blob: 439b1f80ab203a3c3abd224bd8c9689142821caa [file] [log] [blame]
/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/wcnss_wlan.h>
#include <linux/platform_data/qcom_wcnss_device.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/gpio.h>
#include <linux/wakelock.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/clk.h>
#include <linux/ratelimit.h>
#include <mach/msm_smd.h>
#include <mach/msm_iomap.h>
#include <mach/subsystem_restart.h>
#ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
#include "wcnss_prealloc.h"
#endif
#define DEVICE "wcnss_wlan"
#define VERSION "1.01"
#define WCNSS_PIL_DEVICE "wcnss"
/* module params */
#define WCNSS_CONFIG_UNSPECIFIED (-1)
static int has_48mhz_xo = WCNSS_CONFIG_UNSPECIFIED;
module_param(has_48mhz_xo, int, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(has_48mhz_xo, "Is an external 48 MHz XO present");
static DEFINE_SPINLOCK(reg_spinlock);
#define MSM_RIVA_PHYS 0x03204000
#define MSM_PRONTO_PHYS 0xfb21b000
#define RIVA_SPARE_OFFSET 0x0b4
#define RIVA_SUSPEND_BIT BIT(24)
#define MSM_RIVA_CCU_BASE 0x03200800
#define CCU_INVALID_ADDR_OFFSET 0x100
#define CCU_LAST_ADDR0_OFFSET 0x104
#define CCU_LAST_ADDR1_OFFSET 0x108
#define CCU_LAST_ADDR2_OFFSET 0x10c
#define MSM_PRONTO_A2XB_BASE 0xfb100400
#define A2XB_CFG_OFFSET 0x00
#define A2XB_INT_SRC_OFFSET 0x0c
#define A2XB_ERR_INFO_OFFSET 0x1c
#define WCNSS_CTRL_CHANNEL "WCNSS_CTRL"
#define WCNSS_MAX_FRAME_SIZE 500
#define WCNSS_VERSION_LEN 30
/* message types */
#define WCNSS_CTRL_MSG_START 0x01000000
#define WCNSS_VERSION_REQ (WCNSS_CTRL_MSG_START + 0)
#define WCNSS_VERSION_RSP (WCNSS_CTRL_MSG_START + 1)
#define WCNSS_NVBIN_DNLD_REQ (WCNSS_CTRL_MSG_START + 2)
#define WCNSS_NVBIN_DNLD_RSP (WCNSS_CTRL_MSG_START + 3)
#define VALID_VERSION(version) \
((strncmp(version, "INVALID", WCNSS_VERSION_LEN)) ? 1 : 0)
struct smd_msg_hdr {
unsigned int msg_type;
unsigned int msg_len;
};
struct wcnss_version {
struct smd_msg_hdr hdr;
unsigned char major;
unsigned char minor;
unsigned char version;
unsigned char revision;
};
#define NVBIN_FILE "wlan/prima/WCNSS_qcom_wlan_nv.bin"
/*
* On SMD channel 4K of maximum data can be transferred, including message
* header, so NV fragment size as next multiple of 1Kb is 3Kb.
*/
#define NV_FRAGMENT_SIZE 3072
/* Macro to find the total number fragments of the NV bin Image */
#define TOTALFRAGMENTS(x) (((x % NV_FRAGMENT_SIZE) == 0) ? \
(x / NV_FRAGMENT_SIZE) : ((x / NV_FRAGMENT_SIZE) + 1))
struct nvbin_dnld_req_params {
/*
* Fragment sequence number of the NV bin Image. NV Bin Image
* might not fit into one message due to size limitation of
* the SMD channel FIFO so entire NV blob is chopped into
* multiple fragments starting with seqeunce number 0. The
* last fragment is indicated by marking is_last_fragment field
* to 1. At receiving side, NV blobs would be concatenated
* together without any padding bytes in between.
*/
unsigned short frag_number;
/*
* When set to 1 it indicates that no more fragments will
* be sent. Receiver shall send back response message after
* the last fragment.
*/
unsigned short is_last_fragment;
/* NV Image size (number of bytes) */
unsigned int nvbin_buffer_size;
/*
* Following the 'nvbin_buffer_size', there should be
* nvbin_buffer_size bytes of NV bin Image i.e.
* uint8[nvbin_buffer_size].
*/
};
struct nvbin_dnld_req_msg {
/*
* Note: The length specified in nvbin_dnld_req_msg messages
* should be hdr.msg_len = sizeof(nvbin_dnld_req_msg) +
* nvbin_buffer_size.
*/
struct smd_msg_hdr hdr;
struct nvbin_dnld_req_params dnld_req_params;
};
static struct {
struct platform_device *pdev;
void *pil;
struct resource *mmio_res;
struct resource *tx_irq_res;
struct resource *rx_irq_res;
struct resource *gpios_5wire;
const struct dev_pm_ops *pm_ops;
int triggered;
int smd_channel_ready;
smd_channel_t *smd_ch;
unsigned char wcnss_version[WCNSS_VERSION_LEN];
unsigned int serial_number;
int thermal_mitigation;
enum wcnss_hw_type wcnss_hw_type;
void (*tm_notify)(struct device *, int);
struct wcnss_wlan_config wlan_config;
struct delayed_work wcnss_work;
struct work_struct wcnssctrl_version_work;
struct work_struct wcnssctrl_nvbin_dnld_work;
struct work_struct wcnssctrl_rx_work;
struct wake_lock wcnss_wake_lock;
void __iomem *msm_wcnss_base;
void __iomem *riva_ccu_base;
void __iomem *pronto_a2xb_base;
} *penv = NULL;
static ssize_t wcnss_serial_number_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!penv)
return -ENODEV;
return scnprintf(buf, PAGE_SIZE, "%08X\n", penv->serial_number);
}
static ssize_t wcnss_serial_number_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int value;
if (!penv)
return -ENODEV;
if (sscanf(buf, "%08X", &value) != 1)
return -EINVAL;
penv->serial_number = value;
return count;
}
static DEVICE_ATTR(serial_number, S_IRUSR | S_IWUSR,
wcnss_serial_number_show, wcnss_serial_number_store);
static ssize_t wcnss_thermal_mitigation_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!penv)
return -ENODEV;
return scnprintf(buf, PAGE_SIZE, "%u\n", penv->thermal_mitigation);
}
static ssize_t wcnss_thermal_mitigation_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int value;
if (!penv)
return -ENODEV;
if (sscanf(buf, "%d", &value) != 1)
return -EINVAL;
penv->thermal_mitigation = value;
if (penv->tm_notify)
(penv->tm_notify)(dev, value);
return count;
}
static DEVICE_ATTR(thermal_mitigation, S_IRUSR | S_IWUSR,
wcnss_thermal_mitigation_show, wcnss_thermal_mitigation_store);
static ssize_t wcnss_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (!penv)
return -ENODEV;
return scnprintf(buf, PAGE_SIZE, "%s", penv->wcnss_version);
}
static DEVICE_ATTR(wcnss_version, S_IRUSR,
wcnss_version_show, NULL);
/* wcnss_reset_intr() is invoked when host drivers fails to
* communicate with WCNSS over SMD; so logging these registers
* helps to know WCNSS failure reason
*/
void wcnss_riva_log_debug_regs(void)
{
void __iomem *ccu_reg;
u32 reg = 0;
ccu_reg = penv->riva_ccu_base + CCU_INVALID_ADDR_OFFSET;
reg = readl_relaxed(ccu_reg);
pr_info_ratelimited("%s: CCU_CCPU_INVALID_ADDR %08x\n", __func__, reg);
ccu_reg = penv->riva_ccu_base + CCU_LAST_ADDR0_OFFSET;
reg = readl_relaxed(ccu_reg);
pr_info_ratelimited("%s: CCU_CCPU_LAST_ADDR0 %08x\n", __func__, reg);
ccu_reg = penv->riva_ccu_base + CCU_LAST_ADDR1_OFFSET;
reg = readl_relaxed(ccu_reg);
pr_info_ratelimited("%s: CCU_CCPU_LAST_ADDR1 %08x\n", __func__, reg);
ccu_reg = penv->riva_ccu_base + CCU_LAST_ADDR2_OFFSET;
reg = readl_relaxed(ccu_reg);
pr_info_ratelimited("%s: CCU_CCPU_LAST_ADDR2 %08x\n", __func__, reg);
}
EXPORT_SYMBOL(wcnss_riva_log_debug_regs);
/* Log pronto debug registers before sending reset interrupt */
void wcnss_pronto_log_debug_regs(void)
{
void __iomem *reg_addr;
u32 reg = 0;
reg_addr = penv->pronto_a2xb_base + A2XB_CFG_OFFSET;
reg = readl_relaxed(reg_addr);
pr_info_ratelimited("%s: A2XB_CFG_OFFSET %08x\n", __func__, reg);
reg_addr = penv->pronto_a2xb_base + A2XB_INT_SRC_OFFSET;
reg = readl_relaxed(reg_addr);
pr_info_ratelimited("%s: A2XB_INT_SRC_OFFSET %08x\n", __func__, reg);
reg_addr = penv->pronto_a2xb_base + A2XB_ERR_INFO_OFFSET;
reg = readl_relaxed(reg_addr);
pr_info_ratelimited("%s: A2XB_ERR_INFO_OFFSET %08x\n", __func__, reg);
}
EXPORT_SYMBOL(wcnss_pronto_log_debug_regs);
/* interface to reset wcnss by sending the reset interrupt */
void wcnss_reset_intr(void)
{
if (wcnss_hardware_type() == WCNSS_PRONTO_HW) {
wcnss_pronto_log_debug_regs();
pr_err("%s: reset interrupt not supported\n", __func__);
return;
}
wcnss_riva_log_debug_regs();
wmb();
__raw_writel(1 << 24, MSM_APCS_GCC_BASE + 0x8);
}
EXPORT_SYMBOL(wcnss_reset_intr);
static int wcnss_create_sysfs(struct device *dev)
{
int ret;
if (!dev)
return -ENODEV;
ret = device_create_file(dev, &dev_attr_serial_number);
if (ret)
return ret;
ret = device_create_file(dev, &dev_attr_thermal_mitigation);
if (ret)
goto remove_serial;
ret = device_create_file(dev, &dev_attr_wcnss_version);
if (ret)
goto remove_thermal;
return 0;
remove_thermal:
device_remove_file(dev, &dev_attr_thermal_mitigation);
remove_serial:
device_remove_file(dev, &dev_attr_serial_number);
return ret;
}
static void wcnss_remove_sysfs(struct device *dev)
{
if (dev) {
device_remove_file(dev, &dev_attr_serial_number);
device_remove_file(dev, &dev_attr_thermal_mitigation);
device_remove_file(dev, &dev_attr_wcnss_version);
}
}
static void wcnss_smd_notify_event(void *data, unsigned int event)
{
int len = 0;
if (penv != data) {
pr_err("wcnss: invalid env pointer in smd callback\n");
return;
}
switch (event) {
case SMD_EVENT_DATA:
len = smd_read_avail(penv->smd_ch);
if (len < 0)
pr_err("wcnss: failed to read from smd %d\n", len);
schedule_work(&penv->wcnssctrl_rx_work);
break;
case SMD_EVENT_OPEN:
pr_debug("wcnss: opening WCNSS SMD channel :%s",
WCNSS_CTRL_CHANNEL);
if (!VALID_VERSION(penv->wcnss_version))
schedule_work(&penv->wcnssctrl_version_work);
break;
case SMD_EVENT_CLOSE:
pr_debug("wcnss: closing WCNSS SMD channel :%s",
WCNSS_CTRL_CHANNEL);
break;
default:
break;
}
}
static void wcnss_post_bootup(struct work_struct *work)
{
pr_info("%s: Cancel APPS vote for Iris & WCNSS\n", __func__);
/* Since WCNSS is up, cancel any APPS vote for Iris & WCNSS VREGs */
wcnss_wlan_power(&penv->pdev->dev, &penv->wlan_config,
WCNSS_WLAN_SWITCH_OFF);
}
static int
wcnss_pronto_gpios_config(struct device *dev, bool enable)
{
int rc = 0;
int i, j;
int WCNSS_WLAN_NUM_GPIOS = 5;
for (i = 0; i < WCNSS_WLAN_NUM_GPIOS; i++) {
int gpio = of_get_gpio(dev->of_node, i);
if (enable) {
rc = gpio_request(gpio, "wcnss_wlan");
if (rc) {
pr_err("WCNSS gpio_request %d err %d\n",
gpio, rc);
goto fail;
}
} else
gpio_free(gpio);
}
return rc;
fail:
for (j = WCNSS_WLAN_NUM_GPIOS-1; j >= 0; j--) {
int gpio = of_get_gpio(dev->of_node, i);
gpio_free(gpio);
}
return rc;
}
static int
wcnss_gpios_config(struct resource *gpios_5wire, bool enable)
{
int i, j;
int rc = 0;
for (i = gpios_5wire->start; i <= gpios_5wire->end; i++) {
if (enable) {
rc = gpio_request(i, gpios_5wire->name);
if (rc) {
pr_err("WCNSS gpio_request %d err %d\n", i, rc);
goto fail;
}
} else
gpio_free(i);
}
return rc;
fail:
for (j = i-1; j >= gpios_5wire->start; j--)
gpio_free(j);
return rc;
}
static int __devinit
wcnss_wlan_ctrl_probe(struct platform_device *pdev)
{
if (!penv)
return -ENODEV;
penv->smd_channel_ready = 1;
pr_info("%s: SMD ctrl channel up\n", __func__);
/* Schedule a work to do any post boot up activity */
INIT_DELAYED_WORK(&penv->wcnss_work, wcnss_post_bootup);
schedule_delayed_work(&penv->wcnss_work, msecs_to_jiffies(10000));
return 0;
}
void wcnss_flush_delayed_boot_votes()
{
flush_delayed_work(&penv->wcnss_work);
}
EXPORT_SYMBOL(wcnss_flush_delayed_boot_votes);
static int __devexit
wcnss_wlan_ctrl_remove(struct platform_device *pdev)
{
if (penv)
penv->smd_channel_ready = 0;
pr_info("%s: SMD ctrl channel down\n", __func__);
return 0;
}
static struct platform_driver wcnss_wlan_ctrl_driver = {
.driver = {
.name = "WLAN_CTRL",
.owner = THIS_MODULE,
},
.probe = wcnss_wlan_ctrl_probe,
.remove = __devexit_p(wcnss_wlan_ctrl_remove),
};
static int __devexit
wcnss_ctrl_remove(struct platform_device *pdev)
{
if (penv && penv->smd_ch)
smd_close(penv->smd_ch);
return 0;
}
static int __devinit
wcnss_ctrl_probe(struct platform_device *pdev)
{
int ret = 0;
if (!penv)
return -ENODEV;
ret = smd_named_open_on_edge(WCNSS_CTRL_CHANNEL, SMD_APPS_WCNSS,
&penv->smd_ch, penv, wcnss_smd_notify_event);
if (ret < 0) {
pr_err("wcnss: cannot open the smd command channel %s: %d\n",
WCNSS_CTRL_CHANNEL, ret);
return -ENODEV;
}
smd_disable_read_intr(penv->smd_ch);
return 0;
}
/* platform device for WCNSS_CTRL SMD channel */
static struct platform_driver wcnss_ctrl_driver = {
.driver = {
.name = "WCNSS_CTRL",
.owner = THIS_MODULE,
},
.probe = wcnss_ctrl_probe,
.remove = __devexit_p(wcnss_ctrl_remove),
};
struct device *wcnss_wlan_get_device(void)
{
if (penv && penv->pdev && penv->smd_channel_ready)
return &penv->pdev->dev;
return NULL;
}
EXPORT_SYMBOL(wcnss_wlan_get_device);
struct platform_device *wcnss_get_platform_device(void)
{
if (penv && penv->pdev)
return penv->pdev;
return NULL;
}
EXPORT_SYMBOL(wcnss_get_platform_device);
struct wcnss_wlan_config *wcnss_get_wlan_config(void)
{
if (penv && penv->pdev)
return &penv->wlan_config;
return NULL;
}
EXPORT_SYMBOL(wcnss_get_wlan_config);
struct resource *wcnss_wlan_get_memory_map(struct device *dev)
{
if (penv && dev && (dev == &penv->pdev->dev) && penv->smd_channel_ready)
return penv->mmio_res;
return NULL;
}
EXPORT_SYMBOL(wcnss_wlan_get_memory_map);
int wcnss_wlan_get_dxe_tx_irq(struct device *dev)
{
if (penv && dev && (dev == &penv->pdev->dev) &&
penv->tx_irq_res && penv->smd_channel_ready)
return penv->tx_irq_res->start;
return WCNSS_WLAN_IRQ_INVALID;
}
EXPORT_SYMBOL(wcnss_wlan_get_dxe_tx_irq);
int wcnss_wlan_get_dxe_rx_irq(struct device *dev)
{
if (penv && dev && (dev == &penv->pdev->dev) &&
penv->rx_irq_res && penv->smd_channel_ready)
return penv->rx_irq_res->start;
return WCNSS_WLAN_IRQ_INVALID;
}
EXPORT_SYMBOL(wcnss_wlan_get_dxe_rx_irq);
void wcnss_wlan_register_pm_ops(struct device *dev,
const struct dev_pm_ops *pm_ops)
{
if (penv && dev && (dev == &penv->pdev->dev) && pm_ops)
penv->pm_ops = pm_ops;
}
EXPORT_SYMBOL(wcnss_wlan_register_pm_ops);
void wcnss_wlan_unregister_pm_ops(struct device *dev,
const struct dev_pm_ops *pm_ops)
{
if (penv && dev && (dev == &penv->pdev->dev) && pm_ops) {
if (pm_ops->suspend != penv->pm_ops->suspend ||
pm_ops->resume != penv->pm_ops->resume)
pr_err("PM APIs dont match with registered APIs\n");
penv->pm_ops = NULL;
}
}
EXPORT_SYMBOL(wcnss_wlan_unregister_pm_ops);
void wcnss_register_thermal_mitigation(struct device *dev,
void (*tm_notify)(struct device *, int))
{
if (penv && dev && tm_notify)
penv->tm_notify = tm_notify;
}
EXPORT_SYMBOL(wcnss_register_thermal_mitigation);
void wcnss_unregister_thermal_mitigation(
void (*tm_notify)(struct device *, int))
{
if (penv && tm_notify) {
if (tm_notify != penv->tm_notify)
pr_err("tm_notify doesn't match registered\n");
penv->tm_notify = NULL;
}
}
EXPORT_SYMBOL(wcnss_unregister_thermal_mitigation);
unsigned int wcnss_get_serial_number(void)
{
if (penv)
return penv->serial_number;
return 0;
}
EXPORT_SYMBOL(wcnss_get_serial_number);
static int enable_wcnss_suspend_notify;
static int enable_wcnss_suspend_notify_set(const char *val,
struct kernel_param *kp)
{
int ret;
ret = param_set_int(val, kp);
if (ret)
return ret;
if (enable_wcnss_suspend_notify)
pr_debug("Suspend notification activated for wcnss\n");
return 0;
}
module_param_call(enable_wcnss_suspend_notify, enable_wcnss_suspend_notify_set,
param_get_int, &enable_wcnss_suspend_notify, S_IRUGO | S_IWUSR);
void wcnss_suspend_notify(void)
{
void __iomem *pmu_spare_reg;
u32 reg = 0;
unsigned long flags;
if (!enable_wcnss_suspend_notify)
return;
if (wcnss_hardware_type() == WCNSS_PRONTO_HW)
return;
/* For Riva */
pmu_spare_reg = penv->msm_wcnss_base + RIVA_SPARE_OFFSET;
spin_lock_irqsave(&reg_spinlock, flags);
reg = readl_relaxed(pmu_spare_reg);
reg |= RIVA_SUSPEND_BIT;
writel_relaxed(reg, pmu_spare_reg);
spin_unlock_irqrestore(&reg_spinlock, flags);
}
EXPORT_SYMBOL(wcnss_suspend_notify);
void wcnss_resume_notify(void)
{
void __iomem *pmu_spare_reg;
u32 reg = 0;
unsigned long flags;
if (!enable_wcnss_suspend_notify)
return;
if (wcnss_hardware_type() == WCNSS_PRONTO_HW)
return;
/* For Riva */
pmu_spare_reg = penv->msm_wcnss_base + RIVA_SPARE_OFFSET;
spin_lock_irqsave(&reg_spinlock, flags);
reg = readl_relaxed(pmu_spare_reg);
reg &= ~RIVA_SUSPEND_BIT;
writel_relaxed(reg, pmu_spare_reg);
spin_unlock_irqrestore(&reg_spinlock, flags);
}
EXPORT_SYMBOL(wcnss_resume_notify);
static int wcnss_wlan_suspend(struct device *dev)
{
if (penv && dev && (dev == &penv->pdev->dev) &&
penv->smd_channel_ready &&
penv->pm_ops && penv->pm_ops->suspend)
return penv->pm_ops->suspend(dev);
return 0;
}
static int wcnss_wlan_resume(struct device *dev)
{
if (penv && dev && (dev == &penv->pdev->dev) &&
penv->smd_channel_ready &&
penv->pm_ops && penv->pm_ops->resume)
return penv->pm_ops->resume(dev);
return 0;
}
void wcnss_prevent_suspend()
{
if (penv)
wake_lock(&penv->wcnss_wake_lock);
}
EXPORT_SYMBOL(wcnss_prevent_suspend);
void wcnss_allow_suspend()
{
if (penv)
wake_unlock(&penv->wcnss_wake_lock);
}
EXPORT_SYMBOL(wcnss_allow_suspend);
int wcnss_hardware_type(void)
{
if (penv)
return penv->wcnss_hw_type;
else
return -ENODEV;
}
EXPORT_SYMBOL(wcnss_hardware_type);
static int wcnss_smd_tx(void *data, int len)
{
int ret = 0;
ret = smd_write_avail(penv->smd_ch);
if (ret < len) {
pr_err("wcnss: no space available for smd frame\n");
return -ENOSPC;
}
ret = smd_write(penv->smd_ch, data, len);
if (ret < len) {
pr_err("wcnss: failed to write Command %d", len);
ret = -ENODEV;
}
return ret;
}
static void wcnssctrl_rx_handler(struct work_struct *worker)
{
int len = 0;
int rc = 0;
unsigned char buf[WCNSS_MAX_FRAME_SIZE];
struct smd_msg_hdr *phdr;
struct wcnss_version *pversion;
int hw_type;
len = smd_read_avail(penv->smd_ch);
if (len > WCNSS_MAX_FRAME_SIZE) {
pr_err("wcnss: frame larger than the allowed size\n");
smd_read(penv->smd_ch, NULL, len);
return;
}
if (len <= 0)
return;
rc = smd_read(penv->smd_ch, buf, len);
if (rc < len) {
pr_err("wcnss: incomplete data read from smd\n");
return;
}
phdr = (struct smd_msg_hdr *)buf;
switch (phdr->msg_type) {
case WCNSS_VERSION_RSP:
pversion = (struct wcnss_version *)buf;
if (len != sizeof(struct wcnss_version)) {
pr_err("wcnss: invalid version data from wcnss %d\n",
len);
return;
}
snprintf(penv->wcnss_version, WCNSS_VERSION_LEN,
"%02x%02x%02x%02x", pversion->major, pversion->minor,
pversion->version, pversion->revision);
pr_info("wcnss: version %s\n", penv->wcnss_version);
/* schedule work to download nvbin to ccpu */
hw_type = wcnss_hardware_type();
switch (hw_type) {
case WCNSS_RIVA_HW:
/* supported only if riva major >= 1 and minor >= 4 */
if ((pversion->major >= 1) && (pversion->minor >= 4)) {
pr_info("wcnss: schedule dnld work for riva\n");
schedule_work(&penv->wcnssctrl_nvbin_dnld_work);
}
break;
case WCNSS_PRONTO_HW:
/* supported only if pronto major >= 1 and minor >= 4 */
if ((pversion->major >= 1) && (pversion->minor >= 4)) {
pr_info("wcnss: schedule dnld work for pronto\n");
schedule_work(&penv->wcnssctrl_nvbin_dnld_work);
}
break;
default:
pr_info("wcnss: unknown hw type (%d), will not schedule dnld work\n",
hw_type);
break;
}
break;
case WCNSS_NVBIN_DNLD_RSP:
pr_info("wcnss: received WCNSS_NVBIN_DNLD_RSP from ccpu\n");
break;
default:
pr_err("wcnss: invalid message type %d\n", phdr->msg_type);
}
return;
}
static void wcnss_send_version_req(struct work_struct *worker)
{
struct smd_msg_hdr smd_msg;
int ret = 0;
smd_msg.msg_type = WCNSS_VERSION_REQ;
smd_msg.msg_len = sizeof(smd_msg);
ret = wcnss_smd_tx(&smd_msg, smd_msg.msg_len);
if (ret < 0)
pr_err("wcnss: smd tx failed\n");
return;
}
static void wcnss_nvbin_dnld_req(struct work_struct *worker)
{
int ret = 0;
struct nvbin_dnld_req_msg *dnld_req_msg;
unsigned short total_fragments = 0;
unsigned short count = 0;
unsigned short retry_count = 0;
unsigned short cur_frag_size = 0;
unsigned char *outbuffer = NULL;
const void *nv_blob_addr = NULL;
unsigned int nv_blob_size = 0;
const struct firmware *nv = NULL;
struct device *dev = NULL;
dev = wcnss_wlan_get_device();
ret = request_firmware(&nv, NVBIN_FILE, dev);
if (ret || !nv || !nv->data || !nv->size) {
pr_err("wcnss: wcnss_nvbin_dnld_req: request_firmware failed for %s\n",
NVBIN_FILE);
return;
}
/*
* First 4 bytes in nv blob is validity bitmap.
* We cannot validate nv, so skip those 4 bytes.
*/
nv_blob_addr = nv->data + 4;
nv_blob_size = nv->size - 4;
total_fragments = TOTALFRAGMENTS(nv_blob_size);
pr_info("wcnss: NV bin size: %d, total_fragments: %d\n",
nv_blob_size, total_fragments);
/* get buffer for nv bin dnld req message */
outbuffer = kmalloc((sizeof(struct nvbin_dnld_req_msg) +
NV_FRAGMENT_SIZE), GFP_KERNEL);
if (NULL == outbuffer) {
pr_err("wcnss: wcnss_nvbin_dnld_req: failed to get buffer\n");
goto err_free_nv;
}
dnld_req_msg = (struct nvbin_dnld_req_msg *)outbuffer;
dnld_req_msg->hdr.msg_type = WCNSS_NVBIN_DNLD_REQ;
for (count = 0; count < total_fragments; count++) {
dnld_req_msg->dnld_req_params.frag_number = count;
if (count == (total_fragments - 1)) {
/* last fragment, take care of boundry condition */
cur_frag_size = nv_blob_size % NV_FRAGMENT_SIZE;
if (!cur_frag_size)
cur_frag_size = NV_FRAGMENT_SIZE;
dnld_req_msg->dnld_req_params.is_last_fragment = 1;
} else {
cur_frag_size = NV_FRAGMENT_SIZE;
dnld_req_msg->dnld_req_params.is_last_fragment = 0;
}
dnld_req_msg->dnld_req_params.nvbin_buffer_size =
cur_frag_size;
dnld_req_msg->hdr.msg_len =
sizeof(struct nvbin_dnld_req_msg) + cur_frag_size;
/* copy NV fragment */
memcpy((outbuffer + sizeof(struct nvbin_dnld_req_msg)),
(nv_blob_addr + count * NV_FRAGMENT_SIZE),
cur_frag_size);
ret = wcnss_smd_tx(outbuffer, dnld_req_msg->hdr.msg_len);
retry_count = 0;
while ((ret == -ENOSPC) && (retry_count <= 3)) {
pr_debug("wcnss: wcnss_nvbin_dnld_req: smd tx failed, ENOSPC\n");
pr_debug("fragment: %d, len: %d, TotFragments: %d, retry_count: %d\n",
count, dnld_req_msg->hdr.msg_len,
total_fragments, retry_count);
/* wait and try again */
msleep(20);
retry_count++;
ret = wcnss_smd_tx(outbuffer,
dnld_req_msg->hdr.msg_len);
}
if (ret < 0) {
pr_err("wcnss: wcnss_nvbin_dnld_req: smd tx failed\n");
pr_err("fragment %d, len: %d, TotFragments: %d, retry_count: %d\n",
count, dnld_req_msg->hdr.msg_len,
total_fragments, retry_count);
goto err_dnld;
}
}
err_dnld:
/* free buffer */
kfree(outbuffer);
err_free_nv:
/* release firmware */
release_firmware(nv);
return;
}
static int
wcnss_trigger_config(struct platform_device *pdev)
{
int ret;
struct qcom_wcnss_opts *pdata;
unsigned long wcnss_phys_addr;
int size = 0;
int has_pronto_hw = of_property_read_bool(pdev->dev.of_node,
"qcom,has_pronto_hw");
/* make sure we are only triggered once */
if (penv->triggered)
return 0;
penv->triggered = 1;
/* initialize the WCNSS device configuration */
pdata = pdev->dev.platform_data;
if (WCNSS_CONFIG_UNSPECIFIED == has_48mhz_xo) {
if (has_pronto_hw) {
has_48mhz_xo = of_property_read_bool(pdev->dev.of_node,
"qcom,has_48mhz_xo");
penv->wcnss_hw_type = WCNSS_PRONTO_HW;
} else {
penv->wcnss_hw_type = WCNSS_RIVA_HW;
has_48mhz_xo = pdata->has_48mhz_xo;
}
}
penv->wlan_config.use_48mhz_xo = has_48mhz_xo;
penv->thermal_mitigation = 0;
strlcpy(penv->wcnss_version, "INVALID", WCNSS_VERSION_LEN);
/* Configure 5 wire GPIOs */
if (!has_pronto_hw) {
penv->gpios_5wire = platform_get_resource_byname(pdev,
IORESOURCE_IO, "wcnss_gpios_5wire");
/* allocate 5-wire GPIO resources */
if (!penv->gpios_5wire) {
dev_err(&pdev->dev, "insufficient IO resources\n");
ret = -ENOENT;
goto fail_gpio_res;
}
ret = wcnss_gpios_config(penv->gpios_5wire, true);
} else
ret = wcnss_pronto_gpios_config(&pdev->dev, true);
if (ret) {
dev_err(&pdev->dev, "WCNSS gpios config failed.\n");
goto fail_gpio_res;
}
/* power up the WCNSS */
ret = wcnss_wlan_power(&pdev->dev, &penv->wlan_config,
WCNSS_WLAN_SWITCH_ON);
if (ret) {
dev_err(&pdev->dev, "WCNSS Power-up failed.\n");
goto fail_power;
}
/* trigger initialization of the WCNSS */
penv->pil = subsystem_get(WCNSS_PIL_DEVICE);
if (IS_ERR(penv->pil)) {
dev_err(&pdev->dev, "Peripheral Loader failed on WCNSS.\n");
ret = PTR_ERR(penv->pil);
penv->pil = NULL;
goto fail_pil;
}
/* allocate resources */
penv->mmio_res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"wcnss_mmio");
penv->tx_irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"wcnss_wlantx_irq");
penv->rx_irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"wcnss_wlanrx_irq");
if (!(penv->mmio_res && penv->tx_irq_res && penv->rx_irq_res)) {
dev_err(&pdev->dev, "insufficient resources\n");
ret = -ENOENT;
goto fail_res;
}
INIT_WORK(&penv->wcnssctrl_rx_work, wcnssctrl_rx_handler);
INIT_WORK(&penv->wcnssctrl_version_work, wcnss_send_version_req);
INIT_WORK(&penv->wcnssctrl_nvbin_dnld_work, wcnss_nvbin_dnld_req);
wake_lock_init(&penv->wcnss_wake_lock, WAKE_LOCK_SUSPEND, "wcnss");
if (wcnss_hardware_type() == WCNSS_PRONTO_HW) {
size = 0x3000;
wcnss_phys_addr = MSM_PRONTO_PHYS;
} else {
wcnss_phys_addr = MSM_RIVA_PHYS;
size = SZ_256;
}
penv->msm_wcnss_base = ioremap(wcnss_phys_addr, size);
if (!penv->msm_wcnss_base) {
ret = -ENOMEM;
pr_err("%s: ioremap wcnss physical failed\n", __func__);
goto fail_wake;
}
if (wcnss_hardware_type() == WCNSS_RIVA_HW) {
penv->riva_ccu_base = ioremap(MSM_RIVA_CCU_BASE, SZ_512);
if (!penv->riva_ccu_base) {
ret = -ENOMEM;
pr_err("%s: ioremap wcnss physical failed\n", __func__);
goto fail_ioremap;
}
} else {
penv->pronto_a2xb_base = ioremap(MSM_PRONTO_A2XB_BASE, SZ_512);
if (!penv->pronto_a2xb_base) {
ret = -ENOMEM;
pr_err("%s: ioremap wcnss physical failed\n", __func__);
goto fail_ioremap;
}
}
return 0;
fail_ioremap:
iounmap(penv->msm_wcnss_base);
fail_wake:
wake_lock_destroy(&penv->wcnss_wake_lock);
fail_res:
if (penv->pil)
subsystem_put(penv->pil);
fail_pil:
wcnss_wlan_power(&pdev->dev, &penv->wlan_config,
WCNSS_WLAN_SWITCH_OFF);
fail_power:
if (has_pronto_hw)
wcnss_pronto_gpios_config(&pdev->dev, false);
else
wcnss_gpios_config(penv->gpios_5wire, false);
fail_gpio_res:
penv = NULL;
return ret;
}
#ifndef MODULE
static int wcnss_node_open(struct inode *inode, struct file *file)
{
struct platform_device *pdev;
pr_info(DEVICE " triggered by userspace\n");
pdev = penv->pdev;
return wcnss_trigger_config(pdev);
}
static const struct file_operations wcnss_node_fops = {
.owner = THIS_MODULE,
.open = wcnss_node_open,
};
static struct miscdevice wcnss_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE,
.fops = &wcnss_node_fops,
};
#endif /* ifndef MODULE */
static int __devinit
wcnss_wlan_probe(struct platform_device *pdev)
{
int ret = 0;
/* verify we haven't been called more than once */
if (penv) {
dev_err(&pdev->dev, "cannot handle multiple devices.\n");
return -ENODEV;
}
/* create an environment to track the device */
penv = devm_kzalloc(&pdev->dev, sizeof(*penv), GFP_KERNEL);
if (!penv) {
dev_err(&pdev->dev, "cannot allocate device memory.\n");
return -ENOMEM;
}
penv->pdev = pdev;
/* register sysfs entries */
ret = wcnss_create_sysfs(&pdev->dev);
if (ret) {
penv = NULL;
return -ENOENT;
}
#ifdef MODULE
/* Since we were built as a module, we are running because
* the module was loaded, therefore we assume userspace
* applications are available to service PIL, so we can
* trigger the WCNSS configuration now
*/
pr_info(DEVICE " probed in MODULE mode\n");
return wcnss_trigger_config(pdev);
#else
/* Since we were built into the kernel we'll be called as part
* of kernel initialization. We don't know if userspace
* applications are available to service PIL at this time
* (they probably are not), so we simply create a device node
* here. When userspace is available it should touch the
* device so that we know that WCNSS configuration can take
* place
*/
pr_info(DEVICE " probed in built-in mode\n");
return misc_register(&wcnss_misc);
#endif
}
static int __devexit
wcnss_wlan_remove(struct platform_device *pdev)
{
wcnss_remove_sysfs(&pdev->dev);
penv = NULL;
return 0;
}
static const struct dev_pm_ops wcnss_wlan_pm_ops = {
.suspend = wcnss_wlan_suspend,
.resume = wcnss_wlan_resume,
};
#ifdef CONFIG_WCNSS_CORE_PRONTO
static struct of_device_id msm_wcnss_pronto_match[] = {
{.compatible = "qcom,wcnss_wlan"},
{}
};
#endif
static struct platform_driver wcnss_wlan_driver = {
.driver = {
.name = DEVICE,
.owner = THIS_MODULE,
.pm = &wcnss_wlan_pm_ops,
#ifdef CONFIG_WCNSS_CORE_PRONTO
.of_match_table = msm_wcnss_pronto_match,
#endif
},
.probe = wcnss_wlan_probe,
.remove = __devexit_p(wcnss_wlan_remove),
};
static int __init wcnss_wlan_init(void)
{
int ret = 0;
platform_driver_register(&wcnss_wlan_driver);
platform_driver_register(&wcnss_wlan_ctrl_driver);
platform_driver_register(&wcnss_ctrl_driver);
#ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
ret = wcnss_prealloc_init();
if (ret < 0)
pr_err("wcnss: pre-allocation failed\n");
#endif
return ret;
}
static void __exit wcnss_wlan_exit(void)
{
if (penv) {
if (penv->pil)
subsystem_put(penv->pil);
penv = NULL;
}
platform_driver_unregister(&wcnss_ctrl_driver);
platform_driver_unregister(&wcnss_wlan_ctrl_driver);
platform_driver_unregister(&wcnss_wlan_driver);
#ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
wcnss_prealloc_deinit();
#endif
}
module_init(wcnss_wlan_init);
module_exit(wcnss_wlan_exit);
MODULE_LICENSE("GPL v2");
MODULE_VERSION(VERSION);
MODULE_DESCRIPTION(DEVICE "Driver");