mutex_unlock(&vdd_rstr_mutex);
return count;
}
static struct vdd_rstr_enable vdd_rstr_en = {
.ko_attr.attr.name = __stringify(enabled),
.ko_attr.attr.mode = 0644,
.ko_attr.show = vdd_rstr_en_show,
.ko_attr.store = vdd_rstr_en_store,
.enabled = 1,
};
static struct attribute *vdd_rstr_en_attribs[] = {
&vdd_rstr_en.ko_attr.attr,
NULL,
};
static struct attribute_group vdd_rstr_en_attribs_gp = {
.attrs = vdd_rstr_en_attribs,
};
static int vdd_rstr_reg_value_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
int val = 0;
struct rail *reg = VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr);
/* -1:disabled, -2:fail to get regualtor handle */
if (reg->curr_level < 0)
val = reg->curr_level;
else
val = reg->levels[reg->curr_level];
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static int vdd_rstr_reg_level_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", reg->curr_level);
}
static ssize_t vdd_rstr_reg_level_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr);
mutex_lock(&vdd_rstr_mutex);
if (vdd_rstr_en.enabled == 0)
goto done_store_level;
ret = kstrtouint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s for level\n", buf);
goto done_store_level;
}
if (val < 0 || val > reg->num_levels - 1) {
pr_err(" Invalid number %d for level\n", val);
goto done_store_level;
}
if (val != reg->curr_level) {
if (reg->freq_req == 1 && freq_table_get)
update_cpu_min_freq_all(reg->levels[val]);
else {
ret = vdd_restriction_apply_voltage(reg, val);
if (ret) {
pr_err( \
"Set vdd restriction for regulator %s failed. err:%d\n",
reg->name, ret);
goto done_store_level;
}
}
reg->curr_level = val;
pr_debug("Request level %d for %s\n",
reg->curr_level, reg->name);
}
done_store_level:
mutex_unlock(&vdd_rstr_mutex);
return count;
}
static int request_optimum_current(struct psm_rail *rail, enum ocr_request req)
{
int ret = 0;
if ((!rail) || (req >= OPTIMUM_CURRENT_NR) ||
(req < 0)) {
pr_err("%s:%s Invalid input\n", KBUILD_MODNAME, __func__);
ret = -EINVAL;
goto request_ocr_exit;
}
ret = regulator_set_optimum_mode(rail->phase_reg,
(req == OPTIMUM_CURRENT_MAX) ? MAX_CURRENT_UA : 0);
if (ret < 0) {
pr_err("%s: Optimum current request failed\n", KBUILD_MODNAME);
goto request_ocr_exit;
}
ret = 0; /*regulator_set_optimum_mode returns the mode on success*/
pr_debug("%s: Requested optimum current mode: %d\n",
KBUILD_MODNAME, req);
request_ocr_exit:
return ret;
}
static int ocr_set_mode_all(enum ocr_request req)
{
int ret = 0, i;
for (i = 0; i < ocr_rail_cnt; i++) {
if (ocr_rails[i].mode == req)
continue;
ret = request_optimum_current(&ocr_rails[i], req);
if (ret)
goto ocr_set_mode_exit;
ocr_rails[i].mode = req;
}
ocr_set_mode_exit:
return ret;
}
static int ocr_reg_mode_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode);
}
static ssize_t ocr_reg_mode_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
if (!ocr_enabled)
return count;
mutex_lock(&ocr_mutex);
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("%s: Invalid input %s for mode\n",
KBUILD_MODNAME, buf);
goto done_ocr_store;
}
if ((val != OPTIMUM_CURRENT_MAX) &&
(val != OPTIMUM_CURRENT_MIN)) {
pr_err("%s: Invalid value %d for mode\n",
KBUILD_MODNAME, val);
goto done_ocr_store;
}
if (val != reg->mode) {
ret = request_optimum_current(reg, val);
if (ret)
goto done_ocr_store;
reg->mode = val;
}
done_ocr_store:
mutex_unlock(&ocr_mutex);
return count;
}
static int psm_reg_mode_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode);
}
static ssize_t psm_reg_mode_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
mutex_lock(&psm_mutex);
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s for mode\n", buf);
goto done_psm_store;
}
if ((val != PMIC_PWM_MODE) && (val != PMIC_AUTO_MODE)) {
pr_err("Invalid number %d for mode\n", val);
goto done_psm_store;
}
if (val != reg->mode) {
ret = rpm_regulator_set_mode(reg->reg, val);
if (ret) {
pr_err("Fail to set Mode:%d for %s. err:%d\n",
val, reg->name, ret);
goto done_psm_store;
}
reg->mode = val;
}
done_psm_store:
mutex_unlock(&psm_mutex);
return count;
}
static int check_sensor_id(int sensor_id)
{
int i = 0;
bool hw_id_found = false;
int ret = 0;
for (i = 0; i < max_tsens_num; i++) {
if (sensor_id == tsens_id_map[i]) {
hw_id_found = true;
break;
}
}
if (!hw_id_found) {
pr_err("Invalid sensor hw id:%d\n", sensor_id);
return -EINVAL;
}
return ret;
}
static int create_sensor_id_map(void)
{
int i = 0;
int ret = 0;
tsens_id_map = kzalloc(sizeof(int) * max_tsens_num,
GFP_KERNEL);
if (!tsens_id_map) {
pr_err("Cannot allocate memory for tsens_id_map\n");
return -ENOMEM;
}
for (i = 0; i < max_tsens_num; i++) {
ret = tsens_get_hw_id_mapping(i, &tsens_id_map[i]);
/* If return -ENXIO, hw_id is default in sequence */
if (ret) {
if (ret == -ENXIO) {
tsens_id_map[i] = i;
ret = 0;
} else {
pr_err("Failed to get hw id for id:%d.err:%d\n",
i, ret);
goto fail;
}
}
}
return ret;
fail:
kfree(tsens_id_map);
return ret;
}
/* 1:enable, 0:disable */
static int vdd_restriction_apply_all(int en)
{
int i = 0;
int en_cnt = 0;
int dis_cnt = 0;
int fail_cnt = 0;
int ret = 0;
for (i = 0; i < rails_cnt; i++) {
if (rails[i].freq_req == 1 && freq_table_get)
ret = vdd_restriction_apply_freq(&rails[i],
en ? 0 : -1);
else
ret = vdd_restriction_apply_voltage(&rails[i],
en ? 0 : -1);
if (ret) {
pr_err("Failed to %s for %s. err:%d",
(en) ? "enable" : "disable",
rails[i].name, ret);
fail_cnt++;
} else {
if (en)
en_cnt++;
else
dis_cnt++;
}
}
/* As long as one rail is enabled, vdd rstr is enabled */
if (en && en_cnt)
vdd_rstr_en.enabled = 1;
else if (!en && (dis_cnt == rails_cnt))
vdd_rstr_en.enabled = 0;
/*
* Check fail_cnt again to make sure all of the rails are applied
* restriction successfully or not
*/
if (fail_cnt)
return -EFAULT;
return ret;
}
static int msm_thermal_get_freq_table(void)
{
int ret = 0;
int i = 0;
table = cpufreq_frequency_get_table(0);
if (table == NULL) {
pr_err("error reading cpufreq table\n");
ret = -EINVAL;
goto fail;
}
while (table[i].frequency != CPUFREQ_TABLE_END)
i++;
limit_idx_low = 0;
limit_idx_high = limit_idx = i - 1;
BUG_ON(limit_idx_high <= 0 || limit_idx_high <= limit_idx_low);
fail:
return ret;
}
static int set_and_activate_threshold(uint32_t sensor_id,
struct sensor_threshold *threshold)
{
int ret = 0;
ret = sensor_set_trip(sensor_id, threshold);
if (ret != 0) {
pr_err("sensor:%u Error in setting trip:%d. err:%d\n",
sensor_id, threshold->trip, ret);
goto set_done;
}
ret = sensor_activate_trip(sensor_id, threshold, true);
if (ret != 0) {
pr_err("sensor:%u Error in enabling trip:%d. err:%d\n",
sensor_id, threshold->trip, ret);
goto set_done;
}
set_done:
return ret;
}
static int therm_get_temp(uint32_t id, enum sensor_id_type type, long *temp)
{
int ret = 0;
struct tsens_device tsens_dev;
if (!temp) {
pr_err("Invalid value\n");
ret = -EINVAL;
goto get_temp_exit;
}
switch (type) {
case THERM_ZONE_ID:
tsens_dev.sensor_num = tsens_id_map[id];
break;
case THERM_TSENS_ID:
tsens_dev.sensor_num = id;
break;
default:
pr_err("Invalid type\n");
ret = -EINVAL;
goto get_temp_exit;
break;
}
ret = tsens_get_temp(&tsens_dev, temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d\n",
tsens_dev.sensor_num);
goto get_temp_exit;
}
get_temp_exit:
return ret;
}
static int set_threshold(uint32_t zone_id,
struct sensor_threshold *threshold)
{
int i = 0, ret = 0;
long temp;
if ((!threshold) || (zone_id >= max_tsens_num)) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto set_threshold_exit;
}
ret = therm_get_temp(zone_id, THERM_ZONE_ID, &temp);
if (ret) {
pr_err("Unable to read temperature for zone:%d. err:%d\n",
zone_id, ret);
goto set_threshold_exit;
}
while (i < MAX_THRESHOLD) {
switch (threshold[i].trip) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (threshold[i].temp >= temp) {
ret = set_and_activate_threshold(zone_id,
&threshold[i]);
if (ret)
goto set_threshold_exit;
}
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (threshold[i].temp <= temp) {
ret = set_and_activate_threshold(zone_id,
&threshold[i]);
if (ret)
goto set_threshold_exit;
}
break;
default:
pr_err("zone:%u Invalid trip:%d\n", zone_id,
threshold[i].trip);
break;
}
i++;
}
set_threshold_exit:
return ret;
}
static void msm_thermal_bite(int tsens_id, long temp)
{
pr_err("TSENS:%d reached temperature:%ld. System reset\n",
tsens_id, temp);
scm_call_atomic1(SCM_SVC_BOOT, THERM_SECURE_BITE_CMD, 0);
}
static int do_therm_reset(void)
{
int ret = 0, i;
long temp = 0;
if (!therm_reset_enabled)
return ret;
for (i = 0; i < thresh[MSM_THERM_RESET].thresh_ct; i++) {
ret = therm_get_temp(
thresh[MSM_THERM_RESET].thresh_list[i].sensor_id,
THERM_TSENS_ID,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh[MSM_THERM_RESET].thresh_list[i].sensor_id,
ret);
continue;
}
if (temp >= msm_thermal_info.therm_reset_temp_degC)
msm_thermal_bite(
thresh[MSM_THERM_RESET].thresh_list[i].sensor_id, temp);
}
return ret;
}
static void therm_reset_notify(struct therm_threshold *thresh_data)
{
long temp;
int ret = 0;
if (!therm_reset_enabled)
return;
if (!thresh_data) {
pr_err("Invalid input\n");
return;
}
switch (thresh_data->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
ret = therm_get_temp(thresh_data->sensor_id,
THERM_TSENS_ID, &temp);
if (ret)
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh_data->sensor_id, ret);
msm_thermal_bite(tsens_id_map[thresh_data->sensor_id],
temp);
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
break;
default:
pr_err("Invalid trip type\n");
break;
}
set_threshold(thresh_data->sensor_id, thresh_data->threshold);
}
#ifdef CONFIG_SMP
static void __ref do_core_control(long temp)
{
int i = 0;
int ret = 0;
if (!core_control_enabled)
return;
mutex_lock(&core_control_mutex);
if (msm_thermal_info.core_control_mask &&
temp >= msm_thermal_info.core_limit_temp_degC) {
for (i = num_possible_cpus(); i > 0; i--) {
if (!(msm_thermal_info.core_control_mask & BIT(i)))
continue;
if (cpus_offlined & BIT(i) && !cpu_online(i))
continue;
pr_info("Set Offline: CPU%d Temp: %ld\n",
i, temp);
ret = cpu_down(i);
if (ret)
pr_err("Error %d offline core %d\n",
ret, i);
cpus_offlined |= BIT(i);
break;
}
} else if (msm_thermal_info.core_control_mask && cpus_offlined &&
temp <= (msm_thermal_info.core_limit_temp_degC -
msm_thermal_info.core_temp_hysteresis_degC)) {
for (i = 0; i < num_possible_cpus(); i++) {
if (!(cpus_offlined & BIT(i)))
continue;
cpus_offlined &= ~BIT(i);
pr_info("Allow Online CPU%d Temp: %ld\n",
i, temp);
/*
* If this core is already online, then bring up the
* next offlined core.
*/
if (cpu_online(i))
continue;
ret = cpu_up(i);
if (ret)
pr_err("Error %d online core %d\n",
ret, i);
break;
}
}
mutex_unlock(&core_control_mutex);
}
/* Call with core_control_mutex locked */
static int __ref update_offline_cores(int val)
{
uint32_t cpu = 0;
int ret = 0;
if (!core_control_enabled)
return 0;
cpus_offlined = msm_thermal_info.core_control_mask & val;
for_each_possible_cpu(cpu) {
if (!(cpus_offlined & BIT(cpu)))
continue;
if (!cpu_online(cpu))
continue;
ret = cpu_down(cpu);
if (ret)
pr_err("Unable to offline CPU%d. err:%d\n",
cpu, ret);
else
pr_debug("Offlined CPU%d\n", cpu);
}
return ret;
}
static __ref int do_hotplug(void *data)
{
int ret = 0;
uint32_t cpu = 0, mask = 0;
struct sched_param param = {.sched_priority = MAX_RT_PRIO-2};
if (!core_control_enabled) {
pr_debug("Core control disabled\n");
return -EINVAL;
}
sched_setscheduler(current, SCHED_FIFO, &param);
while (!kthread_should_stop()) {
while (wait_for_completion_interruptible(
&hotplug_notify_complete) != 0)
;
INIT_COMPLETION(hotplug_notify_complete);
mask = 0;
mutex_lock(&core_control_mutex);
for_each_possible_cpu(cpu) {
if (hotplug_enabled &&
cpus[cpu].hotplug_thresh_clear) {
set_threshold(cpus[cpu].sensor_id,
&cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]);
cpus[cpu].hotplug_thresh_clear = false;
}
if (cpus[cpu].offline || cpus[cpu].user_offline)
mask |= BIT(cpu);
}
if (mask != cpus_offlined)
update_offline_cores(mask);
mutex_unlock(&core_control_mutex);
sysfs_notify(cc_kobj, NULL, "cpus_offlined");
}
return ret;
}
#else
static void do_core_control(long temp)
{
return;
}
static __ref int do_hotplug(void *data)
{
return 0;
}
#endif
static int do_ocr(void)
{
long temp = 0;
int ret = 0;
int i = 0, j = 0;
int auto_cnt = 0;
if (!ocr_enabled)
return ret;
mutex_lock(&ocr_mutex);
for (i = 0; i < max_tsens_num; i++) {
ret = therm_get_temp(tsens_id_map[i], THERM_TSENS_ID, &temp);
if (ret) {
pr_debug("%s: Unable to read TSENS sensor %d\n",
__func__, tsens_id_map[i]);
auto_cnt++;
continue;
}
if (temp > msm_thermal_info.ocr_temp_degC) {
if (ocr_rails[0].init != OPTIMUM_CURRENT_NR)
for (j = 0; j < ocr_rail_cnt; j++)
ocr_rails[j].init = OPTIMUM_CURRENT_NR;
ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX);
if (ret)
pr_err("Error setting max ocr. err:%d\n",
ret);
else
pr_debug("Requested MAX OCR. tsens:%d Temp:%ld",
tsens_id_map[i], temp);
goto do_ocr_exit;
} else if (temp <= (msm_thermal_info.ocr_temp_degC -
msm_thermal_info.ocr_temp_hyst_degC))
auto_cnt++;
}
if (auto_cnt == max_tsens_num ||
ocr_rails[0].init != OPTIMUM_CURRENT_NR) {
/* 'init' not equal to OPTIMUM_CURRENT_NR means this is the
** first polling iteration after device probe. During first
** iteration, if temperature is less than the set point, clear
** the max current request made and reset the 'init'.
*/
if (ocr_rails[0].init != OPTIMUM_CURRENT_NR)
for (j = 0; j < ocr_rail_cnt; j++)
ocr_rails[j].init = OPTIMUM_CURRENT_NR;
ret = ocr_set_mode_all(OPTIMUM_CURRENT_MIN);
if (ret) {
pr_err("Error setting min optimum current\n");
goto do_ocr_exit;
} else {
pr_debug("Requested MIN OCR. Temp:%ld", temp);
}
}
do_ocr_exit:
mutex_unlock(&ocr_mutex);
return ret;
}
static int do_vdd_restriction(void)
{
long temp = 0;
int ret = 0;
int i = 0;
int dis_cnt = 0;
if (!vdd_rstr_enabled)
return ret;
if (usefreq && !freq_table_get) {
if (check_freq_table())
return ret;
}
mutex_lock(&vdd_rstr_mutex);
for (i = 0; i < max_tsens_num; i++) {
ret = therm_get_temp(tsens_id_map[i], THERM_TSENS_ID, &temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
tsens_id_map[i], ret);
dis_cnt++;
continue;
}
if (temp <= msm_thermal_info.vdd_rstr_temp_degC) {
ret = vdd_restriction_apply_all(1);
if (ret) {
pr_err( \
"Enable vdd rstr for all failed. err:%d\n",
ret);
goto exit;
}
pr_debug("Enabled Vdd Restriction tsens:%d. Temp:%ld\n",
thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id,
temp);
goto exit;
} else if (temp > msm_thermal_info.vdd_rstr_temp_hyst_degC)
dis_cnt++;
}
if (dis_cnt == max_tsens_num) {
ret = vdd_restriction_apply_all(0);
if (ret) {
pr_err("Disable vdd rstr for all failed. err:%d\n",
ret);
goto exit;
}
pr_debug("Disabled Vdd Restriction\n");
}
exit:
mutex_unlock(&vdd_rstr_mutex);
return ret;
}
static int do_psm(void)
{
long temp = 0;
int ret = 0;
int i = 0;
int auto_cnt = 0;
mutex_lock(&psm_mutex);
for (i = 0; i < max_tsens_num; i++) {
ret = therm_get_temp(tsens_id_map[i], THERM_TSENS_ID, &temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
tsens_id_map[i], ret);
auto_cnt++;
continue;
}
/*
* As long as one sensor is above the threshold, set PWM mode
* on all rails, and loop stops. Set auto mode when all rails
* are below thershold
*/
if (temp > msm_thermal_info.psm_temp_degC) {
ret = psm_set_mode_all(PMIC_PWM_MODE);
if (ret) {
pr_err("Set pwm mode for all failed. err:%d\n",
ret);
goto exit;
}
pr_debug("Requested PMIC PWM Mode tsens:%d. Temp:%ld\n",
tsens_id_map[i], temp);
break;
} else if (temp <= msm_thermal_info.psm_temp_hyst_degC)
auto_cnt++;
}
if (auto_cnt == max_tsens_num) {
ret = psm_set_mode_all(PMIC_AUTO_MODE);
if (ret) {
pr_err("Set auto mode for all failed. err:%d\n", ret);
goto exit;
}
pr_debug("Requested PMIC AUTO Mode\n");
}
exit:
mutex_unlock(&psm_mutex);
return ret;
}
static void __ref do_freq_control(long temp)
{
uint32_t cpu = 0;
uint32_t max_freq = cpus[cpu].limited_max_freq;
if (temp >= msm_thermal_info.limit_temp_degC) {
if (limit_idx == limit_idx_low)
return;
limit_idx -= msm_thermal_info.bootup_freq_step;
if (limit_idx < limit_idx_low)
limit_idx = limit_idx_low;
max_freq = table[limit_idx].frequency;
} else if (temp < msm_thermal_info.limit_temp_degC -
msm_thermal_info.temp_hysteresis_degC) {
if (limit_idx == limit_idx_high)
return;
limit_idx += msm_thermal_info.bootup_freq_step;
if (limit_idx >= limit_idx_high) {
limit_idx = limit_idx_high;
max_freq = UINT_MAX;
} else
max_freq = table[limit_idx].frequency;
}
if (max_freq == cpus[cpu].limited_max_freq)
return;
/* Update new limits */
get_online_cpus();
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.bootup_freq_control_mask & BIT(cpu)))
continue;
pr_info("Limiting CPU%d max frequency to %u. Temp:%ld\n",
cpu, max_freq, temp);
cpus[cpu].limited_max_freq = max_freq;
update_cpu_freq(cpu);
}
put_online_cpus();
}
static void __ref check_temp(struct work_struct *work)
{
static int limit_init;
long temp = 0;
int ret = 0;
do_therm_reset();
ret = therm_get_temp(msm_thermal_info.sensor_id, THERM_TSENS_ID, &temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
msm_thermal_info.sensor_id, ret);
goto reschedule;
}
if (!limit_init) {
ret = msm_thermal_get_freq_table();
if (ret)
goto reschedule;
else
limit_init = 1;
}
do_core_control(temp);
do_vdd_restriction();
do_psm();
do_ocr();
do_freq_control(temp);
reschedule:
if (polling_enabled)
schedule_delayed_work(&check_temp_work,
msecs_to_jiffies(msm_thermal_info.poll_ms));
}
static int __ref msm_thermal_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
uint32_t cpu = (uint32_t)hcpu;
if (action == CPU_UP_PREPARE || action == CPU_UP_PREPARE_FROZEN) {
if (core_control_enabled &&
(msm_thermal_info.core_control_mask & BIT(cpu)) &&
(cpus_offlined & BIT(cpu))) {
pr_debug("Preventing CPU%d from coming online.\n",
cpu);
return NOTIFY_BAD;
}
}
pr_debug("voting for CPU%d to be online\n", cpu);
return NOTIFY_OK;
}
static struct notifier_block __refdata msm_thermal_cpu_notifier = {
.notifier_call = msm_thermal_cpu_callback,
};
static void thermal_rtc_setup(void)
{
ktime_t wakeup_time;
ktime_t curr_time;
curr_time = alarm_get_elapsed_realtime();
wakeup_time = ktime_add_us(curr_time,
(wakeup_ms * USEC_PER_MSEC));
alarm_start_range(&thermal_rtc, wakeup_time,
wakeup_time);
pr_debug("%s: Current Time: %ld %ld, Alarm set to: %ld %ld\n",
KBUILD_MODNAME,
ktime_to_timeval(curr_time).tv_sec,
ktime_to_timeval(curr_time).tv_usec,
ktime_to_timeval(wakeup_time).tv_sec,
ktime_to_timeval(wakeup_time).tv_usec);
}
static void timer_work_fn(struct work_struct *work)
{
sysfs_notify(tt_kobj, NULL, "wakeup_ms");
}
static void thermal_rtc_callback(struct alarm *al)
{
struct timeval ts;
ts = ktime_to_timeval(alarm_get_elapsed_realtime());
schedule_work(&timer_work);
pr_debug("%s: Time on alarm expiry: %ld %ld\n", KBUILD_MODNAME,
ts.tv_sec, ts.tv_usec);
}
static int hotplug_notify(enum thermal_trip_type type, int temp, void *data)
{
struct cpu_info *cpu_node = (struct cpu_info *)data;
pr_info("%s reach temp threshold: %d\n", cpu_node->sensor_type, temp);
if (!(msm_thermal_info.core_control_mask & BIT(cpu_node->cpu)))
return 0;
switch (type) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (!(cpu_node->offline))
cpu_node->offline = 1;
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (cpu_node->offline)
cpu_node->offline = 0;
break;
default:
break;
}
if (hotplug_task) {
cpu_node->hotplug_thresh_clear = true;
complete(&hotplug_notify_complete);
} else {
pr_err("Hotplug task is not initialized\n");
}
return 0;
}
/* Adjust cpus offlined bit based on temperature reading. */
static int hotplug_init_cpu_offlined(void)
{
long temp = 0;
uint32_t cpu = 0;
if (!hotplug_enabled)
return 0;
mutex_lock(&core_control_mutex);
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu)))
continue;
if (therm_get_temp(cpus[cpu].sensor_id, cpus[cpu].id_type,
&temp)) {
pr_err("Unable to read TSENS sensor:%d.\n",
cpus[cpu].sensor_id);
mutex_unlock(&core_control_mutex);
return -EINVAL;
}
if (temp >= msm_thermal_info.hotplug_temp_degC)
cpus[cpu].offline = 1;
else if (temp <= (msm_thermal_info.hotplug_temp_degC -
msm_thermal_info.hotplug_temp_hysteresis_degC))
cpus[cpu].offline = 0;
}
mutex_unlock(&core_control_mutex);
if (hotplug_task)
complete(&hotplug_notify_complete);
else {
pr_err("Hotplug task is not initialized\n");
return -EINVAL;
}
return 0;
}
static void hotplug_init(void)
{
uint32_t cpu = 0;
struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL;
if (hotplug_task)
return;
if (!hotplug_enabled)
goto init_kthread;
for_each_possible_cpu(cpu) {
cpus[cpu].sensor_id =
sensor_get_id((char *)cpus[cpu].sensor_type);
cpus[cpu].id_type = THERM_ZONE_ID;
if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu)))
continue;
hi_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH];
low_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_LOW];
hi_thresh->temp = msm_thermal_info.hotplug_temp_degC;
hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI;
low_thresh->temp = msm_thermal_info.hotplug_temp_degC -
msm_thermal_info.hotplug_temp_hysteresis_degC;
low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW;
hi_thresh->notify = low_thresh->notify = hotplug_notify;
hi_thresh->data = low_thresh->data = (void *)&cpus[cpu];
set_threshold(cpus[cpu].sensor_id, hi_thresh);
}
init_kthread:
init_completion(&hotplug_notify_complete);
hotplug_task = kthread_run(do_hotplug, NULL, "msm_thermal:hotplug");
if (IS_ERR(hotplug_task)) {
pr_err("Failed to create do_hotplug thread. err:%ld\n",
PTR_ERR(hotplug_task));
return;
}
/*
* Adjust cpus offlined bit when hotplug intitializes so that the new
* cpus offlined state is based on hotplug threshold range
*/
if (hotplug_init_cpu_offlined())
kthread_stop(hotplug_task);
}
static __ref int do_freq_mitigation(void *data)
{
int ret = 0;
uint32_t cpu = 0, max_freq_req = 0, min_freq_req = 0;
struct sched_param param = {.sched_priority = MAX_RT_PRIO-1};
sched_setscheduler(current, SCHED_FIFO, &param);
while (!kthread_should_stop()) {
while (wait_for_completion_interruptible(
&freq_mitigation_complete) != 0)
;
INIT_COMPLETION(freq_mitigation_complete);
for_each_possible_cpu(cpu) {
max_freq_req = (cpus[cpu].max_freq) ?
msm_thermal_info.freq_limit :
UINT_MAX;
max_freq_req = min(max_freq_req,
cpus[cpu].user_max_freq);
min_freq_req = max(min_freq_limit,
cpus[cpu].user_min_freq);
if ((max_freq_req == cpus[cpu].limited_max_freq)
&& (min_freq_req ==
cpus[cpu].limited_min_freq))
goto reset_threshold;
cpus[cpu].limited_max_freq = max_freq_req;
cpus[cpu].limited_min_freq = min_freq_req;
update_cpu_freq(cpu);
reset_threshold:
if (freq_mitigation_enabled &&
cpus[cpu].freq_thresh_clear) {
set_threshold(cpus[cpu].sensor_id,
&cpus[cpu].threshold[FREQ_THRESHOLD_HIGH]);
cpus[cpu].freq_thresh_clear = false;
}
}
}
return ret;
}
static int freq_mitigation_notify(enum thermal_trip_type type,
int temp, void *data)
{
struct cpu_info *cpu_node = (struct cpu_info *) data;
pr_debug("%s reached temp threshold: %d\n",
cpu_node->sensor_type, temp);
if (!(msm_thermal_info.freq_mitig_control_mask &
BIT(cpu_node->cpu)))
return 0;
switch (type) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (!cpu_node->max_freq) {
pr_info("Mitigating CPU%d frequency to %d\n",
cpu_node->cpu,
msm_thermal_info.freq_limit);
cpu_node->max_freq = true;
}
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (cpu_node->max_freq) {
pr_info("Removing frequency mitigation for CPU%d\n",
cpu_node->cpu);
cpu_node->max_freq = false;
}
break;
default:
break;
}
if (freq_mitigation_task) {
cpu_node->freq_thresh_clear = true;
complete(&freq_mitigation_complete);
} else {
pr_err("Frequency mitigation task is not initialized\n");
}
return 0;
}
static void freq_mitigation_init(void)
{
uint32_t cpu = 0;
struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL;
if (freq_mitigation_task)
return;
if (!freq_mitigation_enabled)
goto init_freq_thread;
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.freq_mitig_control_mask & BIT(cpu)))
continue;
hi_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_HIGH];
low_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_LOW];
hi_thresh->temp = msm_thermal_info.freq_mitig_temp_degc;
hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI;
low_thresh->temp = msm_thermal_info.freq_mitig_temp_degc -
msm_thermal_info.freq_mitig_temp_hysteresis_degc;
low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW;
hi_thresh->notify = low_thresh->notify =
freq_mitigation_notify;
hi_thresh->data = low_thresh->data = (void *)&cpus[cpu];
set_threshold(cpus[cpu].sensor_id, hi_thresh);
}
init_freq_thread:
init_completion(&freq_mitigation_complete);
freq_mitigation_task = kthread_run(do_freq_mitigation, NULL,
"msm_thermal:freq_mitig");
if (IS_ERR(freq_mitigation_task)) {
pr_err("Failed to create frequency mitigation thread. err:%ld\n",
PTR_ERR(freq_mitigation_task));
return;
}
}
int msm_thermal_set_frequency(uint32_t cpu, uint32_t freq, bool is_max)
{
int ret = 0;
if (cpu >= num_possible_cpus()) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto set_freq_exit;
}
pr_debug("Userspace requested %s frequency %u for CPU%u\n",
(is_max) ? "Max" : "Min", freq, cpu);
if (is_max) {
if (cpus[cpu].user_max_freq == freq)
goto set_freq_exit;
cpus[cpu].user_max_freq = freq;
} else {
if (cpus[cpu].user_min_freq == freq)
goto set_freq_exit;
cpus[cpu].user_min_freq = freq;
}
if (freq_mitigation_task) {
complete(&freq_mitigation_complete);
} else {
pr_err("Frequency mitigation task is not initialized\n");
ret = -ESRCH;
goto set_freq_exit;
}
set_freq_exit:
return ret;
}
int therm_set_threshold(struct threshold_info *thresh_inp)
{
int ret = 0, i = 0, err = 0;
struct therm_threshold *thresh_ptr;
if (!thresh_inp) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto therm_set_exit;
}
thresh_inp->thresh_triggered = false;
for (i = 0; i < thresh_inp->thresh_ct; i++) {
thresh_ptr = &thresh_inp->thresh_list[i];
thresh_ptr->trip_triggered = -1;
err = set_threshold(thresh_ptr->sensor_id,
thresh_ptr->threshold);
if (err) {
ret = err;
err = 0;
}
}
therm_set_exit:
return ret;
}
static void vdd_restriction_notify(struct therm_threshold *trig_thresh)
{
int ret = 0;
static uint32_t vdd_sens_status;
if (!vdd_rstr_enabled)
return;
if (!trig_thresh) {
pr_err("Invalid input\n");
return;
}
if (trig_thresh->trip_triggered < 0)
goto set_and_exit;
mutex_lock(&vdd_rstr_mutex);
pr_debug("sensor:%d reached %s thresh for Vdd restriction\n",
tsens_id_map[trig_thresh->sensor_id],
(trig_thresh->trip_triggered == THERMAL_TRIP_CONFIGURABLE_HI) ?
"high" : "low");
switch (trig_thresh->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (vdd_sens_status & BIT(trig_thresh->sensor_id))
vdd_sens_status ^= BIT(trig_thresh->sensor_id);
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
vdd_sens_status |= BIT(trig_thresh->sensor_id);
break;
default:
pr_err("Unsupported trip type\n");
goto unlock_and_exit;
break;
}
ret = vdd_restriction_apply_all((vdd_sens_status) ? 1 : 0);
if (ret) {
pr_err("%s vdd rstr votlage for all failed\n",
(vdd_sens_status) ?
"Enable" : "Disable");
goto unlock_and_exit;
}
unlock_and_exit:
mutex_unlock(&vdd_rstr_mutex);
set_and_exit:
set_threshold(trig_thresh->sensor_id, trig_thresh->threshold);
return;
}
static __ref int do_thermal_monitor(void *data)
{
int ret = 0, i, j;
struct therm_threshold *sensor_list;
while (!kthread_should_stop()) {
while (wait_for_completion_interruptible(
&thermal_monitor_complete) != 0)
;
INIT_COMPLETION(thermal_monitor_complete);
for (i = 0; i < MSM_LIST_MAX_NR; i++) {
if (!thresh[i].thresh_triggered)
continue;
thresh[i].thresh_triggered = false;
for (j = 0; j < thresh[i].thresh_ct; j++) {
sensor_list = &thresh[i].thresh_list[j];
if (sensor_list->trip_triggered < 0)
continue;
sensor_list->notify(sensor_list);
sensor_list->trip_triggered = -1;
}
}
}
return ret;
}
static void thermal_monitor_init(void)
{
if (thermal_monitor_task)
return;
init_completion(&thermal_monitor_complete);
thermal_monitor_task = kthread_run(do_thermal_monitor, NULL,
"msm_thermal:therm_monitor");
if (IS_ERR(thermal_monitor_task)) {
pr_err("Failed to create thermal monitor thread. err:%ld\n",
PTR_ERR(thermal_monitor_task));
goto init_exit;
}
if (therm_reset_enabled)
therm_set_threshold(&thresh[MSM_THERM_RESET]);
if (vdd_rstr_enabled)
therm_set_threshold(&thresh[MSM_VDD_RESTRICTION]);
init_exit:
return;
}
static int msm_thermal_notify(enum thermal_trip_type type, int temp, void *data)
{
struct therm_threshold *thresh_data = (struct therm_threshold *)data;
if (thermal_monitor_task) {
thresh_data->trip_triggered = type;
thresh_data->parent->thresh_triggered = true;
complete(&thermal_monitor_complete);
} else {
pr_err("Thermal monitor task is not initialized\n");
}
return 0;
}
static int init_threshold(enum msm_thresh_list index,
int sensor_id, int32_t hi_temp, int32_t low_temp,
void (*callback)(struct therm_threshold *))
{
int ret = 0, i;
struct therm_threshold *thresh_ptr;
if (!callback || index >= MSM_LIST_MAX_NR || index < 0
|| sensor_id == -ENODEV) {
pr_err("Invalid input. sensor:%d. index:%d\n",
sensor_id, index);
ret = -EINVAL;
goto init_thresh_exit;
}
if (thresh[index].thresh_list) {
pr_err("threshold id:%d already initialized\n", index);
ret = -EEXIST;
goto init_thresh_exit;
}
thresh[index].thresh_ct = (sensor_id == MONITOR_ALL_TSENS) ?
max_tsens_num : 1;
thresh[index].thresh_triggered = false;
thresh[index].thresh_list = kzalloc(sizeof(struct therm_threshold) *
thresh[index].thresh_ct, GFP_KERNEL);
if (!thresh[index].thresh_list) {
pr_err("kzalloc failed for thresh index:%d\n", index);
ret = -ENOMEM;
goto init_thresh_exit;
}
thresh_ptr = thresh[index].thresh_list;
if (sensor_id == MONITOR_ALL_TSENS) {
for (i = 0; i < max_tsens_num; i++) {
thresh_ptr[i].sensor_id = tsens_id_map[i];
thresh_ptr[i].notify = callback;
thresh_ptr[i].trip_triggered = -1;
thresh_ptr[i].parent = &thresh[index];
thresh_ptr[i].threshold[0].temp = hi_temp;
thresh_ptr[i].threshold[0].trip =
THERMAL_TRIP_CONFIGURABLE_HI;
thresh_ptr[i].threshold[1].temp = low_temp;
thresh_ptr[i].threshold[1].trip =
THERMAL_TRIP_CONFIGURABLE_LOW;
thresh_ptr[i].threshold[0].notify =
thresh_ptr[i].threshold[1].notify = msm_thermal_notify;
thresh_ptr[i].threshold[0].data =
thresh_ptr[i].threshold[1].data =
(void *)&thresh_ptr[i];
}
} else {
thresh_ptr->sensor_id = sensor_id;
thresh_ptr->notify = callback;
thresh_ptr->trip_triggered = -1;
thresh_ptr->parent = &thresh[index];
thresh_ptr->threshold[0].temp = hi_temp;
thresh_ptr->threshold[0].trip =
THERMAL_TRIP_CONFIGURABLE_HI;
thresh_ptr->threshold[1].temp = low_temp;
thresh_ptr->threshold[1].trip =
THERMAL_TRIP_CONFIGURABLE_LOW;
thresh_ptr->threshold[0].notify =
thresh_ptr->threshold[1].notify = msm_thermal_notify;
thresh_ptr->threshold[0].data =
thresh_ptr->threshold[1].data = (void *)thresh_ptr;
}
init_thresh_exit:
return ret;
}
/*
* We will reset the cpu frequencies limits here. The core online/offline
* status will be carried over to the process stopping the msm_thermal, as
* we dont want to online a core and bring in the thermal issues.
*/
static void __ref disable_msm_thermal(void)
{
uint32_t cpu = 0;
/* make sure check_temp is no longer running */
cancel_delayed_work_sync(&check_temp_work);
get_online_cpus();
for_each_possible_cpu(cpu) {
if (cpus[cpu].limited_max_freq == UINT_MAX &&
cpus[cpu].limited_min_freq == 0)
continue;
pr_info("Max frequency reset for CPU%d\n", cpu);
cpus[cpu].limited_max_freq = UINT_MAX;
cpus[cpu].limited_min_freq = 0;
update_cpu_freq(cpu);
}
put_online_cpus();
}
static void interrupt_mode_init(void)
{
if (!msm_thermal_probed) {
interrupt_mode_enable = true;
return;
}
if (polling_enabled) {
pr_info("Interrupt mode init\n");
polling_enabled = 0;
disable_msm_thermal();
hotplug_init();
freq_mitigation_init();
thermal_monitor_init();
}
}
static int __ref set_enabled(const char *val, const struct kernel_param *kp)
{
int ret = 0;
ret = param_set_bool(val, kp);
if (!enabled)
interrupt_mode_init();
else
pr_info("no action for enabled = %d\n",
enabled);
pr_info("enabled = %d\n", enabled);
return ret;
}
static struct kernel_param_ops module_ops = {
.set = set_enabled,
.get = param_get_bool,
};
module_param_cb(enabled, &module_ops, &enabled, 0644);
MODULE_PARM_DESC(enabled, "enforce thermal limit on cpu");
static ssize_t show_cc_enabled(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", core_control_enabled);
}
static ssize_t __ref store_cc_enabled(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s. err:%d\n", buf, ret);
goto done_store_cc;
}
if (core_control_enabled == !!val)
goto done_store_cc;
core_control_enabled = !!val;
if (core_control_enabled) {
pr_info("Core control enabled\n");
register_cpu_notifier(&msm_thermal_cpu_notifier);
if (hotplug_task)
complete(&hotplug_notify_complete);
else
pr_err("Hotplug task is not initialized\n");
} else {
pr_info("Core control disabled\n");
unregister_cpu_notifier(&msm_thermal_cpu_notifier);
}
done_store_cc:
return count;
}
static ssize_t show_cpus_offlined(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", cpus_offlined);
}
static ssize_t __ref store_cpus_offlined(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
uint32_t val = 0;
uint32_t cpu;
mutex_lock(&core_control_mutex);
ret = kstrtouint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s. err:%d\n", buf, ret);
goto done_cc;
}
if (polling_enabled) {
pr_err("Ignoring request; polling thread is enabled.\n");
goto done_cc;
}
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.core_control_mask & BIT(cpu)))
continue;
cpus[cpu].user_offline = !!(val & BIT(cpu));
pr_debug("\"%s\"(PID:%i) requests %s CPU%d.\n", current->comm,
current->pid, (cpus[cpu].user_offline) ? "offline" :
"online", cpu);
}
if (hotplug_task)
complete(&hotplug_notify_complete);
else
pr_err("Hotplug task is not initialized\n");
done_cc:
mutex_unlock(&core_control_mutex);
return count;
}
static __refdata struct kobj_attribute cc_enabled_attr =
__ATTR(enabled, 0644, show_cc_enabled, store_cc_enabled);
static __refdata struct kobj_attribute cpus_offlined_attr =
__ATTR(cpus_offlined, 0644, show_cpus_offlined, store_cpus_offlined);
static __refdata struct attribute *cc_attrs[] = {
&cc_enabled_attr.attr,
&cpus_offlined_attr.attr,
NULL,
};
static __refdata struct attribute_group cc_attr_group = {
.attrs = cc_attrs,
};
static ssize_t show_wakeup_ms(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", wakeup_ms);
}
static ssize_t store_wakeup_ms(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret;
ret = kstrtouint(buf, 10, &wakeup_ms);
if (ret) {
pr_err("%s: Trying to set invalid wakeup timer\n",
KBUILD_MODNAME);
return ret;
}
if (wakeup_ms > 0) {
thermal_rtc_setup();
pr_debug("%s: Timer started for %ums\n", KBUILD_MODNAME,
wakeup_ms);
} else {
ret = alarm_cancel(&thermal_rtc);
if (ret)
pr_debug("%s: Timer canceled\n", KBUILD_MODNAME);
else
pr_debug("%s: No active timer present to cancel\n",
KBUILD_MODNAME);
}
return count;
}
static __refdata struct kobj_attribute timer_attr =
__ATTR(wakeup_ms, 0644, show_wakeup_ms, store_wakeup_ms);
static __refdata struct attribute *tt_attrs[] = {
&timer_attr.attr,
NULL,
};
static __refdata struct attribute_group tt_attr_group = {
.attrs = tt_attrs,
};
static __init int msm_thermal_add_cc_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
ret = -ENOENT;
goto done_cc_nodes;
}
cc_kobj = kobject_create_and_add("core_control", module_kobj);
if (!cc_kobj) {
pr_err("cannot create core control kobj\n");
ret = -ENOMEM;
goto done_cc_nodes;
}
ret = sysfs_create_group(cc_kobj, &cc_attr_group);
if (ret) {
pr_err("cannot create sysfs group. err:%d\n", ret);
goto done_cc_nodes;
}
return 0;
done_cc_nodes:
if (cc_kobj)
kobject_del(cc_kobj);
return ret;
}
static __init int msm_thermal_add_timer_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module\n",
KBUILD_MODNAME);
ret = -ENOENT;
goto failed;
}
tt_kobj = kobject_create_and_add("thermal_timer", module_kobj);
if (!tt_kobj) {
pr_err("%s: cannot create timer kobj\n",
KBUILD_MODNAME);
ret = -ENOMEM;
goto failed;
}
ret = sysfs_create_group(tt_kobj, &tt_attr_group);
if (ret) {
pr_err("%s: cannot create group\n", KBUILD_MODNAME);
goto failed;
}
return 0;
failed:
if (tt_kobj)
kobject_del(tt_kobj);
return ret;
}
int msm_thermal_pre_init(void)
{
int ret = 0;
tsens_get_max_sensor_num(&max_tsens_num);
if (create_sensor_id_map()) {
pr_err("Creating sensor id map failed\n");
ret = -EINVAL;
goto pre_init_exit;
}
if (!thresh) {
thresh = kzalloc(
sizeof(struct threshold_info) * MSM_LIST_MAX_NR,
GFP_KERNEL);
if (!thresh) {
pr_err("kzalloc failed\n");
ret = -ENOMEM;
goto pre_init_exit;
}
memset(thresh, 0, sizeof(struct threshold_info) *
MSM_LIST_MAX_NR);
}
pre_init_exit:
return ret;
}
int msm_thermal_init(struct msm_thermal_data *pdata)
{
int ret = 0;
uint32_t cpu;
for_each_possible_cpu(cpu) {
cpus[cpu].cpu = cpu;
cpus[cpu].offline = 0;
cpus[cpu].user_offline = 0;
cpus[cpu].hotplug_thresh_clear = false;
cpus[cpu].max_freq = false;
cpus[cpu].user_max_freq = UINT_MAX;
cpus[cpu].user_min_freq = 0;
cpus[cpu].limited_max_freq = UINT_MAX;
cpus[cpu].limited_min_freq = 0;
cpus[cpu].freq_thresh_clear = false;
}
BUG_ON(!pdata);
memcpy(&msm_thermal_info, pdata, sizeof(struct msm_thermal_data));
if (check_sensor_id(msm_thermal_info.sensor_id)) {
pr_err("Invalid sensor:%d for polling\n",
msm_thermal_info.sensor_id);
return -EINVAL;
}
enabled = 1;
polling_enabled = 1;
ret = cpufreq_register_notifier(&msm_thermal_cpufreq_notifier,
CPUFREQ_POLICY_NOTIFIER);
if (ret)
pr_err("cannot register cpufreq notifier. err:%d\n", ret);
INIT_DELAYED_WORK(&check_temp_work, check_temp);
schedule_delayed_work(&check_temp_work, 0);
if (num_possible_cpus() > 1)
register_cpu_notifier(&msm_thermal_cpu_notifier);
return ret;
}
static int ocr_reg_init(struct platform_device *pdev)
{
int ret = 0;
int i, j;
for (i = 0; i < ocr_rail_cnt; i++) {
/* Check if vdd_restriction has already initialized any
* regualtor handle. If so use the same handle.*/
for (j = 0; j < rails_cnt; j++) {
if (!strcmp(ocr_rails[i].name, rails[j].name)) {
if (rails[j].reg == NULL)
break;
ocr_rails[i].phase_reg = rails[j].reg;
goto reg_init;
}
}
ocr_rails[i].phase_reg = devm_regulator_get(&pdev->dev,
ocr_rails[i].name);
if (IS_ERR_OR_NULL(ocr_rails[i].phase_reg)) {
ret = PTR_ERR(ocr_rails[i].phase_reg);
if (ret != -EPROBE_DEFER) {
pr_err("%s, could not get regulator: %s\n",
__func__, ocr_rails[i].name);
ocr_rails[i].phase_reg = NULL;
ocr_rails[i].mode = 0;
ocr_rails[i].init = 0;
}
return ret;
}
reg_init:
ocr_rails[i].mode = OPTIMUM_CURRENT_MIN;
}
return ret;
}
static int vdd_restriction_reg_init(struct platform_device *pdev)
{
int ret = 0;
int i;
for (i = 0; i < rails_cnt; i++) {
if (rails[i].freq_req == 1) {
usefreq |= BIT(i);
check_freq_table();
/*
* Restrict frequency by default until we have made
* our first temp reading
*/
if (freq_table_get)
ret = vdd_restriction_apply_freq(&rails[i], 0);
else
pr_info("Defer vdd rstr freq init.\n");
} else {
rails[i].reg = devm_regulator_get(&pdev->dev,
rails[i].name);
if (IS_ERR_OR_NULL(rails[i].reg)) {
ret = PTR_ERR(rails[i].reg);
if (ret != -EPROBE_DEFER) {
pr_err( \
"could not get regulator: %s. err:%d\n",
rails[i].name, ret);
rails[i].reg = NULL;
rails[i].curr_level = -2;
return ret;
}
pr_info("Defer regulator %s probe\n",
rails[i].name);
return ret;
}
/*
* Restrict votlage by default until we have made
* our first temp reading
*/
ret = vdd_restriction_apply_voltage(&rails[i], 0);
}
}
return ret;
}
static int psm_reg_init(struct platform_device *pdev)
{
int ret = 0;
int i = 0;
int j = 0;
for (i = 0; i < psm_rails_cnt; i++) {
psm_rails[i].reg = rpm_regulator_get(&pdev->dev,
psm_rails[i].name);
if (IS_ERR_OR_NULL(psm_rails[i].reg)) {
ret = PTR_ERR(psm_rails[i].reg);
if (ret != -EPROBE_DEFER) {
pr_err("couldn't get rpm regulator %s. err%d\n",
psm_rails[i].name, ret);
psm_rails[i].reg = NULL;
goto psm_reg_exit;
}
pr_info("Defer regulator %s probe\n",
psm_rails[i].name);
return ret;
}
/* Apps default vote for PWM mode */
psm_rails[i].init = PMIC_PWM_MODE;
ret = rpm_regulator_set_mode(psm_rails[i].reg,
psm_rails[i].init);
if (ret) {
pr_err("Cannot set PMIC PWM mode. err:%d\n", ret);
return ret;
} else
psm_rails[i].mode = PMIC_PWM_MODE;
}
return ret;
psm_reg_exit:
if (ret) {
for (j = 0; j < i; j++) {
if (psm_rails[j].reg != NULL)
rpm_regulator_put(psm_rails[j].reg);
}
}
return ret;
}
static struct kobj_attribute default_cpu_temp_limit_attr =
__ATTR_RO(default_cpu_temp_limit);
static int msm_thermal_add_default_temp_limit_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
if (!default_temp_limit_probed) {
default_temp_limit_nodes_called = true;
return ret;
}
if (!default_temp_limit_enabled)
return ret;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
return -ENOENT;
}
sysfs_attr_init(&default_cpu_temp_limit_attr.attr);
ret = sysfs_create_file(module_kobj, &default_cpu_temp_limit_attr.attr);
if (ret) {
pr_err(
"cannot create default_cpu_temp_limit attribute. err:%d\n",
ret);
return ret;
}
return ret;
}
static int msm_thermal_add_vdd_rstr_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *vdd_rstr_kobj = NULL;
struct kobject *vdd_rstr_reg_kobj[MAX_RAILS] = {0};
int rc = 0;
int i = 0;
if (!vdd_rstr_probed) {
vdd_rstr_nodes_called = true;
return rc;
}
if (vdd_rstr_probed && rails_cnt == 0)
return rc;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
rc = -ENOENT;
goto thermal_sysfs_add_exit;
}
vdd_rstr_kobj = kobject_create_and_add("vdd_restriction", module_kobj);
if (!vdd_rstr_kobj) {
pr_err("cannot create vdd_restriction kobject\n");
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
rc = sysfs_create_group(vdd_rstr_kobj, &vdd_rstr_en_attribs_gp);
if (rc) {
pr_err("cannot create kobject attribute group. err:%d\n", rc);
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
for (i = 0; i < rails_cnt; i++) {
vdd_rstr_reg_kobj[i] = kobject_create_and_add(rails[i].name,
vdd_rstr_kobj);
if (!vdd_rstr_reg_kobj[i]) {
pr_err("cannot create kobject for %s\n",
rails[i].name);
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
rails[i].attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 3,
GFP_KERNEL);
if (!rails[i].attr_gp.attrs) {
pr_err("kzalloc failed\n");
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
VDD_RES_RW_ATTRIB(rails[i], rails[i].level_attr, 0, level);
VDD_RES_RO_ATTRIB(rails[i], rails[i].value_attr, 1, value);
rails[i].attr_gp.attrs[2] = NULL;
rc = sysfs_create_group(vdd_rstr_reg_kobj[i],
&rails[i].attr_gp);
if (rc) {
pr_err("cannot create attribute group for %s. err:%d\n",
rails[i].name, rc);
goto thermal_sysfs_add_exit;
}
}
return rc;
thermal_sysfs_add_exit:
if (rc) {
for (i = 0; i < rails_cnt; i++) {
kobject_del(vdd_rstr_reg_kobj[i]);
kfree(rails[i].attr_gp.attrs);
}
if (vdd_rstr_kobj)
kobject_del(vdd_rstr_kobj);
}
return rc;
}
static int msm_thermal_add_ocr_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *ocr_kobj = NULL;
struct kobject *ocr_reg_kobj[MAX_RAILS] = {0};
int rc = 0;
int i = 0;
if (!ocr_probed) {
ocr_nodes_called = true;
return rc;
}
if (ocr_probed && ocr_rail_cnt == 0)
return rc;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module %s\n",
__func__, KBUILD_MODNAME);
rc = -ENOENT;
goto ocr_node_exit;
}
ocr_kobj = kobject_create_and_add("opt_curr_req", module_kobj);
if (!ocr_kobj) {
pr_err("%s: cannot create ocr kobject\n", KBUILD_MODNAME);
rc = -ENOMEM;
goto ocr_node_exit;
}
for (i = 0; i < ocr_rail_cnt; i++) {
ocr_reg_kobj[i] = kobject_create_and_add(ocr_rails[i].name,
ocr_kobj);
if (!ocr_reg_kobj[i]) {
pr_err("%s: cannot create for kobject for %s\n",
KBUILD_MODNAME, ocr_rails[i].name);
rc = -ENOMEM;
goto ocr_node_exit;
}
ocr_rails[i].attr_gp.attrs = kzalloc( \
sizeof(struct attribute *) * 2, GFP_KERNEL);
if (!ocr_rails[i].attr_gp.attrs) {
rc = -ENOMEM;
goto ocr_node_exit;
}
OCR_RW_ATTRIB(ocr_rails[i], ocr_rails[i].mode_attr, 0, mode);
ocr_rails[i].attr_gp.attrs[1] = NULL;
rc = sysfs_create_group(ocr_reg_kobj[i], &ocr_rails[i].attr_gp);
if (rc) {
pr_err("%s: cannot create attribute group for %s\n",
KBUILD_MODNAME, ocr_rails[i].name);
goto ocr_node_exit;
}
}
ocr_node_exit:
if (rc) {
for (i = 0; i < ocr_rail_cnt; i++) {
if (ocr_reg_kobj[i])
kobject_del(ocr_reg_kobj[i]);
if (ocr_rails[i].attr_gp.attrs) {
kfree(ocr_rails[i].attr_gp.attrs);
ocr_rails[i].attr_gp.attrs = NULL;
}
}
if (ocr_kobj)
kobject_del(ocr_kobj);
}
return rc;
}
static int msm_thermal_add_psm_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *psm_kobj = NULL;
struct kobject *psm_reg_kobj[MAX_RAILS] = {0};
int rc = 0;
int i = 0;
if (!psm_probed) {
psm_nodes_called = true;
return rc;
}
if (psm_probed && psm_rails_cnt == 0)
return rc;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
rc = -ENOENT;
goto psm_node_exit;
}
psm_kobj = kobject_create_and_add("pmic_sw_mode", module_kobj);
if (!psm_kobj) {
pr_err("cannot create psm kobject\n");
rc = -ENOMEM;
goto psm_node_exit;
}
for (i = 0; i < psm_rails_cnt; i++) {
psm_reg_kobj[i] = kobject_create_and_add(psm_rails[i].name,
psm_kobj);
if (!psm_reg_kobj[i]) {
pr_err("cannot create kobject for %s\n",
psm_rails[i].name);
rc = -ENOMEM;
goto psm_node_exit;
}
psm_rails[i].attr_gp.attrs = kzalloc( \
sizeof(struct attribute *) * 2, GFP_KERNEL);
if (!psm_rails[i].attr_gp.attrs) {
pr_err("kzalloc failed\n");
rc = -ENOMEM;
goto psm_node_exit;
}
PSM_RW_ATTRIB(psm_rails[i], psm_rails[i].mode_attr, 0, mode);
psm_rails[i].attr_gp.attrs[1] = NULL;
rc = sysfs_create_group(psm_reg_kobj[i], &psm_rails[i].attr_gp);
if (rc) {
pr_err("cannot create attribute group for %s. err:%d\n",
psm_rails[i].name, rc);
goto psm_node_exit;
}
}
return rc;
psm_node_exit:
if (rc) {
for (i = 0; i < psm_rails_cnt; i++) {
kobject_del(psm_reg_kobj[i]);
kfree(psm_rails[i].attr_gp.attrs);
}
if (psm_kobj)
kobject_del(psm_kobj);
}
return rc;
}
static int probe_vdd_rstr(struct device_node *node,
struct msm_thermal_data *data, struct platform_device *pdev)
{
int ret = 0;
int i = 0;
int arr_size;
char *key = NULL;
struct device_node *child_node = NULL;
rails = NULL;
key = "qcom,vdd-restriction-temp";
ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_degC);
if (ret)
goto read_node_fail;
key = "qcom,vdd-restriction-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_hyst_degC);
if (ret)
goto read_node_fail;
for_each_child_of_node(node, child_node) {
rails_cnt++;
}
if (rails_cnt == 0)
goto read_node_fail;
if (rails_cnt >= MAX_RAILS) {
pr_err("Too many rails:%d.\n", rails_cnt);
return -EFAULT;
}
rails = kzalloc(sizeof(struct rail) * rails_cnt,
GFP_KERNEL);
if (!rails) {
pr_err("Fail to allocate memory for rails.\n");
return -ENOMEM;
}
i = 0;
for_each_child_of_node(node, child_node) {
key = "qcom,vdd-rstr-reg";
ret = of_property_read_string(child_node, key, &rails[i].name);
if (ret)
goto read_node_fail;
key = "qcom,levels";
if (!of_get_property(child_node, key, &arr_size))
goto read_node_fail;
rails[i].num_levels = arr_size/sizeof(__be32);
if (rails[i].num_levels >
sizeof(rails[i].levels)/sizeof(uint32_t)) {
pr_err("Array size:%d too large for index:%d\n",
rails[i].num_levels, i);
return -EFAULT;
}
ret = of_property_read_u32_array(child_node, key,
rails[i].levels, rails[i].num_levels);
if (ret)
goto read_node_fail;
key = "qcom,freq-req";
rails[i].freq_req = of_property_read_bool(child_node, key);
if (rails[i].freq_req)
rails[i].min_level = 0;
else {
key = "qcom,min-level";
ret = of_property_read_u32(child_node, key,
&rails[i].min_level);
if (ret)
goto read_node_fail;
}
rails[i].curr_level = -1;
rails[i].reg = NULL;
i++;
}
if (rails_cnt) {
ret = vdd_restriction_reg_init(pdev);
if (ret) {
pr_err("Err regulator init. err:%d. KTM continues.\n",
ret);
goto read_node_fail;
}
ret = init_threshold(MSM_VDD_RESTRICTION, MONITOR_ALL_TSENS,
data->vdd_rstr_temp_hyst_degC, data->vdd_rstr_temp_degC,
vdd_restriction_notify);
if (ret) {
pr_err("Error in initializing thresholds. err:%d\n",
ret);
goto read_node_fail;
}
vdd_rstr_enabled = true;
}
read_node_fail:
vdd_rstr_probed = true;
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
kfree(rails);
rails_cnt = 0;
}
if (ret == -EPROBE_DEFER)
vdd_rstr_probed = false;
return ret;
}
static int get_efuse_temp_map(struct device_node *node,
int *efuse_values,
int *efuse_temp)
{
uint32_t i, j, efuse_arr_cnt = 0;
int ret = 0, efuse_map_cnt = 0;
uint32_t data[2 * MAX_EFUSE_VALUE];
char *key = "qcom,efuse-temperature-map";
if (!of_get_property(node, key, &efuse_map_cnt)
|| efuse_map_cnt <= 0) {
pr_debug("Property %s not defined.\n", key);
return -ENODEV;
}
if (efuse_map_cnt % (sizeof(__be32) * 2)) {
pr_err("Invalid number(%d) of entry for %s\n",
efuse_map_cnt, key);
return -EINVAL;
}
efuse_arr_cnt = efuse_map_cnt / sizeof(__be32);
ret = of_property_read_u32_array(node, key, data, efuse_arr_cnt);
if (ret)
return -EINVAL;
efuse_map_cnt /= (sizeof(__be32) * 2);
j = 0;
for (i = 0; i < efuse_map_cnt; i++) {
efuse_values[i] = data[j++];
efuse_temp[i] = data[j++];
}
return efuse_map_cnt;
}
static int probe_thermal_efuse_read(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
u64 efuse_bits;
int ret = 0;
int i = 0;
int efuse_map_cnt = 0;
int efuse_data_cnt = 0;
char *key = NULL;
void __iomem *efuse_base = NULL;
uint32_t efuse_data[EFUSE_DATA_MAX] = {0};
uint32_t efuse_values[MAX_EFUSE_VALUE] = {0};
uint32_t efuse_temp[MAX_EFUSE_VALUE] = {0};
uint32_t default_temp = 0;
uint8_t thermal_efuse_data = 0;
if (default_temp_limit_probed)
goto read_efuse_exit;
key = "qcom,default-temp";
if (of_property_read_u32(node, key, &default_temp))
default_temp = 0;
default_cpu_temp_limit = default_temp;
key = "qcom,efuse-data";
if (!of_get_property(node, key, &efuse_data_cnt) ||
efuse_data_cnt <= 0) {
ret = -ENODEV;
goto read_efuse_fail;
}
efuse_data_cnt /= sizeof(__be32);
if (efuse_data_cnt != EFUSE_DATA_MAX) {
pr_err("Invalid number of efuse data. data cnt %d\n",
efuse_data_cnt);
ret = -EINVAL;
goto read_efuse_fail;
}
ret = of_property_read_u32_array(node, key, efuse_data,
efuse_data_cnt);
if (ret)
goto read_efuse_fail;
if (efuse_data[EFUSE_ADDRESS] == 0 ||
efuse_data[EFUSE_SIZE] == 0 ||
efuse_data[EFUSE_BIT_MASK] == 0) {
pr_err("Invalid efuse data: address:%x len:%d bitmask%x\n",
efuse_data[EFUSE_ADDRESS], efuse_data[EFUSE_SIZE],
efuse_data[EFUSE_BIT_MASK]);
ret = -EINVAL;
goto read_efuse_fail;
}
efuse_map_cnt = get_efuse_temp_map(node, efuse_values,
efuse_temp);
if (efuse_map_cnt <= 0 ||
efuse_map_cnt > (efuse_data[EFUSE_BIT_MASK] + 1)) {
pr_err("Invalid efuse-temperature-map. cnt%d\n",
efuse_map_cnt);
ret = -EINVAL;
goto read_efuse_fail;
}
efuse_base = ioremap(efuse_data[EFUSE_ADDRESS], efuse_data[EFUSE_SIZE]);
if (!efuse_base) {
pr_err("Unable to map efuse_addr:%x with size%d\n",
efuse_data[EFUSE_ADDRESS],
efuse_data[EFUSE_SIZE]);
ret = -EINVAL;
goto read_efuse_fail;
}
efuse_bits = readll_relaxed(efuse_base
+ efuse_data[EFUSE_ROW] * BYTES_PER_FUSE_ROW);
thermal_efuse_data = (efuse_bits >> efuse_data[EFUSE_START_BIT]) &
efuse_data[EFUSE_BIT_MASK];
/* Get cpu limit temp from efuse truth table */
for (; i < efuse_map_cnt; i++) {
if (efuse_values[i] == thermal_efuse_data) {
default_cpu_temp_limit = efuse_temp[i];
break;
}
}
if (i >= efuse_map_cnt) {
if (!default_temp) {
pr_err("No matching efuse value. value:%d\n",
thermal_efuse_data);
ret = -EINVAL;
goto read_efuse_fail;
}
}
pr_debug(
"Efuse address:0x%x [row:%d] = 0x%llx @%d:mask:0x%x = 0x%x temp:%d\n",
efuse_data[EFUSE_ADDRESS], efuse_data[EFUSE_ROW], efuse_bits,
efuse_data[EFUSE_START_BIT], efuse_data[EFUSE_BIT_MASK],
thermal_efuse_data, default_cpu_temp_limit);
default_temp_limit_enabled = true;
read_efuse_fail:
if (efuse_base)
iounmap(efuse_base);
default_temp_limit_probed = true;
if (ret) {
if (!default_temp) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. KTM continues\n",
__func__, node->full_name, key);
} else {
default_temp_limit_enabled = true;
pr_debug("Default cpu temp limit is %d\n",
default_cpu_temp_limit);
ret = 0;
}
}
read_efuse_exit:
return ret;
}
static int probe_ocr(struct device_node *node, struct msm_thermal_data *data,
struct platform_device *pdev)
{
int ret = 0;
int j = 0;
char *key = NULL;
if (ocr_probed) {
pr_info("%s: Nodes already probed\n",
__func__);
goto read_ocr_exit;
}
ocr_rails = NULL;
key = "qti,pmic-opt-curr-temp";
ret = of_property_read_u32(node, key, &data->ocr_temp_degC);
if (ret)
goto read_ocr_fail;
key = "qti,pmic-opt-curr-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->ocr_temp_hyst_degC);
if (ret)
goto read_ocr_fail;
key = "qti,pmic-opt-curr-regs";
ocr_rail_cnt = of_property_count_strings(node, key);
ocr_rails = kzalloc(sizeof(struct psm_rail) * ocr_rail_cnt,
GFP_KERNEL);
if (!ocr_rails) {
pr_err("%s: Fail to allocate memory for ocr rails\n", __func__);
ocr_rail_cnt = 0;
return -ENOMEM;
}
for (j = 0; j < ocr_rail_cnt; j++) {
ret = of_property_read_string_index(node, key, j,
&ocr_rails[j].name);
if (ret)
goto read_ocr_fail;
ocr_rails[j].phase_reg = NULL;
ocr_rails[j].init = OPTIMUM_CURRENT_MAX;
}
if (ocr_rail_cnt) {
ret = ocr_reg_init(pdev);
if (ret) {
pr_info("%s:Failed to get regulators. KTM continues.\n",
__func__);
goto read_ocr_fail;
}
ocr_enabled = true;
ocr_nodes_called = false;
/*
* Vote for max optimum current by default until we have made
* our first temp reading
*/
if (ocr_set_mode_all(OPTIMUM_CURRENT_MAX))
pr_err("Set max optimum current failed\n");
}
read_ocr_fail:
ocr_probed = true;
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. KTM continues\n",
__func__, node->full_name, key);
if (ocr_rails)
kfree(ocr_rails);
ocr_rails = NULL;
ocr_rail_cnt = 0;
}
if (ret == -EPROBE_DEFER)
ocr_probed = false;
read_ocr_exit:
return ret;
}
static int probe_psm(struct device_node *node, struct msm_thermal_data *data,
struct platform_device *pdev)
{
int ret = 0;
int j = 0;
char *key = NULL;
psm_rails = NULL;
key = "qcom,pmic-sw-mode-temp";
ret = of_property_read_u32(node, key, &data->psm_temp_degC);
if (ret)
goto read_node_fail;
key = "qcom,pmic-sw-mode-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->psm_temp_hyst_degC);
if (ret)
goto read_node_fail;
key = "qcom,pmic-sw-mode-regs";
psm_rails_cnt = of_property_count_strings(node, key);
psm_rails = kzalloc(sizeof(struct psm_rail) * psm_rails_cnt,
GFP_KERNEL);
if (!psm_rails) {
pr_err("Fail to allocate memory for psm rails\n");
psm_rails_cnt = 0;
return -ENOMEM;
}
for (j = 0; j < psm_rails_cnt; j++) {
ret = of_property_read_string_index(node, key, j,
&psm_rails[j].name);
if (ret)
goto read_node_fail;
}
if (psm_rails_cnt) {
ret = psm_reg_init(pdev);
if (ret) {
pr_err("Err regulator init. err:%d. KTM continues.\n",
ret);
goto read_node_fail;
}
psm_enabled = true;
}
read_node_fail:
psm_probed = true;
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
kfree(psm_rails);
psm_rails_cnt = 0;
}
if (ret == -EPROBE_DEFER)
psm_probed = false;
return ret;
}
static int probe_cc(struct device_node *node, struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
uint32_t cpu_cnt = 0;
int ret = 0;
uint32_t cpu = 0;
if (num_possible_cpus() > 1) {
core_control_enabled = 1;
hotplug_enabled = 1;
}
key = "qcom,core-limit-temp";
ret = of_property_read_u32(node, key, &data->core_limit_temp_degC);
if (ret)
goto read_node_fail;
key = "qcom,core-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->core_temp_hysteresis_degC);
if (ret)
goto read_node_fail;
key = "qcom,core-control-mask";
ret = of_property_read_u32(node, key, &data->core_control_mask);
if (ret)
goto read_node_fail;
key = "qcom,hotplug-temp";
ret = of_property_read_u32(node, key, &data->hotplug_temp_degC);
if (ret)
goto hotplug_node_fail;
key = "qcom,hotplug-temp-hysteresis";
ret = of_property_read_u32(node, key,
&data->hotplug_temp_hysteresis_degC);
if (ret)
goto hotplug_node_fail;
key = "qcom,cpu-sensors";
cpu_cnt = of_property_count_strings(node, key);
if (cpu_cnt < num_possible_cpus()) {
pr_err("Wrong number of cpu sensors:%d\n", cpu_cnt);
ret = -EINVAL;
goto hotplug_node_fail;
}
for_each_possible_cpu(cpu) {
ret = of_property_read_string_index(node, key, cpu,
&cpus[cpu].sensor_type);
if (ret)
goto hotplug_node_fail;
}
read_node_fail:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
core_control_enabled = 0;
}
return ret;
hotplug_node_fail:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
hotplug_enabled = 0;
}
return ret;
}
static int probe_therm_reset(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
int ret = 0;
key = "qcom,therm-reset-temp";
ret = of_property_read_u32(node, key, &data->therm_reset_temp_degC);
if (ret)
goto PROBE_RESET_EXIT;
ret = init_threshold(MSM_THERM_RESET, MONITOR_ALL_TSENS,
data->therm_reset_temp_degC, data->therm_reset_temp_degC - 10,
therm_reset_notify);
if (ret) {
pr_err("Therm reset data structure init failed\n");
goto PROBE_RESET_EXIT;
}
therm_reset_enabled = true;
PROBE_RESET_EXIT:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
therm_reset_enabled = false;
}
return ret;
}
static int probe_freq_mitigation(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
int ret = 0;
key = "qcom,freq-mitigation-temp";
ret = of_property_read_u32(node, key, &data->freq_mitig_temp_degc);
if (ret)
goto PROBE_FREQ_EXIT;
key = "qcom,freq-mitigation-temp-hysteresis";
ret = of_property_read_u32(node, key,
&data->freq_mitig_temp_hysteresis_degc);
if (ret)
goto PROBE_FREQ_EXIT;
key = "qcom,freq-mitigation-value";
ret = of_property_read_u32(node, key, &data->freq_limit);
if (ret)
goto PROBE_FREQ_EXIT;
key = "qcom,freq-mitigation-control-mask";
ret = of_property_read_u32(node, key, &data->freq_mitig_control_mask);
if (ret)
goto PROBE_FREQ_EXIT;
freq_mitigation_enabled = 1;
PROBE_FREQ_EXIT:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
freq_mitigation_enabled = 0;
}
return ret;
}
static int __devinit msm_thermal_dev_probe(struct platform_device *pdev)
{
int ret = 0;
char *key = NULL;
struct device_node *node = pdev->dev.of_node;
struct msm_thermal_data data;
memset(&data, 0, sizeof(struct msm_thermal_data));
ret = msm_thermal_pre_init();
if (ret) {
pr_err("thermal pre init failed. err:%d\n", ret);
goto fail;
}
key = "qcom,sensor-id";
ret = of_property_read_u32(node, key, &data.sensor_id);
if (ret)
goto fail;
key = "qcom,poll-ms";
ret = of_property_read_u32(node, key, &data.poll_ms);
if (ret)
goto fail;
key = "qcom,limit-temp";
ret = of_property_read_u32(node, key, &data.limit_temp_degC);
if (ret)
goto fail;
key = "qcom,temp-hysteresis";
ret = of_property_read_u32(node, key, &data.temp_hysteresis_degC);
if (ret)
goto fail;
key = "qcom,freq-step";
ret = of_property_read_u32(node, key, &data.bootup_freq_step);
if (ret)
goto fail;
key = "qcom,freq-control-mask";
ret = of_property_read_u32(node, key, &data.bootup_freq_control_mask);
ret = probe_cc(node, &data, pdev);
ret = probe_freq_mitigation(node, &data, pdev);
ret = probe_therm_reset(node, &data, pdev);
/*
* Probe optional properties below. Call probe_psm before
* probe_vdd_rstr because rpm_regulator_get has to be called
* before devm_regulator_get
* probe_ocr should be called after probe_vdd_rstr to reuse the
* regualtor handle. calling devm_regulator_get more than once
* will fail.
*/
ret = probe_psm(node, &data, pdev);
if (ret == -EPROBE_DEFER)
goto fail;
ret = probe_vdd_rstr(node, &data, pdev);
if (ret == -EPROBE_DEFER)
goto fail;
ret = probe_ocr(node, &data, pdev);
if (ret == -EPROBE_DEFER)
goto fail;
probe_thermal_efuse_read(node, &data, pdev);
/*
* In case sysfs add nodes get called before probe function.
* Need to make sure sysfs node is created again
*/
if (psm_nodes_called) {
msm_thermal_add_psm_nodes();
psm_nodes_called = false;
}
if (vdd_rstr_nodes_called) {
msm_thermal_add_vdd_rstr_nodes();
vdd_rstr_nodes_called = false;
}
if (ocr_nodes_called) {
msm_thermal_add_ocr_nodes();
ocr_nodes_called = false;
}
if (default_temp_limit_nodes_called) {
msm_thermal_add_default_temp_limit_nodes();
default_temp_limit_nodes_called = false;
}
msm_thermal_ioctl_init();
ret = msm_thermal_init(&data);
msm_thermal_probed = true;
if (interrupt_mode_enable) {
interrupt_mode_init();
interrupt_mode_enable = false;
}
return ret;
fail:
if (ret)
pr_err("Failed reading node=%s, key=%s. err:%d\n",
node->full_name, key, ret);
return ret;
}
static int msm_thermal_dev_exit(struct platform_device *inp_dev)
{
msm_thermal_ioctl_cleanup();
if (thresh) {
if (vdd_rstr_enabled)
kfree(thresh[MSM_VDD_RESTRICTION].thresh_list);
kfree(thresh);
thresh = NULL;
}
return 0;
}
static struct of_device_id msm_thermal_match_table[] = {
{.compatible = "qcom,msm-thermal"},
{},
};
static struct platform_driver msm_thermal_device_driver = {
.probe = msm_thermal_dev_probe,
.driver = {
.name = "msm-thermal",
.owner = THIS_MODULE,
.of_match_table = msm_thermal_match_table,
},
.remove = msm_thermal_dev_exit,
};
int __init msm_thermal_device_init(void)
{
return platform_driver_register(&msm_thermal_device_driver);
}
int __init msm_thermal_late_init(void)
{
if (num_possible_cpus() > 1)
msm_thermal_add_cc_nodes();
msm_thermal_add_psm_nodes();
msm_thermal_add_vdd_rstr_nodes();
msm_thermal_add_ocr_nodes();
msm_thermal_add_default_temp_limit_nodes();
alarm_init(&thermal_rtc, ANDROID_ALARM_ELAPSED_REALTIME_WAKEUP,
thermal_rtc_callback);
INIT_WORK(&timer_work, timer_work_fn);
msm_thermal_add_timer_nodes();
interrupt_mode_init();
return 0;
}
late_initcall(msm_thermal_late_init);