| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ |
| * |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| * Florian La Roche, <flla@stud.uni-sb.de> |
| * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| * Matthew Dillon, <dillon@apollo.west.oic.com> |
| * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| * Jorge Cwik, <jorge@laser.satlink.net> |
| */ |
| |
| /* |
| * Changes: |
| * Pedro Roque : Fast Retransmit/Recovery. |
| * Two receive queues. |
| * Retransmit queue handled by TCP. |
| * Better retransmit timer handling. |
| * New congestion avoidance. |
| * Header prediction. |
| * Variable renaming. |
| * |
| * Eric : Fast Retransmit. |
| * Randy Scott : MSS option defines. |
| * Eric Schenk : Fixes to slow start algorithm. |
| * Eric Schenk : Yet another double ACK bug. |
| * Eric Schenk : Delayed ACK bug fixes. |
| * Eric Schenk : Floyd style fast retrans war avoidance. |
| * David S. Miller : Don't allow zero congestion window. |
| * Eric Schenk : Fix retransmitter so that it sends |
| * next packet on ack of previous packet. |
| * Andi Kleen : Moved open_request checking here |
| * and process RSTs for open_requests. |
| * Andi Kleen : Better prune_queue, and other fixes. |
| * Andrey Savochkin: Fix RTT measurements in the presence of |
| * timestamps. |
| * Andrey Savochkin: Check sequence numbers correctly when |
| * removing SACKs due to in sequence incoming |
| * data segments. |
| * Andi Kleen: Make sure we never ack data there is not |
| * enough room for. Also make this condition |
| * a fatal error if it might still happen. |
| * Andi Kleen: Add tcp_measure_rcv_mss to make |
| * connections with MSS<min(MTU,ann. MSS) |
| * work without delayed acks. |
| * Andi Kleen: Process packets with PSH set in the |
| * fast path. |
| * J Hadi Salim: ECN support |
| * Andrei Gurtov, |
| * Pasi Sarolahti, |
| * Panu Kuhlberg: Experimental audit of TCP (re)transmission |
| * engine. Lots of bugs are found. |
| * Pasi Sarolahti: F-RTO for dealing with spurious RTOs |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/sysctl.h> |
| #include <net/tcp.h> |
| #include <net/inet_common.h> |
| #include <linux/ipsec.h> |
| #include <asm/unaligned.h> |
| #include <net/netdma.h> |
| |
| int sysctl_tcp_timestamps __read_mostly = 1; |
| int sysctl_tcp_window_scaling __read_mostly = 1; |
| int sysctl_tcp_sack __read_mostly = 1; |
| int sysctl_tcp_fack __read_mostly = 1; |
| int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; |
| int sysctl_tcp_ecn __read_mostly; |
| int sysctl_tcp_dsack __read_mostly = 1; |
| int sysctl_tcp_app_win __read_mostly = 31; |
| int sysctl_tcp_adv_win_scale __read_mostly = 2; |
| |
| int sysctl_tcp_stdurg __read_mostly; |
| int sysctl_tcp_rfc1337 __read_mostly; |
| int sysctl_tcp_max_orphans __read_mostly = NR_FILE; |
| int sysctl_tcp_frto __read_mostly = 2; |
| int sysctl_tcp_frto_response __read_mostly; |
| int sysctl_tcp_nometrics_save __read_mostly; |
| |
| int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; |
| int sysctl_tcp_abc __read_mostly; |
| |
| #define FLAG_DATA 0x01 /* Incoming frame contained data. */ |
| #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ |
| #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ |
| #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ |
| #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ |
| #define FLAG_DATA_SACKED 0x20 /* New SACK. */ |
| #define FLAG_ECE 0x40 /* ECE in this ACK */ |
| #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ |
| #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ |
| #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ |
| #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ |
| #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */ |
| #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ |
| |
| #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) |
| #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) |
| #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) |
| #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) |
| #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) |
| |
| #define IsSackFrto() (sysctl_tcp_frto == 0x2) |
| |
| #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) |
| #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) |
| |
| /* Adapt the MSS value used to make delayed ack decision to the |
| * real world. |
| */ |
| static void tcp_measure_rcv_mss(struct sock *sk, |
| const struct sk_buff *skb) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| const unsigned int lss = icsk->icsk_ack.last_seg_size; |
| unsigned int len; |
| |
| icsk->icsk_ack.last_seg_size = 0; |
| |
| /* skb->len may jitter because of SACKs, even if peer |
| * sends good full-sized frames. |
| */ |
| len = skb_shinfo(skb)->gso_size ?: skb->len; |
| if (len >= icsk->icsk_ack.rcv_mss) { |
| icsk->icsk_ack.rcv_mss = len; |
| } else { |
| /* Otherwise, we make more careful check taking into account, |
| * that SACKs block is variable. |
| * |
| * "len" is invariant segment length, including TCP header. |
| */ |
| len += skb->data - skb_transport_header(skb); |
| if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || |
| /* If PSH is not set, packet should be |
| * full sized, provided peer TCP is not badly broken. |
| * This observation (if it is correct 8)) allows |
| * to handle super-low mtu links fairly. |
| */ |
| (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && |
| !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { |
| /* Subtract also invariant (if peer is RFC compliant), |
| * tcp header plus fixed timestamp option length. |
| * Resulting "len" is MSS free of SACK jitter. |
| */ |
| len -= tcp_sk(sk)->tcp_header_len; |
| icsk->icsk_ack.last_seg_size = len; |
| if (len == lss) { |
| icsk->icsk_ack.rcv_mss = len; |
| return; |
| } |
| } |
| if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) |
| icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; |
| icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; |
| } |
| } |
| |
| static void tcp_incr_quickack(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); |
| |
| if (quickacks==0) |
| quickacks=2; |
| if (quickacks > icsk->icsk_ack.quick) |
| icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); |
| } |
| |
| void tcp_enter_quickack_mode(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| tcp_incr_quickack(sk); |
| icsk->icsk_ack.pingpong = 0; |
| icsk->icsk_ack.ato = TCP_ATO_MIN; |
| } |
| |
| /* Send ACKs quickly, if "quick" count is not exhausted |
| * and the session is not interactive. |
| */ |
| |
| static inline int tcp_in_quickack_mode(const struct sock *sk) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; |
| } |
| |
| static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) |
| { |
| if (tp->ecn_flags&TCP_ECN_OK) |
| tp->ecn_flags |= TCP_ECN_QUEUE_CWR; |
| } |
| |
| static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) |
| { |
| if (tcp_hdr(skb)->cwr) |
| tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; |
| } |
| |
| static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) |
| { |
| tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; |
| } |
| |
| static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) |
| { |
| if (tp->ecn_flags&TCP_ECN_OK) { |
| if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) |
| tp->ecn_flags |= TCP_ECN_DEMAND_CWR; |
| /* Funny extension: if ECT is not set on a segment, |
| * it is surely retransmit. It is not in ECN RFC, |
| * but Linux follows this rule. */ |
| else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) |
| tcp_enter_quickack_mode((struct sock *)tp); |
| } |
| } |
| |
| static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) |
| { |
| if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr)) |
| tp->ecn_flags &= ~TCP_ECN_OK; |
| } |
| |
| static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) |
| { |
| if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr)) |
| tp->ecn_flags &= ~TCP_ECN_OK; |
| } |
| |
| static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) |
| { |
| if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK)) |
| return 1; |
| return 0; |
| } |
| |
| /* Buffer size and advertised window tuning. |
| * |
| * 1. Tuning sk->sk_sndbuf, when connection enters established state. |
| */ |
| |
| static void tcp_fixup_sndbuf(struct sock *sk) |
| { |
| int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + |
| sizeof(struct sk_buff); |
| |
| if (sk->sk_sndbuf < 3 * sndmem) |
| sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); |
| } |
| |
| /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) |
| * |
| * All tcp_full_space() is split to two parts: "network" buffer, allocated |
| * forward and advertised in receiver window (tp->rcv_wnd) and |
| * "application buffer", required to isolate scheduling/application |
| * latencies from network. |
| * window_clamp is maximal advertised window. It can be less than |
| * tcp_full_space(), in this case tcp_full_space() - window_clamp |
| * is reserved for "application" buffer. The less window_clamp is |
| * the smoother our behaviour from viewpoint of network, but the lower |
| * throughput and the higher sensitivity of the connection to losses. 8) |
| * |
| * rcv_ssthresh is more strict window_clamp used at "slow start" |
| * phase to predict further behaviour of this connection. |
| * It is used for two goals: |
| * - to enforce header prediction at sender, even when application |
| * requires some significant "application buffer". It is check #1. |
| * - to prevent pruning of receive queue because of misprediction |
| * of receiver window. Check #2. |
| * |
| * The scheme does not work when sender sends good segments opening |
| * window and then starts to feed us spaghetti. But it should work |
| * in common situations. Otherwise, we have to rely on queue collapsing. |
| */ |
| |
| /* Slow part of check#2. */ |
| static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| /* Optimize this! */ |
| int truesize = tcp_win_from_space(skb->truesize)/2; |
| int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; |
| |
| while (tp->rcv_ssthresh <= window) { |
| if (truesize <= skb->len) |
| return 2 * inet_csk(sk)->icsk_ack.rcv_mss; |
| |
| truesize >>= 1; |
| window >>= 1; |
| } |
| return 0; |
| } |
| |
| static void tcp_grow_window(struct sock *sk, |
| struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* Check #1 */ |
| if (tp->rcv_ssthresh < tp->window_clamp && |
| (int)tp->rcv_ssthresh < tcp_space(sk) && |
| !tcp_memory_pressure) { |
| int incr; |
| |
| /* Check #2. Increase window, if skb with such overhead |
| * will fit to rcvbuf in future. |
| */ |
| if (tcp_win_from_space(skb->truesize) <= skb->len) |
| incr = 2*tp->advmss; |
| else |
| incr = __tcp_grow_window(sk, skb); |
| |
| if (incr) { |
| tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); |
| inet_csk(sk)->icsk_ack.quick |= 1; |
| } |
| } |
| } |
| |
| /* 3. Tuning rcvbuf, when connection enters established state. */ |
| |
| static void tcp_fixup_rcvbuf(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); |
| |
| /* Try to select rcvbuf so that 4 mss-sized segments |
| * will fit to window and corresponding skbs will fit to our rcvbuf. |
| * (was 3; 4 is minimum to allow fast retransmit to work.) |
| */ |
| while (tcp_win_from_space(rcvmem) < tp->advmss) |
| rcvmem += 128; |
| if (sk->sk_rcvbuf < 4 * rcvmem) |
| sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); |
| } |
| |
| /* 4. Try to fixup all. It is made immediately after connection enters |
| * established state. |
| */ |
| static void tcp_init_buffer_space(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int maxwin; |
| |
| if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) |
| tcp_fixup_rcvbuf(sk); |
| if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) |
| tcp_fixup_sndbuf(sk); |
| |
| tp->rcvq_space.space = tp->rcv_wnd; |
| |
| maxwin = tcp_full_space(sk); |
| |
| if (tp->window_clamp >= maxwin) { |
| tp->window_clamp = maxwin; |
| |
| if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) |
| tp->window_clamp = max(maxwin - |
| (maxwin >> sysctl_tcp_app_win), |
| 4 * tp->advmss); |
| } |
| |
| /* Force reservation of one segment. */ |
| if (sysctl_tcp_app_win && |
| tp->window_clamp > 2 * tp->advmss && |
| tp->window_clamp + tp->advmss > maxwin) |
| tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); |
| |
| tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| } |
| |
| /* 5. Recalculate window clamp after socket hit its memory bounds. */ |
| static void tcp_clamp_window(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| icsk->icsk_ack.quick = 0; |
| |
| if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && |
| !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && |
| !tcp_memory_pressure && |
| atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { |
| sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), |
| sysctl_tcp_rmem[2]); |
| } |
| if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) |
| tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); |
| } |
| |
| |
| /* Initialize RCV_MSS value. |
| * RCV_MSS is an our guess about MSS used by the peer. |
| * We haven't any direct information about the MSS. |
| * It's better to underestimate the RCV_MSS rather than overestimate. |
| * Overestimations make us ACKing less frequently than needed. |
| * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). |
| */ |
| void tcp_initialize_rcv_mss(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); |
| |
| hint = min(hint, tp->rcv_wnd/2); |
| hint = min(hint, TCP_MIN_RCVMSS); |
| hint = max(hint, TCP_MIN_MSS); |
| |
| inet_csk(sk)->icsk_ack.rcv_mss = hint; |
| } |
| |
| /* Receiver "autotuning" code. |
| * |
| * The algorithm for RTT estimation w/o timestamps is based on |
| * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. |
| * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> |
| * |
| * More detail on this code can be found at |
| * <http://www.psc.edu/~jheffner/senior_thesis.ps>, |
| * though this reference is out of date. A new paper |
| * is pending. |
| */ |
| static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) |
| { |
| u32 new_sample = tp->rcv_rtt_est.rtt; |
| long m = sample; |
| |
| if (m == 0) |
| m = 1; |
| |
| if (new_sample != 0) { |
| /* If we sample in larger samples in the non-timestamp |
| * case, we could grossly overestimate the RTT especially |
| * with chatty applications or bulk transfer apps which |
| * are stalled on filesystem I/O. |
| * |
| * Also, since we are only going for a minimum in the |
| * non-timestamp case, we do not smooth things out |
| * else with timestamps disabled convergence takes too |
| * long. |
| */ |
| if (!win_dep) { |
| m -= (new_sample >> 3); |
| new_sample += m; |
| } else if (m < new_sample) |
| new_sample = m << 3; |
| } else { |
| /* No previous measure. */ |
| new_sample = m << 3; |
| } |
| |
| if (tp->rcv_rtt_est.rtt != new_sample) |
| tp->rcv_rtt_est.rtt = new_sample; |
| } |
| |
| static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) |
| { |
| if (tp->rcv_rtt_est.time == 0) |
| goto new_measure; |
| if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) |
| return; |
| tcp_rcv_rtt_update(tp, |
| jiffies - tp->rcv_rtt_est.time, |
| 1); |
| |
| new_measure: |
| tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; |
| tp->rcv_rtt_est.time = tcp_time_stamp; |
| } |
| |
| static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| if (tp->rx_opt.rcv_tsecr && |
| (TCP_SKB_CB(skb)->end_seq - |
| TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) |
| tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); |
| } |
| |
| /* |
| * This function should be called every time data is copied to user space. |
| * It calculates the appropriate TCP receive buffer space. |
| */ |
| void tcp_rcv_space_adjust(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int time; |
| int space; |
| |
| if (tp->rcvq_space.time == 0) |
| goto new_measure; |
| |
| time = tcp_time_stamp - tp->rcvq_space.time; |
| if (time < (tp->rcv_rtt_est.rtt >> 3) || |
| tp->rcv_rtt_est.rtt == 0) |
| return; |
| |
| space = 2 * (tp->copied_seq - tp->rcvq_space.seq); |
| |
| space = max(tp->rcvq_space.space, space); |
| |
| if (tp->rcvq_space.space != space) { |
| int rcvmem; |
| |
| tp->rcvq_space.space = space; |
| |
| if (sysctl_tcp_moderate_rcvbuf && |
| !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { |
| int new_clamp = space; |
| |
| /* Receive space grows, normalize in order to |
| * take into account packet headers and sk_buff |
| * structure overhead. |
| */ |
| space /= tp->advmss; |
| if (!space) |
| space = 1; |
| rcvmem = (tp->advmss + MAX_TCP_HEADER + |
| 16 + sizeof(struct sk_buff)); |
| while (tcp_win_from_space(rcvmem) < tp->advmss) |
| rcvmem += 128; |
| space *= rcvmem; |
| space = min(space, sysctl_tcp_rmem[2]); |
| if (space > sk->sk_rcvbuf) { |
| sk->sk_rcvbuf = space; |
| |
| /* Make the window clamp follow along. */ |
| tp->window_clamp = new_clamp; |
| } |
| } |
| } |
| |
| new_measure: |
| tp->rcvq_space.seq = tp->copied_seq; |
| tp->rcvq_space.time = tcp_time_stamp; |
| } |
| |
| /* There is something which you must keep in mind when you analyze the |
| * behavior of the tp->ato delayed ack timeout interval. When a |
| * connection starts up, we want to ack as quickly as possible. The |
| * problem is that "good" TCP's do slow start at the beginning of data |
| * transmission. The means that until we send the first few ACK's the |
| * sender will sit on his end and only queue most of his data, because |
| * he can only send snd_cwnd unacked packets at any given time. For |
| * each ACK we send, he increments snd_cwnd and transmits more of his |
| * queue. -DaveM |
| */ |
| static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| u32 now; |
| |
| inet_csk_schedule_ack(sk); |
| |
| tcp_measure_rcv_mss(sk, skb); |
| |
| tcp_rcv_rtt_measure(tp); |
| |
| now = tcp_time_stamp; |
| |
| if (!icsk->icsk_ack.ato) { |
| /* The _first_ data packet received, initialize |
| * delayed ACK engine. |
| */ |
| tcp_incr_quickack(sk); |
| icsk->icsk_ack.ato = TCP_ATO_MIN; |
| } else { |
| int m = now - icsk->icsk_ack.lrcvtime; |
| |
| if (m <= TCP_ATO_MIN/2) { |
| /* The fastest case is the first. */ |
| icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; |
| } else if (m < icsk->icsk_ack.ato) { |
| icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; |
| if (icsk->icsk_ack.ato > icsk->icsk_rto) |
| icsk->icsk_ack.ato = icsk->icsk_rto; |
| } else if (m > icsk->icsk_rto) { |
| /* Too long gap. Apparently sender failed to |
| * restart window, so that we send ACKs quickly. |
| */ |
| tcp_incr_quickack(sk); |
| sk_stream_mem_reclaim(sk); |
| } |
| } |
| icsk->icsk_ack.lrcvtime = now; |
| |
| TCP_ECN_check_ce(tp, skb); |
| |
| if (skb->len >= 128) |
| tcp_grow_window(sk, skb); |
| } |
| |
| static u32 tcp_rto_min(struct sock *sk) |
| { |
| struct dst_entry *dst = __sk_dst_get(sk); |
| u32 rto_min = TCP_RTO_MIN; |
| |
| if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) |
| rto_min = dst->metrics[RTAX_RTO_MIN-1]; |
| return rto_min; |
| } |
| |
| /* Called to compute a smoothed rtt estimate. The data fed to this |
| * routine either comes from timestamps, or from segments that were |
| * known _not_ to have been retransmitted [see Karn/Partridge |
| * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 |
| * piece by Van Jacobson. |
| * NOTE: the next three routines used to be one big routine. |
| * To save cycles in the RFC 1323 implementation it was better to break |
| * it up into three procedures. -- erics |
| */ |
| static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| long m = mrtt; /* RTT */ |
| |
| /* The following amusing code comes from Jacobson's |
| * article in SIGCOMM '88. Note that rtt and mdev |
| * are scaled versions of rtt and mean deviation. |
| * This is designed to be as fast as possible |
| * m stands for "measurement". |
| * |
| * On a 1990 paper the rto value is changed to: |
| * RTO = rtt + 4 * mdev |
| * |
| * Funny. This algorithm seems to be very broken. |
| * These formulae increase RTO, when it should be decreased, increase |
| * too slowly, when it should be increased quickly, decrease too quickly |
| * etc. I guess in BSD RTO takes ONE value, so that it is absolutely |
| * does not matter how to _calculate_ it. Seems, it was trap |
| * that VJ failed to avoid. 8) |
| */ |
| if (m == 0) |
| m = 1; |
| if (tp->srtt != 0) { |
| m -= (tp->srtt >> 3); /* m is now error in rtt est */ |
| tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ |
| if (m < 0) { |
| m = -m; /* m is now abs(error) */ |
| m -= (tp->mdev >> 2); /* similar update on mdev */ |
| /* This is similar to one of Eifel findings. |
| * Eifel blocks mdev updates when rtt decreases. |
| * This solution is a bit different: we use finer gain |
| * for mdev in this case (alpha*beta). |
| * Like Eifel it also prevents growth of rto, |
| * but also it limits too fast rto decreases, |
| * happening in pure Eifel. |
| */ |
| if (m > 0) |
| m >>= 3; |
| } else { |
| m -= (tp->mdev >> 2); /* similar update on mdev */ |
| } |
| tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ |
| if (tp->mdev > tp->mdev_max) { |
| tp->mdev_max = tp->mdev; |
| if (tp->mdev_max > tp->rttvar) |
| tp->rttvar = tp->mdev_max; |
| } |
| if (after(tp->snd_una, tp->rtt_seq)) { |
| if (tp->mdev_max < tp->rttvar) |
| tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; |
| tp->rtt_seq = tp->snd_nxt; |
| tp->mdev_max = tcp_rto_min(sk); |
| } |
| } else { |
| /* no previous measure. */ |
| tp->srtt = m<<3; /* take the measured time to be rtt */ |
| tp->mdev = m<<1; /* make sure rto = 3*rtt */ |
| tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); |
| tp->rtt_seq = tp->snd_nxt; |
| } |
| } |
| |
| /* Calculate rto without backoff. This is the second half of Van Jacobson's |
| * routine referred to above. |
| */ |
| static inline void tcp_set_rto(struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| /* Old crap is replaced with new one. 8) |
| * |
| * More seriously: |
| * 1. If rtt variance happened to be less 50msec, it is hallucination. |
| * It cannot be less due to utterly erratic ACK generation made |
| * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ |
| * to do with delayed acks, because at cwnd>2 true delack timeout |
| * is invisible. Actually, Linux-2.4 also generates erratic |
| * ACKs in some circumstances. |
| */ |
| inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; |
| |
| /* 2. Fixups made earlier cannot be right. |
| * If we do not estimate RTO correctly without them, |
| * all the algo is pure shit and should be replaced |
| * with correct one. It is exactly, which we pretend to do. |
| */ |
| } |
| |
| /* NOTE: clamping at TCP_RTO_MIN is not required, current algo |
| * guarantees that rto is higher. |
| */ |
| static inline void tcp_bound_rto(struct sock *sk) |
| { |
| if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) |
| inet_csk(sk)->icsk_rto = TCP_RTO_MAX; |
| } |
| |
| /* Save metrics learned by this TCP session. |
| This function is called only, when TCP finishes successfully |
| i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. |
| */ |
| void tcp_update_metrics(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct dst_entry *dst = __sk_dst_get(sk); |
| |
| if (sysctl_tcp_nometrics_save) |
| return; |
| |
| dst_confirm(dst); |
| |
| if (dst && (dst->flags&DST_HOST)) { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| int m; |
| |
| if (icsk->icsk_backoff || !tp->srtt) { |
| /* This session failed to estimate rtt. Why? |
| * Probably, no packets returned in time. |
| * Reset our results. |
| */ |
| if (!(dst_metric_locked(dst, RTAX_RTT))) |
| dst->metrics[RTAX_RTT-1] = 0; |
| return; |
| } |
| |
| m = dst_metric(dst, RTAX_RTT) - tp->srtt; |
| |
| /* If newly calculated rtt larger than stored one, |
| * store new one. Otherwise, use EWMA. Remember, |
| * rtt overestimation is always better than underestimation. |
| */ |
| if (!(dst_metric_locked(dst, RTAX_RTT))) { |
| if (m <= 0) |
| dst->metrics[RTAX_RTT-1] = tp->srtt; |
| else |
| dst->metrics[RTAX_RTT-1] -= (m>>3); |
| } |
| |
| if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { |
| if (m < 0) |
| m = -m; |
| |
| /* Scale deviation to rttvar fixed point */ |
| m >>= 1; |
| if (m < tp->mdev) |
| m = tp->mdev; |
| |
| if (m >= dst_metric(dst, RTAX_RTTVAR)) |
| dst->metrics[RTAX_RTTVAR-1] = m; |
| else |
| dst->metrics[RTAX_RTTVAR-1] -= |
| (dst->metrics[RTAX_RTTVAR-1] - m)>>2; |
| } |
| |
| if (tp->snd_ssthresh >= 0xFFFF) { |
| /* Slow start still did not finish. */ |
| if (dst_metric(dst, RTAX_SSTHRESH) && |
| !dst_metric_locked(dst, RTAX_SSTHRESH) && |
| (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) |
| dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; |
| if (!dst_metric_locked(dst, RTAX_CWND) && |
| tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) |
| dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; |
| } else if (tp->snd_cwnd > tp->snd_ssthresh && |
| icsk->icsk_ca_state == TCP_CA_Open) { |
| /* Cong. avoidance phase, cwnd is reliable. */ |
| if (!dst_metric_locked(dst, RTAX_SSTHRESH)) |
| dst->metrics[RTAX_SSTHRESH-1] = |
| max(tp->snd_cwnd >> 1, tp->snd_ssthresh); |
| if (!dst_metric_locked(dst, RTAX_CWND)) |
| dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; |
| } else { |
| /* Else slow start did not finish, cwnd is non-sense, |
| ssthresh may be also invalid. |
| */ |
| if (!dst_metric_locked(dst, RTAX_CWND)) |
| dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; |
| if (dst->metrics[RTAX_SSTHRESH-1] && |
| !dst_metric_locked(dst, RTAX_SSTHRESH) && |
| tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) |
| dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; |
| } |
| |
| if (!dst_metric_locked(dst, RTAX_REORDERING)) { |
| if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && |
| tp->reordering != sysctl_tcp_reordering) |
| dst->metrics[RTAX_REORDERING-1] = tp->reordering; |
| } |
| } |
| } |
| |
| /* Numbers are taken from RFC3390. |
| * |
| * John Heffner states: |
| * |
| * The RFC specifies a window of no more than 4380 bytes |
| * unless 2*MSS > 4380. Reading the pseudocode in the RFC |
| * is a bit misleading because they use a clamp at 4380 bytes |
| * rather than use a multiplier in the relevant range. |
| */ |
| __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) |
| { |
| __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); |
| |
| if (!cwnd) { |
| if (tp->mss_cache > 1460) |
| cwnd = 2; |
| else |
| cwnd = (tp->mss_cache > 1095) ? 3 : 4; |
| } |
| return min_t(__u32, cwnd, tp->snd_cwnd_clamp); |
| } |
| |
| /* Set slow start threshold and cwnd not falling to slow start */ |
| void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| tp->prior_ssthresh = 0; |
| tp->bytes_acked = 0; |
| if (icsk->icsk_ca_state < TCP_CA_CWR) { |
| tp->undo_marker = 0; |
| if (set_ssthresh) |
| tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); |
| tp->snd_cwnd = min(tp->snd_cwnd, |
| tcp_packets_in_flight(tp) + 1U); |
| tp->snd_cwnd_cnt = 0; |
| tp->high_seq = tp->snd_nxt; |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| TCP_ECN_queue_cwr(tp); |
| |
| tcp_set_ca_state(sk, TCP_CA_CWR); |
| } |
| } |
| |
| /* |
| * Packet counting of FACK is based on in-order assumptions, therefore TCP |
| * disables it when reordering is detected |
| */ |
| static void tcp_disable_fack(struct tcp_sock *tp) |
| { |
| tp->rx_opt.sack_ok &= ~2; |
| } |
| |
| /* Take a notice that peer is sending DSACKs */ |
| static void tcp_dsack_seen(struct tcp_sock *tp) |
| { |
| tp->rx_opt.sack_ok |= 4; |
| } |
| |
| /* Initialize metrics on socket. */ |
| |
| static void tcp_init_metrics(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct dst_entry *dst = __sk_dst_get(sk); |
| |
| if (dst == NULL) |
| goto reset; |
| |
| dst_confirm(dst); |
| |
| if (dst_metric_locked(dst, RTAX_CWND)) |
| tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); |
| if (dst_metric(dst, RTAX_SSTHRESH)) { |
| tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); |
| if (tp->snd_ssthresh > tp->snd_cwnd_clamp) |
| tp->snd_ssthresh = tp->snd_cwnd_clamp; |
| } |
| if (dst_metric(dst, RTAX_REORDERING) && |
| tp->reordering != dst_metric(dst, RTAX_REORDERING)) { |
| tcp_disable_fack(tp); |
| tp->reordering = dst_metric(dst, RTAX_REORDERING); |
| } |
| |
| if (dst_metric(dst, RTAX_RTT) == 0) |
| goto reset; |
| |
| if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) |
| goto reset; |
| |
| /* Initial rtt is determined from SYN,SYN-ACK. |
| * The segment is small and rtt may appear much |
| * less than real one. Use per-dst memory |
| * to make it more realistic. |
| * |
| * A bit of theory. RTT is time passed after "normal" sized packet |
| * is sent until it is ACKed. In normal circumstances sending small |
| * packets force peer to delay ACKs and calculation is correct too. |
| * The algorithm is adaptive and, provided we follow specs, it |
| * NEVER underestimate RTT. BUT! If peer tries to make some clever |
| * tricks sort of "quick acks" for time long enough to decrease RTT |
| * to low value, and then abruptly stops to do it and starts to delay |
| * ACKs, wait for troubles. |
| */ |
| if (dst_metric(dst, RTAX_RTT) > tp->srtt) { |
| tp->srtt = dst_metric(dst, RTAX_RTT); |
| tp->rtt_seq = tp->snd_nxt; |
| } |
| if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { |
| tp->mdev = dst_metric(dst, RTAX_RTTVAR); |
| tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); |
| } |
| tcp_set_rto(sk); |
| tcp_bound_rto(sk); |
| if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) |
| goto reset; |
| tp->snd_cwnd = tcp_init_cwnd(tp, dst); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| return; |
| |
| reset: |
| /* Play conservative. If timestamps are not |
| * supported, TCP will fail to recalculate correct |
| * rtt, if initial rto is too small. FORGET ALL AND RESET! |
| */ |
| if (!tp->rx_opt.saw_tstamp && tp->srtt) { |
| tp->srtt = 0; |
| tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; |
| inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; |
| } |
| } |
| |
| static void tcp_update_reordering(struct sock *sk, const int metric, |
| const int ts) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| if (metric > tp->reordering) { |
| tp->reordering = min(TCP_MAX_REORDERING, metric); |
| |
| /* This exciting event is worth to be remembered. 8) */ |
| if (ts) |
| NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); |
| else if (tcp_is_reno(tp)) |
| NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); |
| else if (tcp_is_fack(tp)) |
| NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); |
| else |
| NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); |
| #if FASTRETRANS_DEBUG > 1 |
| printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", |
| tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, |
| tp->reordering, |
| tp->fackets_out, |
| tp->sacked_out, |
| tp->undo_marker ? tp->undo_retrans : 0); |
| #endif |
| tcp_disable_fack(tp); |
| } |
| } |
| |
| /* This procedure tags the retransmission queue when SACKs arrive. |
| * |
| * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). |
| * Packets in queue with these bits set are counted in variables |
| * sacked_out, retrans_out and lost_out, correspondingly. |
| * |
| * Valid combinations are: |
| * Tag InFlight Description |
| * 0 1 - orig segment is in flight. |
| * S 0 - nothing flies, orig reached receiver. |
| * L 0 - nothing flies, orig lost by net. |
| * R 2 - both orig and retransmit are in flight. |
| * L|R 1 - orig is lost, retransmit is in flight. |
| * S|R 1 - orig reached receiver, retrans is still in flight. |
| * (L|S|R is logically valid, it could occur when L|R is sacked, |
| * but it is equivalent to plain S and code short-curcuits it to S. |
| * L|S is logically invalid, it would mean -1 packet in flight 8)) |
| * |
| * These 6 states form finite state machine, controlled by the following events: |
| * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) |
| * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) |
| * 3. Loss detection event of one of three flavors: |
| * A. Scoreboard estimator decided the packet is lost. |
| * A'. Reno "three dupacks" marks head of queue lost. |
| * A''. Its FACK modfication, head until snd.fack is lost. |
| * B. SACK arrives sacking data transmitted after never retransmitted |
| * hole was sent out. |
| * C. SACK arrives sacking SND.NXT at the moment, when the |
| * segment was retransmitted. |
| * 4. D-SACK added new rule: D-SACK changes any tag to S. |
| * |
| * It is pleasant to note, that state diagram turns out to be commutative, |
| * so that we are allowed not to be bothered by order of our actions, |
| * when multiple events arrive simultaneously. (see the function below). |
| * |
| * Reordering detection. |
| * -------------------- |
| * Reordering metric is maximal distance, which a packet can be displaced |
| * in packet stream. With SACKs we can estimate it: |
| * |
| * 1. SACK fills old hole and the corresponding segment was not |
| * ever retransmitted -> reordering. Alas, we cannot use it |
| * when segment was retransmitted. |
| * 2. The last flaw is solved with D-SACK. D-SACK arrives |
| * for retransmitted and already SACKed segment -> reordering.. |
| * Both of these heuristics are not used in Loss state, when we cannot |
| * account for retransmits accurately. |
| * |
| * SACK block validation. |
| * ---------------------- |
| * |
| * SACK block range validation checks that the received SACK block fits to |
| * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. |
| * Note that SND.UNA is not included to the range though being valid because |
| * it means that the receiver is rather inconsistent with itself reporting |
| * SACK reneging when it should advance SND.UNA. Such SACK block this is |
| * perfectly valid, however, in light of RFC2018 which explicitly states |
| * that "SACK block MUST reflect the newest segment. Even if the newest |
| * segment is going to be discarded ...", not that it looks very clever |
| * in case of head skb. Due to potentional receiver driven attacks, we |
| * choose to avoid immediate execution of a walk in write queue due to |
| * reneging and defer head skb's loss recovery to standard loss recovery |
| * procedure that will eventually trigger (nothing forbids us doing this). |
| * |
| * Implements also blockage to start_seq wrap-around. Problem lies in the |
| * fact that though start_seq (s) is before end_seq (i.e., not reversed), |
| * there's no guarantee that it will be before snd_nxt (n). The problem |
| * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt |
| * wrap (s_w): |
| * |
| * <- outs wnd -> <- wrapzone -> |
| * u e n u_w e_w s n_w |
| * | | | | | | | |
| * |<------------+------+----- TCP seqno space --------------+---------->| |
| * ...-- <2^31 ->| |<--------... |
| * ...---- >2^31 ------>| |<--------... |
| * |
| * Current code wouldn't be vulnerable but it's better still to discard such |
| * crazy SACK blocks. Doing this check for start_seq alone closes somewhat |
| * similar case (end_seq after snd_nxt wrap) as earlier reversed check in |
| * snd_nxt wrap -> snd_una region will then become "well defined", i.e., |
| * equal to the ideal case (infinite seqno space without wrap caused issues). |
| * |
| * With D-SACK the lower bound is extended to cover sequence space below |
| * SND.UNA down to undo_marker, which is the last point of interest. Yet |
| * again, DSACK block must not to go across snd_una (for the same reason as |
| * for the normal SACK blocks, explained above). But there all simplicity |
| * ends, TCP might receive valid D-SACKs below that. As long as they reside |
| * fully below undo_marker they do not affect behavior in anyway and can |
| * therefore be safely ignored. In rare cases (which are more or less |
| * theoretical ones), the D-SACK will nicely cross that boundary due to skb |
| * fragmentation and packet reordering past skb's retransmission. To consider |
| * them correctly, the acceptable range must be extended even more though |
| * the exact amount is rather hard to quantify. However, tp->max_window can |
| * be used as an exaggerated estimate. |
| */ |
| static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, |
| u32 start_seq, u32 end_seq) |
| { |
| /* Too far in future, or reversed (interpretation is ambiguous) */ |
| if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) |
| return 0; |
| |
| /* Nasty start_seq wrap-around check (see comments above) */ |
| if (!before(start_seq, tp->snd_nxt)) |
| return 0; |
| |
| /* In outstanding window? ...This is valid exit for DSACKs too. |
| * start_seq == snd_una is non-sensical (see comments above) |
| */ |
| if (after(start_seq, tp->snd_una)) |
| return 1; |
| |
| if (!is_dsack || !tp->undo_marker) |
| return 0; |
| |
| /* ...Then it's D-SACK, and must reside below snd_una completely */ |
| if (!after(end_seq, tp->snd_una)) |
| return 0; |
| |
| if (!before(start_seq, tp->undo_marker)) |
| return 1; |
| |
| /* Too old */ |
| if (!after(end_seq, tp->undo_marker)) |
| return 0; |
| |
| /* Undo_marker boundary crossing (overestimates a lot). Known already: |
| * start_seq < undo_marker and end_seq >= undo_marker. |
| */ |
| return !before(start_seq, end_seq - tp->max_window); |
| } |
| |
| /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". |
| * Event "C". Later note: FACK people cheated me again 8), we have to account |
| * for reordering! Ugly, but should help. |
| * |
| * Search retransmitted skbs from write_queue that were sent when snd_nxt was |
| * less than what is now known to be received by the other end (derived from |
| * SACK blocks by the caller). Also calculate the lowest snd_nxt among the |
| * remaining retransmitted skbs to avoid some costly processing per ACKs. |
| */ |
| static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| int flag = 0; |
| int cnt = 0; |
| u32 new_low_seq = tp->snd_nxt; |
| |
| tcp_for_write_queue(skb, sk) { |
| u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; |
| |
| if (skb == tcp_send_head(sk)) |
| break; |
| if (cnt == tp->retrans_out) |
| break; |
| if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) |
| continue; |
| |
| if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) |
| continue; |
| |
| if (after(received_upto, ack_seq) && |
| (tcp_is_fack(tp) || |
| !before(received_upto, |
| ack_seq + tp->reordering * tp->mss_cache))) { |
| TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; |
| tp->retrans_out -= tcp_skb_pcount(skb); |
| |
| /* clear lost hint */ |
| tp->retransmit_skb_hint = NULL; |
| |
| if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { |
| tp->lost_out += tcp_skb_pcount(skb); |
| TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| flag |= FLAG_DATA_SACKED; |
| NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); |
| } |
| } else { |
| if (before(ack_seq, new_low_seq)) |
| new_low_seq = ack_seq; |
| cnt += tcp_skb_pcount(skb); |
| } |
| } |
| |
| if (tp->retrans_out) |
| tp->lost_retrans_low = new_low_seq; |
| |
| return flag; |
| } |
| |
| static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb, |
| struct tcp_sack_block_wire *sp, int num_sacks, |
| u32 prior_snd_una) |
| { |
| u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq)); |
| u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq)); |
| int dup_sack = 0; |
| |
| if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { |
| dup_sack = 1; |
| tcp_dsack_seen(tp); |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); |
| } else if (num_sacks > 1) { |
| u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq)); |
| u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq)); |
| |
| if (!after(end_seq_0, end_seq_1) && |
| !before(start_seq_0, start_seq_1)) { |
| dup_sack = 1; |
| tcp_dsack_seen(tp); |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); |
| } |
| } |
| |
| /* D-SACK for already forgotten data... Do dumb counting. */ |
| if (dup_sack && |
| !after(end_seq_0, prior_snd_una) && |
| after(end_seq_0, tp->undo_marker)) |
| tp->undo_retrans--; |
| |
| return dup_sack; |
| } |
| |
| /* Check if skb is fully within the SACK block. In presence of GSO skbs, |
| * the incoming SACK may not exactly match but we can find smaller MSS |
| * aligned portion of it that matches. Therefore we might need to fragment |
| * which may fail and creates some hassle (caller must handle error case |
| * returns). |
| */ |
| int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, |
| u32 start_seq, u32 end_seq) |
| { |
| int in_sack, err; |
| unsigned int pkt_len; |
| |
| in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && |
| !before(end_seq, TCP_SKB_CB(skb)->end_seq); |
| |
| if (tcp_skb_pcount(skb) > 1 && !in_sack && |
| after(TCP_SKB_CB(skb)->end_seq, start_seq)) { |
| |
| in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); |
| |
| if (!in_sack) |
| pkt_len = start_seq - TCP_SKB_CB(skb)->seq; |
| else |
| pkt_len = end_seq - TCP_SKB_CB(skb)->seq; |
| err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size); |
| if (err < 0) |
| return err; |
| } |
| |
| return in_sack; |
| } |
| |
| static int |
| tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| unsigned char *ptr = (skb_transport_header(ack_skb) + |
| TCP_SKB_CB(ack_skb)->sacked); |
| struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2); |
| struct sk_buff *cached_skb; |
| int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; |
| int reord = tp->packets_out; |
| int prior_fackets; |
| u32 highest_sack_end_seq = tp->lost_retrans_low; |
| int flag = 0; |
| int found_dup_sack = 0; |
| int cached_fack_count; |
| int i; |
| int first_sack_index; |
| |
| if (!tp->sacked_out) { |
| if (WARN_ON(tp->fackets_out)) |
| tp->fackets_out = 0; |
| tp->highest_sack = tp->snd_una; |
| } |
| prior_fackets = tp->fackets_out; |
| |
| found_dup_sack = tcp_check_dsack(tp, ack_skb, sp, |
| num_sacks, prior_snd_una); |
| if (found_dup_sack) |
| flag |= FLAG_DSACKING_ACK; |
| |
| /* Eliminate too old ACKs, but take into |
| * account more or less fresh ones, they can |
| * contain valid SACK info. |
| */ |
| if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) |
| return 0; |
| |
| /* SACK fastpath: |
| * if the only SACK change is the increase of the end_seq of |
| * the first block then only apply that SACK block |
| * and use retrans queue hinting otherwise slowpath */ |
| flag = 1; |
| for (i = 0; i < num_sacks; i++) { |
| __be32 start_seq = sp[i].start_seq; |
| __be32 end_seq = sp[i].end_seq; |
| |
| if (i == 0) { |
| if (tp->recv_sack_cache[i].start_seq != start_seq) |
| flag = 0; |
| } else { |
| if ((tp->recv_sack_cache[i].start_seq != start_seq) || |
| (tp->recv_sack_cache[i].end_seq != end_seq)) |
| flag = 0; |
| } |
| tp->recv_sack_cache[i].start_seq = start_seq; |
| tp->recv_sack_cache[i].end_seq = end_seq; |
| } |
| /* Clear the rest of the cache sack blocks so they won't match mistakenly. */ |
| for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) { |
| tp->recv_sack_cache[i].start_seq = 0; |
| tp->recv_sack_cache[i].end_seq = 0; |
| } |
| |
| first_sack_index = 0; |
| if (flag) |
| num_sacks = 1; |
| else { |
| int j; |
| tp->fastpath_skb_hint = NULL; |
| |
| /* order SACK blocks to allow in order walk of the retrans queue */ |
| for (i = num_sacks-1; i > 0; i--) { |
| for (j = 0; j < i; j++){ |
| if (after(ntohl(sp[j].start_seq), |
| ntohl(sp[j+1].start_seq))){ |
| struct tcp_sack_block_wire tmp; |
| |
| tmp = sp[j]; |
| sp[j] = sp[j+1]; |
| sp[j+1] = tmp; |
| |
| /* Track where the first SACK block goes to */ |
| if (j == first_sack_index) |
| first_sack_index = j+1; |
| } |
| |
| } |
| } |
| } |
| |
| /* clear flag as used for different purpose in following code */ |
| flag = 0; |
| |
| /* Use SACK fastpath hint if valid */ |
| cached_skb = tp->fastpath_skb_hint; |
| cached_fack_count = tp->fastpath_cnt_hint; |
| if (!cached_skb) { |
| cached_skb = tcp_write_queue_head(sk); |
| cached_fack_count = 0; |
| } |
| |
| for (i=0; i<num_sacks; i++, sp++) { |
| struct sk_buff *skb; |
| __u32 start_seq = ntohl(sp->start_seq); |
| __u32 end_seq = ntohl(sp->end_seq); |
| int fack_count; |
| int dup_sack = (found_dup_sack && (i == first_sack_index)); |
| |
| if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) { |
| if (dup_sack) { |
| if (!tp->undo_marker) |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO); |
| else |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD); |
| } else { |
| /* Don't count olds caused by ACK reordering */ |
| if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && |
| !after(end_seq, tp->snd_una)) |
| continue; |
| NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD); |
| } |
| continue; |
| } |
| |
| skb = cached_skb; |
| fack_count = cached_fack_count; |
| |
| /* Event "B" in the comment above. */ |
| if (after(end_seq, tp->high_seq)) |
| flag |= FLAG_DATA_LOST; |
| |
| tcp_for_write_queue_from(skb, sk) { |
| int in_sack; |
| u8 sacked; |
| |
| if (skb == tcp_send_head(sk)) |
| break; |
| |
| cached_skb = skb; |
| cached_fack_count = fack_count; |
| if (i == first_sack_index) { |
| tp->fastpath_skb_hint = skb; |
| tp->fastpath_cnt_hint = fack_count; |
| } |
| |
| /* The retransmission queue is always in order, so |
| * we can short-circuit the walk early. |
| */ |
| if (!before(TCP_SKB_CB(skb)->seq, end_seq)) |
| break; |
| |
| in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq); |
| if (in_sack < 0) |
| break; |
| |
| fack_count += tcp_skb_pcount(skb); |
| |
| sacked = TCP_SKB_CB(skb)->sacked; |
| |
| /* Account D-SACK for retransmitted packet. */ |
| if ((dup_sack && in_sack) && |
| (sacked & TCPCB_RETRANS) && |
| after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) |
| tp->undo_retrans--; |
| |
| /* The frame is ACKed. */ |
| if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { |
| if (sacked&TCPCB_RETRANS) { |
| if ((dup_sack && in_sack) && |
| (sacked&TCPCB_SACKED_ACKED)) |
| reord = min(fack_count, reord); |
| } else { |
| /* If it was in a hole, we detected reordering. */ |
| if (fack_count < prior_fackets && |
| !(sacked&TCPCB_SACKED_ACKED)) |
| reord = min(fack_count, reord); |
| } |
| |
| /* Nothing to do; acked frame is about to be dropped. */ |
| continue; |
| } |
| |
| if (!in_sack) |
| continue; |
| |
| if (!(sacked&TCPCB_SACKED_ACKED)) { |
| if (sacked & TCPCB_SACKED_RETRANS) { |
| /* If the segment is not tagged as lost, |
| * we do not clear RETRANS, believing |
| * that retransmission is still in flight. |
| */ |
| if (sacked & TCPCB_LOST) { |
| TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); |
| tp->lost_out -= tcp_skb_pcount(skb); |
| tp->retrans_out -= tcp_skb_pcount(skb); |
| |
| /* clear lost hint */ |
| tp->retransmit_skb_hint = NULL; |
| } |
| } else { |
| /* New sack for not retransmitted frame, |
| * which was in hole. It is reordering. |
| */ |
| if (!(sacked & TCPCB_RETRANS) && |
| fack_count < prior_fackets) |
| reord = min(fack_count, reord); |
| |
| if (sacked & TCPCB_LOST) { |
| TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; |
| tp->lost_out -= tcp_skb_pcount(skb); |
| |
| /* clear lost hint */ |
| tp->retransmit_skb_hint = NULL; |
| } |
| /* SACK enhanced F-RTO detection. |
| * Set flag if and only if non-rexmitted |
| * segments below frto_highmark are |
| * SACKed (RFC4138; Appendix B). |
| * Clearing correct due to in-order walk |
| */ |
| if (after(end_seq, tp->frto_highmark)) { |
| flag &= ~FLAG_ONLY_ORIG_SACKED; |
| } else { |
| if (!(sacked & TCPCB_RETRANS)) |
| flag |= FLAG_ONLY_ORIG_SACKED; |
| } |
| } |
| |
| TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; |
| flag |= FLAG_DATA_SACKED; |
| tp->sacked_out += tcp_skb_pcount(skb); |
| |
| if (fack_count > tp->fackets_out) |
| tp->fackets_out = fack_count; |
| |
| if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) { |
| tp->highest_sack = TCP_SKB_CB(skb)->seq; |
| highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq; |
| } |
| } else { |
| if (dup_sack && (sacked&TCPCB_RETRANS)) |
| reord = min(fack_count, reord); |
| } |
| |
| /* D-SACK. We can detect redundant retransmission |
| * in S|R and plain R frames and clear it. |
| * undo_retrans is decreased above, L|R frames |
| * are accounted above as well. |
| */ |
| if (dup_sack && |
| (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { |
| TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; |
| tp->retrans_out -= tcp_skb_pcount(skb); |
| tp->retransmit_skb_hint = NULL; |
| } |
| } |
| } |
| |
| if (tp->retrans_out && |
| after(highest_sack_end_seq, tp->lost_retrans_low) && |
| icsk->icsk_ca_state == TCP_CA_Recovery) |
| flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq); |
| |
| tcp_verify_left_out(tp); |
| |
| if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss && |
| (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) |
| tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); |
| |
| #if FASTRETRANS_DEBUG > 0 |
| BUG_TRAP((int)tp->sacked_out >= 0); |
| BUG_TRAP((int)tp->lost_out >= 0); |
| BUG_TRAP((int)tp->retrans_out >= 0); |
| BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); |
| #endif |
| return flag; |
| } |
| |
| /* If we receive more dupacks than we expected counting segments |
| * in assumption of absent reordering, interpret this as reordering. |
| * The only another reason could be bug in receiver TCP. |
| */ |
| static void tcp_check_reno_reordering(struct sock *sk, const int addend) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| u32 holes; |
| |
| holes = max(tp->lost_out, 1U); |
| holes = min(holes, tp->packets_out); |
| |
| if ((tp->sacked_out + holes) > tp->packets_out) { |
| tp->sacked_out = tp->packets_out - holes; |
| tcp_update_reordering(sk, tp->packets_out + addend, 0); |
| } |
| } |
| |
| /* Emulate SACKs for SACKless connection: account for a new dupack. */ |
| |
| static void tcp_add_reno_sack(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| tp->sacked_out++; |
| tcp_check_reno_reordering(sk, 0); |
| tcp_verify_left_out(tp); |
| } |
| |
| /* Account for ACK, ACKing some data in Reno Recovery phase. */ |
| |
| static void tcp_remove_reno_sacks(struct sock *sk, int acked) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (acked > 0) { |
| /* One ACK acked hole. The rest eat duplicate ACKs. */ |
| if (acked-1 >= tp->sacked_out) |
| tp->sacked_out = 0; |
| else |
| tp->sacked_out -= acked-1; |
| } |
| tcp_check_reno_reordering(sk, acked); |
| tcp_verify_left_out(tp); |
| } |
| |
| static inline void tcp_reset_reno_sack(struct tcp_sock *tp) |
| { |
| tp->sacked_out = 0; |
| } |
| |
| /* F-RTO can only be used if TCP has never retransmitted anything other than |
| * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) |
| */ |
| int tcp_use_frto(struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| |
| if (!sysctl_tcp_frto) |
| return 0; |
| |
| if (IsSackFrto()) |
| return 1; |
| |
| /* Avoid expensive walking of rexmit queue if possible */ |
| if (tp->retrans_out > 1) |
| return 0; |
| |
| skb = tcp_write_queue_head(sk); |
| skb = tcp_write_queue_next(sk, skb); /* Skips head */ |
| tcp_for_write_queue_from(skb, sk) { |
| if (skb == tcp_send_head(sk)) |
| break; |
| if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) |
| return 0; |
| /* Short-circuit when first non-SACKed skb has been checked */ |
| if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) |
| break; |
| } |
| return 1; |
| } |
| |
| /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO |
| * recovery a bit and use heuristics in tcp_process_frto() to detect if |
| * the RTO was spurious. Only clear SACKED_RETRANS of the head here to |
| * keep retrans_out counting accurate (with SACK F-RTO, other than head |
| * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS |
| * bits are handled if the Loss state is really to be entered (in |
| * tcp_enter_frto_loss). |
| * |
| * Do like tcp_enter_loss() would; when RTO expires the second time it |
| * does: |
| * "Reduce ssthresh if it has not yet been made inside this window." |
| */ |
| void tcp_enter_frto(struct sock *sk) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| |
| if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || |
| tp->snd_una == tp->high_seq || |
| ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && |
| !icsk->icsk_retransmits)) { |
| tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| /* Our state is too optimistic in ssthresh() call because cwnd |
| * is not reduced until tcp_enter_frto_loss() when previous FRTO |
| * recovery has not yet completed. Pattern would be this: RTO, |
| * Cumulative ACK, RTO (2xRTO for the same segment does not end |
| * up here twice). |
| * RFC4138 should be more specific on what to do, even though |
| * RTO is quite unlikely to occur after the first Cumulative ACK |
| * due to back-off and complexity of triggering events ... |
| */ |
| if (tp->frto_counter) { |
| u32 stored_cwnd; |
| stored_cwnd = tp->snd_cwnd; |
| tp->snd_cwnd = 2; |
| tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); |
| tp->snd_cwnd = stored_cwnd; |
| } else { |
| tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); |
| } |
| /* ... in theory, cong.control module could do "any tricks" in |
| * ssthresh(), which means that ca_state, lost bits and lost_out |
| * counter would have to be faked before the call occurs. We |
| * consider that too expensive, unlikely and hacky, so modules |
| * using these in ssthresh() must deal these incompatibility |
| * issues if they receives CA_EVENT_FRTO and frto_counter != 0 |
| */ |
| tcp_ca_event(sk, CA_EVENT_FRTO); |
| } |
| |
| tp->undo_marker = tp->snd_una; |
| tp->undo_retrans = 0; |
| |
| skb = tcp_write_queue_head(sk); |
| if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) |
| tp->undo_marker = 0; |
| if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { |
| TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; |
| tp->retrans_out -= tcp_skb_pcount(skb); |
| } |
| tcp_verify_left_out(tp); |
| |
| /* Earlier loss recovery underway (see RFC4138; Appendix B). |
| * The last condition is necessary at least in tp->frto_counter case. |
| */ |
| if (IsSackFrto() && (tp->frto_counter || |
| ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && |
| after(tp->high_seq, tp->snd_una)) { |
| tp->frto_highmark = tp->high_seq; |
| } else { |
| tp->frto_highmark = tp->snd_nxt; |
| } |
| tcp_set_ca_state(sk, TCP_CA_Disorder); |
| tp->high_seq = tp->snd_nxt; |
| tp->frto_counter = 1; |
| } |
| |
| /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, |
| * which indicates that we should follow the traditional RTO recovery, |
| * i.e. mark everything lost and do go-back-N retransmission. |
| */ |
| static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| |
| tp->lost_out = 0; |
| tp->retrans_out = 0; |
| if (tcp_is_reno(tp)) |
| tcp_reset_reno_sack(tp); |
| |
| tcp_for_write_queue(skb, sk) { |
| if (skb == tcp_send_head(sk)) |
| break; |
| /* |
| * Count the retransmission made on RTO correctly (only when |
| * waiting for the first ACK and did not get it)... |
| */ |
| if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) { |
| /* For some reason this R-bit might get cleared? */ |
| if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) |
| tp->retrans_out += tcp_skb_pcount(skb); |
| /* ...enter this if branch just for the first segment */ |
| flag |= FLAG_DATA_ACKED; |
| } else { |
| if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) |
| tp->undo_marker = 0; |
| TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); |
| } |
| |
| /* Don't lost mark skbs that were fwd transmitted after RTO */ |
| if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) && |
| !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) { |
| TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| tp->lost_out += tcp_skb_pcount(skb); |
| } |
| } |
| tcp_verify_left_out(tp); |
| |
| tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; |
| tp->snd_cwnd_cnt = 0; |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| tp->frto_counter = 0; |
| tp->bytes_acked = 0; |
| |
| tp->reordering = min_t(unsigned int, tp->reordering, |
| sysctl_tcp_reordering); |
| tcp_set_ca_state(sk, TCP_CA_Loss); |
| tp->high_seq = tp->frto_highmark; |
| TCP_ECN_queue_cwr(tp); |
| |
| tcp_clear_retrans_hints_partial(tp); |
| } |
| |
| static void tcp_clear_retrans_partial(struct tcp_sock *tp) |
| { |
| tp->retrans_out = 0; |
| tp->lost_out = 0; |
| |
| tp->undo_marker = 0; |
| tp->undo_retrans = 0; |
| } |
| |
| void tcp_clear_retrans(struct tcp_sock *tp) |
| { |
| tcp_clear_retrans_partial(tp); |
| |
| tp->fackets_out = 0; |
| tp->sacked_out = 0; |
| } |
| |
| /* Enter Loss state. If "how" is not zero, forget all SACK information |
| * and reset tags completely, otherwise preserve SACKs. If receiver |
| * dropped its ofo queue, we will know this due to reneging detection. |
| */ |
| void tcp_enter_loss(struct sock *sk, int how) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| |
| /* Reduce ssthresh if it has not yet been made inside this window. */ |
| if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || |
| (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { |
| tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); |
| tcp_ca_event(sk, CA_EVENT_LOSS); |
| } |
| tp->snd_cwnd = 1; |
| tp->snd_cwnd_cnt = 0; |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| |
| tp->bytes_acked = 0; |
| tcp_clear_retrans_partial(tp); |
| |
| if (tcp_is_reno(tp)) |
| tcp_reset_reno_sack(tp); |
| |
| if (!how) { |
| /* Push undo marker, if it was plain RTO and nothing |
| * was retransmitted. */ |
| tp->undo_marker = tp->snd_una; |
| tcp_clear_retrans_hints_partial(tp); |
| } else { |
| tp->sacked_out = 0; |
| tp->fackets_out = 0; |
| tcp_clear_all_retrans_hints(tp); |
| } |
| |
| tcp_for_write_queue(skb, sk) { |
| if (skb == tcp_send_head(sk)) |
| break; |
| |
| if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) |
| tp->undo_marker = 0; |
| TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; |
| if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { |
| TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; |
| TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| tp->lost_out += tcp_skb_pcount(skb); |
| } |
| } |
| tcp_verify_left_out(tp); |
| |
| tp->reordering = min_t(unsigned int, tp->reordering, |
| sysctl_tcp_reordering); |
| tcp_set_ca_state(sk, TCP_CA_Loss); |
| tp->high_seq = tp->snd_nxt; |
| TCP_ECN_queue_cwr(tp); |
| /* Abort FRTO algorithm if one is in progress */ |
| tp->frto_counter = 0; |
| } |
| |
| static int tcp_check_sack_reneging(struct sock *sk) |
| { |
| struct sk_buff *skb; |
| |
| /* If ACK arrived pointing to a remembered SACK, |
| * it means that our remembered SACKs do not reflect |
| * real state of receiver i.e. |
| * receiver _host_ is heavily congested (or buggy). |
| * Do processing similar to RTO timeout. |
| */ |
| if ((skb = tcp_write_queue_head(sk)) != NULL && |
| (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); |
| |
| tcp_enter_loss(sk, 1); |
| icsk->icsk_retransmits++; |
| tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, |
| icsk->icsk_rto, TCP_RTO_MAX); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int tcp_fackets_out(struct tcp_sock *tp) |
| { |
| return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out; |
| } |
| |
| static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) |
| { |
| return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); |
| } |
| |
| static inline int tcp_head_timedout(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| return tp->packets_out && |
| tcp_skb_timedout(sk, tcp_write_queue_head(sk)); |
| } |
| |
| /* Linux NewReno/SACK/FACK/ECN state machine. |
| * -------------------------------------- |
| * |
| * "Open" Normal state, no dubious events, fast path. |
| * "Disorder" In all the respects it is "Open", |
| * but requires a bit more attention. It is entered when |
| * we see some SACKs or dupacks. It is split of "Open" |
| * mainly to move some processing from fast path to slow one. |
| * "CWR" CWND was reduced due to some Congestion Notification event. |
| * It can be ECN, ICMP source quench, local device congestion. |
| * "Recovery" CWND was reduced, we are fast-retransmitting. |
| * "Loss" CWND was reduced due to RTO timeout or SACK reneging. |
| * |
| * tcp_fastretrans_alert() is entered: |
| * - each incoming ACK, if state is not "Open" |
| * - when arrived ACK is unusual, namely: |
| * * SACK |
| * * Duplicate ACK. |
| * * ECN ECE. |
| * |
| * Counting packets in flight is pretty simple. |
| * |
| * in_flight = packets_out - left_out + retrans_out |
| * |
| * packets_out is SND.NXT-SND.UNA counted in packets. |
| * |
| * retrans_out is number of retransmitted segments. |
| * |
| * left_out is number of segments left network, but not ACKed yet. |
| * |
| * left_out = sacked_out + lost_out |
| * |
| * sacked_out: Packets, which arrived to receiver out of order |
| * and hence not ACKed. With SACKs this number is simply |
| * amount of SACKed data. Even without SACKs |
| * it is easy to give pretty reliable estimate of this number, |
| * counting duplicate ACKs. |
| * |
| * lost_out: Packets lost by network. TCP has no explicit |
| * "loss notification" feedback from network (for now). |
| * It means that this number can be only _guessed_. |
| * Actually, it is the heuristics to predict lossage that |
| * distinguishes different algorithms. |
| * |
| * F.e. after RTO, when all the queue is considered as lost, |
| * lost_out = packets_out and in_flight = retrans_out. |
| * |
| * Essentially, we have now two algorithms counting |
| * lost packets. |
| * |
| * FACK: It is the simplest heuristics. As soon as we decided |
| * that something is lost, we decide that _all_ not SACKed |
| * packets until the most forward SACK are lost. I.e. |
| * lost_out = fackets_out - sacked_out and left_out = fackets_out. |
| * It is absolutely correct estimate, if network does not reorder |
| * packets. And it loses any connection to reality when reordering |
| * takes place. We use FACK by default until reordering |
| * is suspected on the path to this destination. |
| * |
| * NewReno: when Recovery is entered, we assume that one segment |
| * is lost (classic Reno). While we are in Recovery and |
| * a partial ACK arrives, we assume that one more packet |
| * is lost (NewReno). This heuristics are the same in NewReno |
| * and SACK. |
| * |
| * Imagine, that's all! Forget about all this shamanism about CWND inflation |
| * deflation etc. CWND is real congestion window, never inflated, changes |
| * only according to classic VJ rules. |
| * |
| * Really tricky (and requiring careful tuning) part of algorithm |
| * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). |
| * The first determines the moment _when_ we should reduce CWND and, |
| * hence, slow down forward transmission. In fact, it determines the moment |
| * when we decide that hole is caused by loss, rather than by a reorder. |
| * |
| * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill |
| * holes, caused by lost packets. |
| * |
| * And the most logically complicated part of algorithm is undo |
| * heuristics. We detect false retransmits due to both too early |
| * fast retransmit (reordering) and underestimated RTO, analyzing |
| * timestamps and D-SACKs. When we detect that some segments were |
| * retransmitted by mistake and CWND reduction was wrong, we undo |
| * window reduction and abort recovery phase. This logic is hidden |
| * inside several functions named tcp_try_undo_<something>. |
| */ |
| |
| /* This function decides, when we should leave Disordered state |
| * and enter Recovery phase, reducing congestion window. |
| * |
| * Main question: may we further continue forward transmission |
| * with the same cwnd? |
| */ |
| static int tcp_time_to_recover(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| __u32 packets_out; |
| |
| /* Do not perform any recovery during FRTO algorithm */ |
| if (tp->frto_counter) |
| return 0; |
| |
| /* Trick#1: The loss is proven. */ |
| if (tp->lost_out) |
| return 1; |
| |
| /* Not-A-Trick#2 : Classic rule... */ |
| if (tcp_fackets_out(tp) > tp->reordering) |
| return 1; |
| |
| /* Trick#3 : when we use RFC2988 timer restart, fast |
| * retransmit can be triggered by timeout of queue head. |
| */ |
| if (tcp_head_timedout(sk)) |
| return 1; |
| |
| /* Trick#4: It is still not OK... But will it be useful to delay |
| * recovery more? |
| */ |
| packets_out = tp->packets_out; |
| if (packets_out <= tp->reordering && |
| tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && |
| !tcp_may_send_now(sk)) { |
| /* We have nothing to send. This connection is limited |
| * either by receiver window or by application. |
| */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* RFC: This is from the original, I doubt that this is necessary at all: |
| * clear xmit_retrans hint if seq of this skb is beyond hint. How could we |
| * retransmitted past LOST markings in the first place? I'm not fully sure |
| * about undo and end of connection cases, which can cause R without L? |
| */ |
| static void tcp_verify_retransmit_hint(struct tcp_sock *tp, |
| struct sk_buff *skb) |
| { |
| if ((tp->retransmit_skb_hint != NULL) && |
| before(TCP_SKB_CB(skb)->seq, |
| TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) |
| tp->retransmit_skb_hint = NULL; |
| } |
| |
| /* Mark head of queue up as lost. */ |
| static void tcp_mark_head_lost(struct sock *sk, int packets) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| int cnt; |
| |
| BUG_TRAP(packets <= tp->packets_out); |
| if (tp->lost_skb_hint) { |
| skb = tp->lost_skb_hint; |
| cnt = tp->lost_cnt_hint; |
| } else { |
| skb = tcp_write_queue_head(sk); |
| cnt = 0; |
| } |
| |
| tcp_for_write_queue_from(skb, sk) { |
| if (skb == tcp_send_head(sk)) |
| break; |
| /* TODO: do this better */ |
| /* this is not the most efficient way to do this... */ |
| tp->lost_skb_hint = skb; |
| tp->lost_cnt_hint = cnt; |
| cnt += tcp_skb_pcount(skb); |
| if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) |
| break; |
| if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { |
| TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| tp->lost_out += tcp_skb_pcount(skb); |
| tcp_verify_retransmit_hint(tp, skb); |
| } |
| } |
| tcp_verify_left_out(tp); |
| } |
| |
| /* Account newly detected lost packet(s) */ |
| |
| static void tcp_update_scoreboard(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tcp_is_fack(tp)) { |
| int lost = tp->fackets_out - tp->reordering; |
| if (lost <= 0) |
| lost = 1; |
| tcp_mark_head_lost(sk, lost); |
| } else { |
| tcp_mark_head_lost(sk, 1); |
| } |
| |
| /* New heuristics: it is possible only after we switched |
| * to restart timer each time when something is ACKed. |
| * Hence, we can detect timed out packets during fast |
| * retransmit without falling to slow start. |
| */ |
| if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) { |
| struct sk_buff *skb; |
| |
| skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint |
| : tcp_write_queue_head(sk); |
| |
| tcp_for_write_queue_from(skb, sk) { |
| if (skb == tcp_send_head(sk)) |
| break; |
| if (!tcp_skb_timedout(sk, skb)) |
| break; |
| |
| if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { |
| TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| tp->lost_out += tcp_skb_pcount(skb); |
| tcp_verify_retransmit_hint(tp, skb); |
| } |
| } |
| |
| tp->scoreboard_skb_hint = skb; |
| |
| tcp_verify_left_out(tp); |
| } |
| } |
| |
| /* CWND moderation, preventing bursts due to too big ACKs |
| * in dubious situations. |
| */ |
| static inline void tcp_moderate_cwnd(struct tcp_sock *tp) |
| { |
| tp->snd_cwnd = min(tp->snd_cwnd, |
| tcp_packets_in_flight(tp)+tcp_max_burst(tp)); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| } |
| |
| /* Lower bound on congestion window is slow start threshold |
| * unless congestion avoidance choice decides to overide it. |
| */ |
| static inline u32 tcp_cwnd_min(const struct sock *sk) |
| { |
| const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; |
| |
| return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; |
| } |
| |
| /* Decrease cwnd each second ack. */ |
| static void tcp_cwnd_down(struct sock *sk, int flag) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int decr = tp->snd_cwnd_cnt + 1; |
| |
| if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) || |
| (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) { |
| tp->snd_cwnd_cnt = decr&1; |
| decr >>= 1; |
| |
| if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) |
| tp->snd_cwnd -= decr; |
| |
| tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| } |
| } |
| |
| /* Nothing was retransmitted or returned timestamp is less |
| * than timestamp of the first retransmission. |
| */ |
| static inline int tcp_packet_delayed(struct tcp_sock *tp) |
| { |
| return !tp->retrans_stamp || |
| (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && |
| (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); |
| } |
| |
| /* Undo procedures. */ |
| |
| #if FASTRETRANS_DEBUG > 1 |
| static void DBGUNDO(struct sock *sk, const char *msg) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_sock *inet = inet_sk(sk); |
| |
| printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", |
| msg, |
| NIPQUAD(inet->daddr), ntohs(inet->dport), |
| tp->snd_cwnd, tcp_left_out(tp), |
| tp->snd_ssthresh, tp->prior_ssthresh, |
| tp->packets_out); |
| } |
| #else |
| #define DBGUNDO(x...) do { } while (0) |
| #endif |
| |
| static void tcp_undo_cwr(struct sock *sk, const int undo) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tp->prior_ssthresh) { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| if (icsk->icsk_ca_ops->undo_cwnd) |
| tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); |
| else |
| tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); |
| |
| if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { |
| tp->snd_ssthresh = tp->prior_ssthresh; |
| TCP_ECN_withdraw_cwr(tp); |
| } |
| } else { |
| tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); |
| } |
| tcp_moderate_cwnd(tp); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| |
| /* There is something screwy going on with the retrans hints after |
| an undo */ |
| tcp_clear_all_retrans_hints(tp); |
| } |
| |
| static inline int tcp_may_undo(struct tcp_sock *tp) |
| { |
| return tp->undo_marker && |
| (!tp->undo_retrans || tcp_packet_delayed(tp)); |
| } |
| |
| /* People celebrate: "We love our President!" */ |
| static int tcp_try_undo_recovery(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tcp_may_undo(tp)) { |
| /* Happy end! We did not retransmit anything |
| * or our original transmission succeeded. |
| */ |
| DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); |
| tcp_undo_cwr(sk, 1); |
| if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) |
| NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); |
| else |
| NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); |
| tp->undo_marker = 0; |
| } |
| if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { |
| /* Hold old state until something *above* high_seq |
| * is ACKed. For Reno it is MUST to prevent false |
| * fast retransmits (RFC2582). SACK TCP is safe. */ |
| tcp_moderate_cwnd(tp); |
| return 1; |
| } |
| tcp_set_ca_state(sk, TCP_CA_Open); |
| return 0; |
| } |
| |
| /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ |
| static void tcp_try_undo_dsack(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tp->undo_marker && !tp->undo_retrans) { |
| DBGUNDO(sk, "D-SACK"); |
| tcp_undo_cwr(sk, 1); |
| tp->undo_marker = 0; |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); |
| } |
| } |
| |
| /* Undo during fast recovery after partial ACK. */ |
| |
| static int tcp_try_undo_partial(struct sock *sk, int acked) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| /* Partial ACK arrived. Force Hoe's retransmit. */ |
| int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering; |
| |
| if (tcp_may_undo(tp)) { |
| /* Plain luck! Hole if filled with delayed |
| * packet, rather than with a retransmit. |
| */ |
| if (tp->retrans_out == 0) |
| tp->retrans_stamp = 0; |
| |
| tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); |
| |
| DBGUNDO(sk, "Hoe"); |
| tcp_undo_cwr(sk, 0); |
| NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); |
| |
| /* So... Do not make Hoe's retransmit yet. |
| * If the first packet was delayed, the rest |
| * ones are most probably delayed as well. |
| */ |
| failed = 0; |
| } |
| return failed; |
| } |
| |
| /* Undo during loss recovery after partial ACK. */ |
| static int tcp_try_undo_loss(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tcp_may_undo(tp)) { |
| struct sk_buff *skb; |
| tcp_for_write_queue(skb, sk) { |
| if (skb == tcp_send_head(sk)) |
| break; |
| TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; |
| } |
| |
| tcp_clear_all_retrans_hints(tp); |
| |
| DBGUNDO(sk, "partial loss"); |
| tp->lost_out = 0; |
| tcp_undo_cwr(sk, 1); |
| NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); |
| inet_csk(sk)->icsk_retransmits = 0; |
| tp->undo_marker = 0; |
| if (tcp_is_sack(tp)) |
| tcp_set_ca_state(sk, TCP_CA_Open); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline void tcp_complete_cwr(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); |
| } |
| |
| static void tcp_try_to_open(struct sock *sk, int flag) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| tcp_verify_left_out(tp); |
| |
| if (tp->retrans_out == 0) |
| tp->retrans_stamp = 0; |
| |
| if (flag&FLAG_ECE) |
| tcp_enter_cwr(sk, 1); |
| |
| if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { |
| int state = TCP_CA_Open; |
| |
| if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) |
| state = TCP_CA_Disorder; |
| |
| if (inet_csk(sk)->icsk_ca_state != state) { |
| tcp_set_ca_state(sk, state); |
| tp->high_seq = tp->snd_nxt; |
| } |
| tcp_moderate_cwnd(tp); |
| } else { |
| tcp_cwnd_down(sk, flag); |
| } |
| } |
| |
| static void tcp_mtup_probe_failed(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; |
| icsk->icsk_mtup.probe_size = 0; |
| } |
| |
| static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| /* FIXME: breaks with very large cwnd */ |
| tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| tp->snd_cwnd = tp->snd_cwnd * |
| tcp_mss_to_mtu(sk, tp->mss_cache) / |
| icsk->icsk_mtup.probe_size; |
| tp->snd_cwnd_cnt = 0; |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| tp->rcv_ssthresh = tcp_current_ssthresh(sk); |
| |
| icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; |
| icsk->icsk_mtup.probe_size = 0; |
| tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| } |
| |
| |
| /* Process an event, which can update packets-in-flight not trivially. |
| * Main goal of this function is to calculate new estimate for left_out, |
| * taking into account both packets sitting in receiver's buffer and |
| * packets lost by network. |
| * |
| * Besides that it does CWND reduction, when packet loss is detected |
| * and changes state of machine. |
| * |
| * It does _not_ decide what to send, it is made in function |
| * tcp_xmit_retransmit_queue(). |
| */ |
| static void |
| tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP)); |
| int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) && |
| (tp->fackets_out > tp->reordering)); |
| |
| /* Some technical things: |
| * 1. Reno does not count dupacks (sacked_out) automatically. */ |
| if (!tp->packets_out) |
| tp->sacked_out = 0; |
| |
| if (WARN_ON(!tp->sacked_out && tp->fackets_out)) |
| tp->fackets_out = 0; |
| |
| /* Now state machine starts. |
| * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ |
| if (flag&FLAG_ECE) |
| tp->prior_ssthresh = 0; |
| |
| /* B. In all the states check for reneging SACKs. */ |
| if (tp->sacked_out && tcp_check_sack_reneging(sk)) |
| return; |
| |
| /* C. Process data loss notification, provided it is valid. */ |
| if ((flag&FLAG_DATA_LOST) && |
| before(tp->snd_una, tp->high_seq) && |
| icsk->icsk_ca_state != TCP_CA_Open && |
| tp->fackets_out > tp->reordering) { |
| tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); |
| NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); |
| } |
| |
| /* D. Check consistency of the current state. */ |
| tcp_verify_left_out(tp); |
| |
| /* E. Check state exit conditions. State can be terminated |
| * when high_seq is ACKed. */ |
| if (icsk->icsk_ca_state == TCP_CA_Open) { |
| BUG_TRAP(tp->retrans_out == 0); |
| tp->retrans_stamp = 0; |
| } else if (!before(tp->snd_una, tp->high_seq)) { |
| switch (icsk->icsk_ca_state) { |
| case TCP_CA_Loss: |
| icsk->icsk_retransmits = 0; |
| if (tcp_try_undo_recovery(sk)) |
| return; |
| break; |
| |
| case TCP_CA_CWR: |
| /* CWR is to be held something *above* high_seq |
| * is ACKed for CWR bit to reach receiver. */ |
| if (tp->snd_una != tp->high_seq) { |
| tcp_complete_cwr(sk); |
| tcp_set_ca_state(sk, TCP_CA_Open); |
| } |
| break; |
| |
| case TCP_CA_Disorder: |
| tcp_try_undo_dsack(sk); |
| if (!tp->undo_marker || |
| /* For SACK case do not Open to allow to undo |
| * catching for all duplicate ACKs. */ |
| tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { |
| tp->undo_marker = 0; |
| tcp_set_ca_state(sk, TCP_CA_Open); |
| } |
| break; |
| |
| case TCP_CA_Recovery: |
| if (tcp_is_reno(tp)) |
| tcp_reset_reno_sack(tp); |
| if (tcp_try_undo_recovery(sk)) |
| return; |
| tcp_complete_cwr(sk); |
| break; |
| } |
| } |
| |
| /* F. Process state. */ |
| switch (icsk->icsk_ca_state) { |
| case TCP_CA_Recovery: |
| if (!(flag & FLAG_SND_UNA_ADVANCED)) { |
| if (tcp_is_reno(tp) && is_dupack) |
| tcp_add_reno_sack(sk); |
| } else |
| do_lost = tcp_try_undo_partial(sk, pkts_acked); |
| break; |
| case TCP_CA_Loss: |
| if (flag&FLAG_DATA_ACKED) |
| icsk->icsk_retransmits = 0; |
| if (!tcp_try_undo_loss(sk)) { |
| tcp_moderate_cwnd(tp); |
| tcp_xmit_retransmit_queue(sk); |
| return; |
| } |
| if (icsk->icsk_ca_state != TCP_CA_Open) |
| return; |
| /* Loss is undone; fall through to processing in Open state. */ |
| default: |
| if (tcp_is_reno(tp)) { |
| if (flag & FLAG_SND_UNA_ADVANCED) |
| tcp_reset_reno_sack(tp); |
| if (is_dupack) |
| tcp_add_reno_sack(sk); |
| } |
| |
| if (icsk->icsk_ca_state == TCP_CA_Disorder) |
| tcp_try_undo_dsack(sk); |
| |
| if (!tcp_time_to_recover(sk)) { |
| tcp_try_to_open(sk, flag); |
| return; |
| } |
| |
| /* MTU probe failure: don't reduce cwnd */ |
| if (icsk->icsk_ca_state < TCP_CA_CWR && |
| icsk->icsk_mtup.probe_size && |
| tp->snd_una == tp->mtu_probe.probe_seq_start) { |
| tcp_mtup_probe_failed(sk); |
| /* Restores the reduction we did in tcp_mtup_probe() */ |
| tp->snd_cwnd++; |
| tcp_simple_retransmit(sk); |
| return; |
| } |
| |
| /* Otherwise enter Recovery state */ |
| |
| if (tcp_is_reno(tp)) |
| NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); |
| else |
| NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); |
| |
| tp->high_seq = tp->snd_nxt; |
| tp->prior_ssthresh = 0; |
| tp->undo_marker = tp->snd_una; |
| tp->undo_retrans = tp->retrans_out; |
| |
| if (icsk->icsk_ca_state < TCP_CA_CWR) { |
| if (!(flag&FLAG_ECE)) |
| tp->prior_ssthresh = tcp_current_ssthresh(sk); |
| tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); |
| TCP_ECN_queue_cwr(tp); |
| } |
| |
| tp->bytes_acked = 0; |
| tp->snd_cwnd_cnt = 0; |
| tcp_set_ca_state(sk, TCP_CA_Recovery); |
| } |
| |
| if (do_lost || tcp_head_timedout(sk)) |
| tcp_update_scoreboard(sk); |
| tcp_cwnd_down(sk, flag); |
| tcp_xmit_retransmit_queue(sk); |
| } |
| |
| /* Read draft-ietf-tcplw-high-performance before mucking |
| * with this code. (Supersedes RFC1323) |
| */ |
| static void tcp_ack_saw_tstamp(struct sock *sk, int flag) |
| { |
| /* RTTM Rule: A TSecr value received in a segment is used to |
| * update the averaged RTT measurement only if the segment |
| * acknowledges some new data, i.e., only if it advances the |
| * left edge of the send window. |
| * |
| * See draft-ietf-tcplw-high-performance-00, section 3.3. |
| * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> |
| * |
| * Changed: reset backoff as soon as we see the first valid sample. |
| * If we do not, we get strongly overestimated rto. With timestamps |
| * samples are accepted even from very old segments: f.e., when rtt=1 |
| * increases to 8, we retransmit 5 times and after 8 seconds delayed |
| * answer arrives rto becomes 120 seconds! If at least one of segments |
| * in window is lost... Voila. --ANK (010210) |
| */ |
| struct tcp_sock *tp = tcp_sk(sk); |
| const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; |
| tcp_rtt_estimator(sk, seq_rtt); |
| tcp_set_rto(sk); |
| inet_csk(sk)->icsk_backoff = 0; |
| tcp_bound_rto(sk); |
| } |
| |
| static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) |
| { |
| /* We don't have a timestamp. Can only use |
| * packets that are not retransmitted to determine |
| * rtt estimates. Also, we must not reset the |
| * backoff for rto until we get a non-retransmitted |
| * packet. This allows us to deal with a situation |
| * where the network delay has increased suddenly. |
| * I.e. Karn's algorithm. (SIGCOMM '87, p5.) |
| */ |
| |
| if (flag & FLAG_RETRANS_DATA_ACKED) |
| return; |
| |
| tcp_rtt_estimator(sk, seq_rtt); |
| tcp_set_rto(sk); |
| inet_csk(sk)->icsk_backoff = 0; |
| tcp_bound_rto(sk); |
| } |
| |
| static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, |
| const s32 seq_rtt) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ |
| if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) |
| tcp_ack_saw_tstamp(sk, flag); |
| else if (seq_rtt >= 0) |
| tcp_ack_no_tstamp(sk, seq_rtt, flag); |
| } |
| |
| static void tcp_cong_avoid(struct sock *sk, u32 ack, |
| u32 in_flight, int good) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good); |
| tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; |
| } |
| |
| /* Restart timer after forward progress on connection. |
| * RFC2988 recommends to restart timer to now+rto. |
| */ |
| static void tcp_rearm_rto(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (!tp->packets_out) { |
| inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); |
| } else { |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); |
| } |
| } |
| |
| /* If we get here, the whole TSO packet has not been acked. */ |
| static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| u32 packets_acked; |
| |
| BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); |
| |
| packets_acked = tcp_skb_pcount(skb); |
| if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) |
| return 0; |
| packets_acked -= tcp_skb_pcount(skb); |
| |
| if (packets_acked) { |
| BUG_ON(tcp_skb_pcount(skb) == 0); |
| BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); |
| } |
| |
| return packets_acked; |
| } |
| |
| /* Remove acknowledged frames from the retransmission queue. If our packet |
| * is before the ack sequence we can discard it as it's confirmed to have |
| * arrived at the other end. |
| */ |
| static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct sk_buff *skb; |
| u32 now = tcp_time_stamp; |
| int fully_acked = 1; |
| int flag = 0; |
| int prior_packets = tp->packets_out; |
| s32 seq_rtt = -1; |
| ktime_t last_ackt = net_invalid_timestamp(); |
| |
| while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { |
| struct tcp_skb_cb *scb = TCP_SKB_CB(skb); |
| u32 end_seq; |
| u32 packets_acked; |
| u8 sacked = scb->sacked; |
| |
| if (after(scb->end_seq, tp->snd_una)) { |
| if (tcp_skb_pcount(skb) == 1 || |
| !after(tp->snd_una, scb->seq)) |
| break; |
| |
| packets_acked = tcp_tso_acked(sk, skb); |
| if (!packets_acked) |
| break; |
| |
| fully_acked = 0; |
| end_seq = tp->snd_una; |
| } else { |
| packets_acked = tcp_skb_pcount(skb); |
| end_seq = scb->end_seq; |
| } |
| |
| /* MTU probing checks */ |
| if (fully_acked && icsk->icsk_mtup.probe_size && |
| !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { |
| tcp_mtup_probe_success(sk, skb); |
| } |
| |
| if (sacked) { |
| if (sacked & TCPCB_RETRANS) { |
| if (sacked & TCPCB_SACKED_RETRANS) |
| tp->retrans_out -= packets_acked; |
| flag |= FLAG_RETRANS_DATA_ACKED; |
| seq_rtt = -1; |
| if ((flag & FLAG_DATA_ACKED) || |
| (packets_acked > 1)) |
| flag |= FLAG_NONHEAD_RETRANS_ACKED; |
| } else if (seq_rtt < 0) { |
| seq_rtt = now - scb->when; |
| if (fully_acked) |
| last_ackt = skb->tstamp; |
| } |
| |
| if (sacked & TCPCB_SACKED_ACKED) |
| tp->sacked_out -= packets_acked; |
| if (sacked & TCPCB_LOST) |
| tp->lost_out -= packets_acked; |
| |
| if ((sacked & TCPCB_URG) && tp->urg_mode && |
| !before(end_seq, tp->snd_up)) |
| tp->urg_mode = 0; |
| } else if (seq_rtt < 0) { |
| seq_rtt = now - scb->when; |
| if (fully_acked) |
| last_ackt = skb->tstamp; |
| } |
| tp->packets_out -= packets_acked; |
| |
| /* Initial outgoing SYN's get put onto the write_queue |
| * just like anything else we transmit. It is not |
| * true data, and if we misinform our callers that |
| * this ACK acks real data, we will erroneously exit |
| * connection startup slow start one packet too |
| * quickly. This is severely frowned upon behavior. |
| */ |
| if (!(scb->flags & TCPCB_FLAG_SYN)) { |
| flag |= FLAG_DATA_ACKED; |
| } else { |
| flag |= FLAG_SYN_ACKED; |
| tp->retrans_stamp = 0; |
| } |
| |
| if (!fully_acked) |
| break; |
| |
| tcp_unlink_write_queue(skb, sk); |
| sk_stream_free_skb(sk, skb); |
| tcp_clear_all_retrans_hints(tp); |
| } |
| |
| if (flag & FLAG_ACKED) { |
| u32 pkts_acked = prior_packets - tp->packets_out; |
| const struct tcp_congestion_ops *ca_ops |
| = inet_csk(sk)->icsk_ca_ops; |
| |
| tcp_ack_update_rtt(sk, flag, seq_rtt); |
| tcp_rearm_rto(sk); |
| |
| tp->fackets_out -= min(pkts_acked, tp->fackets_out); |
| /* hint's skb might be NULL but we don't need to care */ |
| tp->fastpath_cnt_hint -= min_t(u32, pkts_acked, |
| tp->fastpath_cnt_hint); |
| if (tcp_is_reno(tp)) |
| tcp_remove_reno_sacks(sk, pkts_acked); |
| |
| if (ca_ops->pkts_acked) { |
| s32 rtt_us = -1; |
| |
| /* Is the ACK triggering packet unambiguous? */ |
| if (!(flag & FLAG_RETRANS_DATA_ACKED)) { |
| /* High resolution needed and available? */ |
| if (ca_ops->flags & TCP_CONG_RTT_STAMP && |
| !ktime_equal(last_ackt, |
| net_invalid_timestamp())) |
| rtt_us = ktime_us_delta(ktime_get_real(), |
| last_ackt); |
| else if (seq_rtt > 0) |
| rtt_us = jiffies_to_usecs(seq_rtt); |
| } |
| |
| ca_ops->pkts_acked(sk, pkts_acked, rtt_us); |
| } |
| } |
| |
| #if FASTRETRANS_DEBUG > 0 |
| BUG_TRAP((int)tp->sacked_out >= 0); |
| BUG_TRAP((int)tp->lost_out >= 0); |
| BUG_TRAP((int)tp->retrans_out >= 0); |
| if (!tp->packets_out && tcp_is_sack(tp)) { |
| icsk = inet_csk(sk); |
| if (tp->lost_out) { |
| printk(KERN_DEBUG "Leak l=%u %d\n", |
| tp->lost_out, icsk->icsk_ca_state); |
| tp->lost_out = 0; |
| } |
| if (tp->sacked_out) { |
| printk(KERN_DEBUG "Leak s=%u %d\n", |
| tp->sacked_out, icsk->icsk_ca_state); |
| tp->sacked_out = 0; |
| } |
| if (tp->retrans_out) { |
| printk(KERN_DEBUG "Leak r=%u %d\n", |
| tp->retrans_out, icsk->icsk_ca_state); |
| tp->retrans_out = 0; |
| } |
| } |
| #endif |
| *seq_rtt_p = seq_rtt; |
| return flag; |
| } |
| |
| static void tcp_ack_probe(struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| /* Was it a usable window open? */ |
| |
| if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, |
| tp->snd_una + tp->snd_wnd)) { |
| icsk->icsk_backoff = 0; |
| inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); |
| /* Socket must be waked up by subsequent tcp_data_snd_check(). |
| * This function is not for random using! |
| */ |
| } else { |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, |
| min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), |
| TCP_RTO_MAX); |
| } |
| } |
| |
| static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) |
| { |
| return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || |
| inet_csk(sk)->icsk_ca_state != TCP_CA_Open); |
| } |
| |
| static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && |
| !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); |
| } |
| |
| /* Check that window update is acceptable. |
| * The function assumes that snd_una<=ack<=snd_next. |
| */ |
| static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, |
| const u32 ack_seq, const u32 nwin) |
| { |
| return (after(ack, tp->snd_una) || |
| after(ack_seq, tp->snd_wl1) || |
| (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); |
| } |
| |
| /* Update our send window. |
| * |
| * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 |
| * and in FreeBSD. NetBSD's one is even worse.) is wrong. |
| */ |
| static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, |
| u32 ack_seq) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int flag = 0; |
| u32 nwin = ntohs(tcp_hdr(skb)->window); |
| |
| if (likely(!tcp_hdr(skb)->syn)) |
| nwin <<= tp->rx_opt.snd_wscale; |
| |
| if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { |
| flag |= FLAG_WIN_UPDATE; |
| tcp_update_wl(tp, ack, ack_seq); |
| |
| if (tp->snd_wnd != nwin) { |
| tp->snd_wnd = nwin; |
| |
| /* Note, it is the only place, where |
| * fast path is recovered for sending TCP. |
| */ |
| tp->pred_flags = 0; |
| tcp_fast_path_check(sk); |
| |
| if (nwin > tp->max_window) { |
| tp->max_window = nwin; |
| tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); |
| } |
| } |
| } |
| |
| tp->snd_una = ack; |
| |
| return flag; |
| } |
| |
| /* A very conservative spurious RTO response algorithm: reduce cwnd and |
| * continue in congestion avoidance. |
| */ |
| static void tcp_conservative_spur_to_response(struct tcp_sock *tp) |
| { |
| tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); |
| tp->snd_cwnd_cnt = 0; |
| tp->bytes_acked = 0; |
| TCP_ECN_queue_cwr(tp); |
| tcp_moderate_cwnd(tp); |
| } |
| |
| /* A conservative spurious RTO response algorithm: reduce cwnd using |
| * rate halving and continue in congestion avoidance. |
| */ |
| static void tcp_ratehalving_spur_to_response(struct sock *sk) |
| { |
| tcp_enter_cwr(sk, 0); |
| } |
| |
| static void tcp_undo_spur_to_response(struct sock *sk, int flag) |
| { |
| if (flag&FLAG_ECE) |
| tcp_ratehalving_spur_to_response(sk); |
| else |
| tcp_undo_cwr(sk, 1); |
| } |
| |
| /* F-RTO spurious RTO detection algorithm (RFC4138) |
| * |
| * F-RTO affects during two new ACKs following RTO (well, almost, see inline |
| * comments). State (ACK number) is kept in frto_counter. When ACK advances |
| * window (but not to or beyond highest sequence sent before RTO): |
| * On First ACK, send two new segments out. |
| * On Second ACK, RTO was likely spurious. Do spurious response (response |
| * algorithm is not part of the F-RTO detection algorithm |
| * given in RFC4138 but can be selected separately). |
| * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss |
| * and TCP falls back to conventional RTO recovery. F-RTO allows overriding |
| * of Nagle, this is done using frto_counter states 2 and 3, when a new data |
| * segment of any size sent during F-RTO, state 2 is upgraded to 3. |
| * |
| * Rationale: if the RTO was spurious, new ACKs should arrive from the |
| * original window even after we transmit two new data segments. |
| * |
| * SACK version: |
| * on first step, wait until first cumulative ACK arrives, then move to |
| * the second step. In second step, the next ACK decides. |
| * |
| * F-RTO is implemented (mainly) in four functions: |
| * - tcp_use_frto() is used to determine if TCP is can use F-RTO |
| * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is |
| * called when tcp_use_frto() showed green light |
| * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm |
| * - tcp_enter_frto_loss() is called if there is not enough evidence |
| * to prove that the RTO is indeed spurious. It transfers the control |
| * from F-RTO to the conventional RTO recovery |
| */ |
| static int tcp_process_frto(struct sock *sk, int flag) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| tcp_verify_left_out(tp); |
| |
| /* Duplicate the behavior from Loss state (fastretrans_alert) */ |
| if (flag&FLAG_DATA_ACKED) |
| inet_csk(sk)->icsk_retransmits = 0; |
| |
| if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || |
| ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) |
| tp->undo_marker = 0; |
| |
| if (!before(tp->snd_una, tp->frto_highmark)) { |
| tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); |
| return 1; |
| } |
| |
| if (!IsSackFrto() || tcp_is_reno(tp)) { |
| /* RFC4138 shortcoming in step 2; should also have case c): |
| * ACK isn't duplicate nor advances window, e.g., opposite dir |
| * data, winupdate |
| */ |
| if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP)) |
| return 1; |
| |
| if (!(flag&FLAG_DATA_ACKED)) { |
| tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), |
| flag); |
| return 1; |
| } |
| } else { |
| if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { |
| /* Prevent sending of new data. */ |
| tp->snd_cwnd = min(tp->snd_cwnd, |
| tcp_packets_in_flight(tp)); |
| return 1; |
| } |
| |
| if ((tp->frto_counter >= 2) && |
| (!(flag&FLAG_FORWARD_PROGRESS) || |
| ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) { |
| /* RFC4138 shortcoming (see comment above) */ |
| if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP)) |
| return 1; |
| |
| tcp_enter_frto_loss(sk, 3, flag); |
| return 1; |
| } |
| } |
| |
| if (tp->frto_counter == 1) { |
| /* Sending of the next skb must be allowed or no FRTO */ |
| if (!tcp_send_head(sk) || |
| after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, |
| tp->snd_una + tp->snd_wnd)) { |
| tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), |
| flag); |
| return 1; |
| } |
| |
| tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; |
| tp->frto_counter = 2; |
| return 1; |
| } else { |
| switch (sysctl_tcp_frto_response) { |
| case 2: |
| tcp_undo_spur_to_response(sk, flag); |
| break; |
| case 1: |
| tcp_conservative_spur_to_response(tp); |
| break; |
| default: |
| tcp_ratehalving_spur_to_response(sk); |
| break; |
| } |
| tp->frto_counter = 0; |
| tp->undo_marker = 0; |
| NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS); |
| } |
| return 0; |
| } |
| |
| /* This routine deals with incoming acks, but not outgoing ones. */ |
| static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| u32 prior_snd_una = tp->snd_una; |
| u32 ack_seq = TCP_SKB_CB(skb)->seq; |
| u32 ack = TCP_SKB_CB(skb)->ack_seq; |
| u32 prior_in_flight; |
| s32 seq_rtt; |
| int prior_packets; |
| int frto_cwnd = 0; |
| |
| /* If the ack is newer than sent or older than previous acks |
| * then we can probably ignore it. |
| */ |
| if (after(ack, tp->snd_nxt)) |
| goto uninteresting_ack; |
| |
| if (before(ack, prior_snd_una)) |
| goto old_ack; |
| |
| if (after(ack, prior_snd_una)) |
| flag |= FLAG_SND_UNA_ADVANCED; |
| |
| if (sysctl_tcp_abc) { |
| if (icsk->icsk_ca_state < TCP_CA_CWR) |
| tp->bytes_acked += ack - prior_snd_una; |
| else if (icsk->icsk_ca_state == TCP_CA_Loss) |
| /* we assume just one segment left network */ |
| tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache); |
| } |
| |
| if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { |
| /* Window is constant, pure forward advance. |
| * No more checks are required. |
| * Note, we use the fact that SND.UNA>=SND.WL2. |
| */ |
| tcp_update_wl(tp, ack, ack_seq); |
| tp->snd_una = ack; |
| flag |= FLAG_WIN_UPDATE; |
| |
| tcp_ca_event(sk, CA_EVENT_FAST_ACK); |
| |
| NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); |
| } else { |
| if (ack_seq != TCP_SKB_CB(skb)->end_seq) |
| flag |= FLAG_DATA; |
| else |
| NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); |
| |
| flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); |
| |
| if (TCP_SKB_CB(skb)->sacked) |
| flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); |
| |
| if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) |
| flag |= FLAG_ECE; |
| |
| tcp_ca_event(sk, CA_EVENT_SLOW_ACK); |
| } |
| |
| /* We passed data and got it acked, remove any soft error |
| * log. Something worked... |
| */ |
| sk->sk_err_soft = 0; |
| tp->rcv_tstamp = tcp_time_stamp; |
| prior_packets = tp->packets_out; |
| if (!prior_packets) |
| goto no_queue; |
| |
| prior_in_flight = tcp_packets_in_flight(tp); |
| |
| /* See if we can take anything off of the retransmit queue. */ |
| flag |= tcp_clean_rtx_queue(sk, &seq_rtt); |
| |
| /* Guarantee sacktag reordering detection against wrap-arounds */ |
| if (before(tp->frto_highmark, tp->snd_una)) |
| tp->frto_highmark = 0; |
| if (tp->frto_counter) |
| frto_cwnd = tcp_process_frto(sk, flag); |
| |
| if (tcp_ack_is_dubious(sk, flag)) { |
| /* Advance CWND, if state allows this. */ |
| if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && |
| tcp_may_raise_cwnd(sk, flag)) |
| tcp_cong_avoid(sk, ack, prior_in_flight, 0); |
| tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag); |
| } else { |
| if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) |
| tcp_cong_avoid(sk, ack, prior_in_flight, 1); |
| } |
| |
| if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) |
| dst_confirm(sk->sk_dst_cache); |
| |
| return 1; |
| |
| no_queue: |
| icsk->icsk_probes_out = 0; |
| |
| /* If this ack opens up a zero window, clear backoff. It was |
| * being used to time the probes, and is probably far higher than |
| * it needs to be for normal retransmission. |
| */ |
| if (tcp_send_head(sk)) |
| tcp_ack_probe(sk); |
| return 1; |
| |
| old_ack: |
| if (TCP_SKB_CB(skb)->sacked) |
| tcp_sacktag_write_queue(sk, skb, prior_snd_una); |
| |
| uninteresting_ack: |
| SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); |
| return 0; |
| } |
| |
| |
| /* Look for tcp options. Normally only called on SYN and SYNACK packets. |
| * But, this can also be called on packets in the established flow when |
| * the fast version below fails. |
| */ |
| void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) |
| { |
| unsigned char *ptr; |
| struct tcphdr *th = tcp_hdr(skb); |
| int length=(th->doff*4)-sizeof(struct tcphdr); |
| |
| ptr = (unsigned char *)(th + 1); |
| opt_rx->saw_tstamp = 0; |
| |
| while (length > 0) { |
| int opcode=*ptr++; |
| int opsize; |
| |
| switch (opcode) { |
| case TCPOPT_EOL: |
| return; |
| case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ |
| length--; |
| continue; |
| default: |
| opsize=*ptr++; |
| if (opsize < 2) /* "silly options" */ |
| return; |
| if (opsize > length) |
| return; /* don't parse partial options */ |
| switch (opcode) { |
| case TCPOPT_MSS: |
| if (opsize==TCPOLEN_MSS && th->syn && !estab) { |
| u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); |
| if (in_mss) { |
| if (opt_rx->user_mss && opt_rx->user_mss < in_mss) |
| in_mss = opt_rx->user_mss; |
| opt_rx->mss_clamp = in_mss; |
| } |
| } |
| break; |
| case TCPOPT_WINDOW: |
| if (opsize==TCPOLEN_WINDOW && th->syn && !estab) |
| if (sysctl_tcp_window_scaling) { |
| __u8 snd_wscale = *(__u8 *) ptr; |
| opt_rx->wscale_ok = 1; |
| if (snd_wscale > 14) { |
| if (net_ratelimit()) |
| printk(KERN_INFO "tcp_parse_options: Illegal window " |
| "scaling value %d >14 received.\n", |
| snd_wscale); |
| snd_wscale = 14; |
| } |
| opt_rx->snd_wscale = snd_wscale; |
| } |
| break; |
| case TCPOPT_TIMESTAMP: |
| if (opsize==TCPOLEN_TIMESTAMP) { |
| if ((estab && opt_rx->tstamp_ok) || |
| (!estab && sysctl_tcp_timestamps)) { |
| opt_rx->saw_tstamp = 1; |
| opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); |
| opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); |
| } |
| } |
| break; |
| case TCPOPT_SACK_PERM: |
| if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { |
| if (sysctl_tcp_sack) { |
| opt_rx->sack_ok = 1; |
| tcp_sack_reset(opt_rx); |
| } |
| } |
| break; |
| |
| case TCPOPT_SACK: |
| if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && |
| !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && |
| opt_rx->sack_ok) { |
| TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; |
| } |
| break; |
| #ifdef CONFIG_TCP_MD5SIG |
| case TCPOPT_MD5SIG: |
| /* |
| * The MD5 Hash has already been |
| * checked (see tcp_v{4,6}_do_rcv()). |
| */ |
| break; |
| #endif |
| } |
| |
| ptr+=opsize-2; |
| length-=opsize; |
| } |
| } |
| } |
| |
| /* Fast parse options. This hopes to only see timestamps. |
| * If it is wrong it falls back on tcp_parse_options(). |
| */ |
| static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, |
| struct tcp_sock *tp) |
| { |
| if (th->doff == sizeof(struct tcphdr)>>2) { |
| tp->rx_opt.saw_tstamp = 0; |
| return 0; |
| } else if (tp->rx_opt.tstamp_ok && |
| th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { |
| __be32 *ptr = (__be32 *)(th + 1); |
| if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
| | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { |
| tp->rx_opt.saw_tstamp = 1; |
| ++ptr; |
| tp->rx_opt.rcv_tsval = ntohl(*ptr); |
| ++ptr; |
| tp->rx_opt.rcv_tsecr = ntohl(*ptr); |
| return 1; |
| } |
| } |
| tcp_parse_options(skb, &tp->rx_opt, 1); |
| return 1; |
| } |
| |
| static inline void tcp_store_ts_recent(struct tcp_sock *tp) |
| { |
| tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; |
| tp->rx_opt.ts_recent_stamp = get_seconds(); |
| } |
| |
| static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) |
| { |
| if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { |
| /* PAWS bug workaround wrt. ACK frames, the PAWS discard |
| * extra check below makes sure this can only happen |
| * for pure ACK frames. -DaveM |
| * |
| * Not only, also it occurs for expired timestamps. |
| */ |
| |
| if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || |
| get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) |
| tcp_store_ts_recent(tp); |
| } |
| } |
| |
| /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM |
| * |
| * It is not fatal. If this ACK does _not_ change critical state (seqs, window) |
| * it can pass through stack. So, the following predicate verifies that |
| * this segment is not used for anything but congestion avoidance or |
| * fast retransmit. Moreover, we even are able to eliminate most of such |
| * second order effects, if we apply some small "replay" window (~RTO) |
| * to timestamp space. |
| * |
| * All these measures still do not guarantee that we reject wrapped ACKs |
| * on networks with high bandwidth, when sequence space is recycled fastly, |
| * but it guarantees that such events will be very rare and do not affect |
| * connection seriously. This doesn't look nice, but alas, PAWS is really |
| * buggy extension. |
| * |
| * [ Later note. Even worse! It is buggy for segments _with_ data. RFC |
| * states that events when retransmit arrives after original data are rare. |
| * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is |
| * the biggest problem on large power networks even with minor reordering. |
| * OK, let's give it small replay window. If peer clock is even 1hz, it is safe |
| * up to bandwidth of 18Gigabit/sec. 8) ] |
| */ |
| |
| static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcphdr *th = tcp_hdr(skb); |
| u32 seq = TCP_SKB_CB(skb)->seq; |
| u32 ack = TCP_SKB_CB(skb)->ack_seq; |
| |
| return (/* 1. Pure ACK with correct sequence number. */ |
| (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && |
| |
| /* 2. ... and duplicate ACK. */ |
| ack == tp->snd_una && |
| |
| /* 3. ... and does not update window. */ |
| !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && |
| |
| /* 4. ... and sits in replay window. */ |
| (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); |
| } |
| |
| static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && |
| get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && |
| !tcp_disordered_ack(sk, skb)); |
| } |
| |
| /* Check segment sequence number for validity. |
| * |
| * Segment controls are considered valid, if the segment |
| * fits to the window after truncation to the window. Acceptability |
| * of data (and SYN, FIN, of course) is checked separately. |
| * See tcp_data_queue(), for example. |
| * |
| * Also, controls (RST is main one) are accepted using RCV.WUP instead |
| * of RCV.NXT. Peer still did not advance his SND.UNA when we |
| * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. |
| * (borrowed from freebsd) |
| */ |
| |
| static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) |
| { |
| return !before(end_seq, tp->rcv_wup) && |
| !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); |
| } |
| |
| /* When we get a reset we do this. */ |
| static void tcp_reset(struct sock *sk) |
| { |
| /* We want the right error as BSD sees it (and indeed as we do). */ |
| switch (sk->sk_state) { |
| case TCP_SYN_SENT: |
| sk->sk_err = ECONNREFUSED; |
| break; |
| case TCP_CLOSE_WAIT: |
| sk->sk_err = EPIPE; |
| break; |
| case TCP_CLOSE: |
| return; |
| default: |
| sk->sk_err = ECONNRESET; |
| } |
| |
| if (!sock_flag(sk, SOCK_DEAD)) |
| sk->sk_error_report(sk); |
| |
| tcp_done(sk); |
| } |
| |
| /* |
| * Process the FIN bit. This now behaves as it is supposed to work |
| * and the FIN takes effect when it is validly part of sequence |
| * space. Not before when we get holes. |
| * |
| * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT |
| * (and thence onto LAST-ACK and finally, CLOSE, we never enter |
| * TIME-WAIT) |
| * |
| * If we are in FINWAIT-1, a received FIN indicates simultaneous |
| * close and we go into CLOSING (and later onto TIME-WAIT) |
| * |
| * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. |
| */ |
| static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| inet_csk_schedule_ack(sk); |
| |
| sk->sk_shutdown |= RCV_SHUTDOWN; |
| sock_set_flag(sk, SOCK_DONE); |
| |
| switch (sk->sk_state) { |
| case TCP_SYN_RECV: |
| case TCP_ESTABLISHED: |
| /* Move to CLOSE_WAIT */ |
| tcp_set_state(sk, TCP_CLOSE_WAIT); |
| inet_csk(sk)->icsk_ack.pingpong = 1; |
| break; |
| |
| case TCP_CLOSE_WAIT: |
| case TCP_CLOSING: |
| /* Received a retransmission of the FIN, do |
| * nothing. |
| */ |
| break; |
| case TCP_LAST_ACK: |
| /* RFC793: Remain in the LAST-ACK state. */ |
| break; |
| |
| case TCP_FIN_WAIT1: |
| /* This case occurs when a simultaneous close |
| * happens, we must ack the received FIN and |
| * enter the CLOSING state. |
| */ |
| tcp_send_ack(sk); |
| tcp_set_state(sk, TCP_CLOSING); |
| break; |
| case TCP_FIN_WAIT2: |
| /* Received a FIN -- send ACK and enter TIME_WAIT. */ |
| tcp_send_ack(sk); |
| tcp_time_wait(sk, TCP_TIME_WAIT, 0); |
| break; |
| default: |
| /* Only TCP_LISTEN and TCP_CLOSE are left, in these |
| * cases we should never reach this piece of code. |
| */ |
| printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", |
| __FUNCTION__, sk->sk_state); |
| break; |
| } |
| |
| /* It _is_ possible, that we have something out-of-order _after_ FIN. |
| * Probably, we should reset in this case. For now drop them. |
| */ |
| __skb_queue_purge(&tp->out_of_order_queue); |
| if (tcp_is_sack(tp)) |
| tcp_sack_reset(&tp->rx_opt); |
| sk_stream_mem_reclaim(sk); |
| |
| if (!sock_flag(sk, SOCK_DEAD)) { |
| sk->sk_state_change(sk); |
| |
| /* Do not send POLL_HUP for half duplex close. */ |
| if (sk->sk_shutdown == SHUTDOWN_MASK || |
| sk->sk_state == TCP_CLOSE) |
| sk_wake_async(sk, 1, POLL_HUP); |
| else |
| sk_wake_async(sk, 1, POLL_IN); |
| } |
| } |
| |
| static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) |
| { |
| if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { |
| if (before(seq, sp->start_seq)) |
| sp->start_seq = seq; |
| if (after(end_seq, sp->end_seq)) |
| sp->end_seq = end_seq; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) |
| { |
| if (tcp_is_sack(tp) && sysctl_tcp_dsack) { |
| if (before(seq, tp->rcv_nxt)) |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); |
| else |
| NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); |
| |
| tp->rx_opt.dsack = 1; |
| tp->duplicate_sack[0].start_seq = seq; |
| tp->duplicate_sack[0].end_seq = end_seq; |
| tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); |
| } |
| } |
| |
| static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) |
| { |
| if (!tp->rx_opt.dsack) |
| tcp_dsack_set(tp, seq, end_seq); |
| else |
| tcp_sack_extend(tp->duplicate_sack, seq, end_seq); |
| } |
| |
| static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && |
| before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { |
| NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); |
| tcp_enter_quickack_mode(sk); |
| |
| if (tcp_is_sack(tp) && sysctl_tcp_dsack) { |
| u32 end_seq = TCP_SKB_CB(skb)->end_seq; |
| |
| if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) |
| end_seq = tp->rcv_nxt; |
| tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); |
| } |
| } |
| |
| tcp_send_ack(sk); |
| } |
| |
| /* These routines update the SACK block as out-of-order packets arrive or |
| * in-order packets close up the sequence space. |
| */ |
| static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) |
| { |
| int this_sack; |
| struct tcp_sack_block *sp = &tp->selective_acks[0]; |
| struct tcp_sack_block *swalk = sp+1; |
| |
| /* See if the recent change to the first SACK eats into |
| * or hits the sequence space of other SACK blocks, if so coalesce. |
| */ |
| for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { |
| if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { |
| int i; |
| |
| /* Zap SWALK, by moving every further SACK up by one slot. |
| * Decrease num_sacks. |
| */ |
| tp->rx_opt.num_sacks--; |
| tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); |
| for (i=this_sack; i < tp->rx_opt.num_sacks; i++) |
| sp[i] = sp[i+1]; |
| continue; |
| } |
| this_sack++, swalk++; |
| } |
| } |
| |
| static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) |
| { |
| __u32 tmp; |
| |
| tmp = sack1->start_seq; |
| sack1->start_seq = sack2->start_seq; |
| sack2->start_seq = tmp; |
| |
| tmp = sack1->end_seq; |
| sack1->end_seq = sack2->end_seq; |
| sack2->end_seq = tmp; |
| } |
| |
| static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_sack_block *sp = &tp->selective_acks[0]; |
| int cur_sacks = tp->rx_opt.num_sacks; |
| int this_sack; |
| |
| if (!cur_sacks) |
| goto new_sack; |
| |
| for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { |
| if (tcp_sack_extend(sp, seq, end_seq)) { |
| /* Rotate this_sack to the first one. */ |
| for (; this_sack>0; this_sack--, sp--) |
| tcp_sack_swap(sp, sp-1); |
| if (cur_sacks > 1) |
| tcp_sack_maybe_coalesce(tp); |
| return; |
| } |
| } |
| |
| /* Could not find an adjacent existing SACK, build a new one, |
| * put it at the front, and shift everyone else down. We |
| * always know there is at least one SACK present already here. |
| * |
| * If the sack array is full, forget about the last one. |
| */ |
| if (this_sack >= 4) { |
| this_sack--; |
| tp->rx_opt.num_sacks--; |
| sp--; |
| } |
| for (; this_sack > 0; this_sack--, sp--) |
| *sp = *(sp-1); |
| |
| new_sack: |
| /* Build the new head SACK, and we're done. */ |
| sp->start_seq = seq; |
| sp->end_seq = end_seq; |
| tp->rx_opt.num_sacks++; |
| tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); |
| } |
| |
| /* RCV.NXT advances, some SACKs should be eaten. */ |
| |
| static void tcp_sack_remove(struct tcp_sock *tp) |
| { |
| struct tcp_sack_block *sp = &tp->selective_acks[0]; |
| int num_sacks = tp->rx_opt.num_sacks; |
| int this_sack; |
| |
| /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ |
| if (skb_queue_empty(&tp->out_of_order_queue)) { |
| tp->rx_opt.num_sacks = 0; |
| tp->rx_opt.eff_sacks = tp->rx_opt.dsack; |
| return; |
| } |
| |
| for (this_sack = 0; this_sack < num_sacks; ) { |
| /* Check if the start of the sack is covered by RCV.NXT. */ |
| if (!before(tp->rcv_nxt, sp->start_seq)) { |
| int i; |
| |
| /* RCV.NXT must cover all the block! */ |
| BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); |
| |
| /* Zap this SACK, by moving forward any other SACKS. */ |
| for (i=this_sack+1; i < num_sacks; i++) |
| tp->selective_acks[i-1] = tp->selective_acks[i]; |
| num_sacks--; |
| continue; |
| } |
| this_sack++; |
| sp++; |
| } |
| if (num_sacks != tp->rx_opt.num_sacks) { |
| tp->rx_opt.num_sacks = num_sacks; |
| tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); |
| } |
| } |
| |
| /* This one checks to see if we can put data from the |
| * out_of_order queue into the receive_queue. |
| */ |
| static void tcp_ofo_queue(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| __u32 dsack_high = tp->rcv_nxt; |
| struct sk_buff *skb; |
| |
| while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { |
| if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) |
| break; |
| |
| if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { |
| __u32 dsack = dsack_high; |
| if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) |
| dsack_high = TCP_SKB_CB(skb)->end_seq; |
| tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); |
| } |
| |
| if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { |
| SOCK_DEBUG(sk, "ofo packet was already received \n"); |
| __skb_unlink(skb, &tp->out_of_order_queue); |
| __kfree_skb(skb); |
| continue; |
| } |
| SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", |
| tp->rcv_nxt, TCP_SKB_CB(skb)->seq, |
| TCP_SKB_CB(skb)->end_seq); |
| |
| __skb_unlink(skb, &tp->out_of_order_queue); |
| __skb_queue_tail(&sk->sk_receive_queue, skb); |
| tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| if (tcp_hdr(skb)->fin) |
| tcp_fin(skb, sk, tcp_hdr(skb)); |
| } |
| } |
| |
| static int tcp_prune_queue(struct sock *sk); |
| |
| static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcphdr *th = tcp_hdr(skb); |
| struct tcp_sock *tp = tcp_sk(sk); |
| int eaten = -1; |
| |
| if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) |
| goto drop; |
| |
| __skb_pull(skb, th->doff*4); |
| |
| TCP_ECN_accept_cwr(tp, skb); |
| |
| if (tp->rx_opt.dsack) { |
| tp->rx_opt.dsack = 0; |
| tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, |
| 4 - tp->rx_opt.tstamp_ok); |
| } |
| |
| /* Queue data for delivery to the user. |
| * Packets in sequence go to the receive queue. |
| * Out of sequence packets to the out_of_order_queue. |
| */ |
| if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { |
| if (tcp_receive_window(tp) == 0) |
| goto out_of_window; |
| |
| /* Ok. In sequence. In window. */ |
| if (tp->ucopy.task == current && |
| tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && |
| sock_owned_by_user(sk) && !tp->urg_data) { |
| int chunk = min_t(unsigned int, skb->len, |
| tp->ucopy.len); |
| |
| __set_current_state(TASK_RUNNING); |
| |
| local_bh_enable(); |
| if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { |
| tp->ucopy.len -= chunk; |
| tp->copied_seq += chunk; |
| eaten = (chunk == skb->len && !th->fin); |
| tcp_rcv_space_adjust(sk); |
| } |
| local_bh_disable(); |
| } |
| |
| if (eaten <= 0) { |
| queue_and_out: |
| if (eaten < 0 && |
| (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || |
| !sk_stream_rmem_schedule(sk, skb))) { |
| if (tcp_prune_queue(sk) < 0 || |
| !sk_stream_rmem_schedule(sk, skb)) |
| goto drop; |
| } |
| sk_stream_set_owner_r(skb, sk); |
| __skb_queue_tail(&sk->sk_receive_queue, skb); |
| } |
| tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| if (skb->len) |
| tcp_event_data_recv(sk, skb); |
| if (th->fin) |
| tcp_fin(skb, sk, th); |
| |
| if (!skb_queue_empty(&tp->out_of_order_queue)) { |
| tcp_ofo_queue(sk); |
| |
| /* RFC2581. 4.2. SHOULD send immediate ACK, when |
| * gap in queue is filled. |
| */ |
| if (skb_queue_empty(&tp->out_of_order_queue)) |
| inet_csk(sk)->icsk_ack.pingpong = 0; |
| } |
| |
| if (tp->rx_opt.num_sacks) |
| tcp_sack_remove(tp); |
| |
| tcp_fast_path_check(sk); |
| |
| if (eaten > 0) |
| __kfree_skb(skb); |
| else if (!sock_flag(sk, SOCK_DEAD)) |
| sk->sk_data_ready(sk, 0); |
| return; |
| } |
| |
| if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { |
| /* A retransmit, 2nd most common case. Force an immediate ack. */ |
| NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); |
| tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); |
| |
| out_of_window: |
| tcp_enter_quickack_mode(sk); |
| inet_csk_schedule_ack(sk); |
| drop: |
| __kfree_skb(skb); |
| return; |
| } |
| |
| /* Out of window. F.e. zero window probe. */ |
| if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) |
| goto out_of_window; |
| |
| tcp_enter_quickack_mode(sk); |
| |
| if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { |
| /* Partial packet, seq < rcv_next < end_seq */ |
| SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", |
| tp->rcv_nxt, TCP_SKB_CB(skb)->seq, |
| TCP_SKB_CB(skb)->end_seq); |
| |
| tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); |
| |
| /* If window is closed, drop tail of packet. But after |
| * remembering D-SACK for its head made in previous line. |
| */ |
| if (!tcp_receive_window(tp)) |
| goto out_of_window; |
| goto queue_and_out; |
| } |
| |
| TCP_ECN_check_ce(tp, skb); |
| |
| if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || |
| !sk_stream_rmem_schedule(sk, skb)) { |
| if (tcp_prune_queue(sk) < 0 || |
| !sk_stream_rmem_schedule(sk, skb)) |
| goto drop; |
| } |
| |
| /* Disable header prediction. */ |
| tp->pred_flags = 0; |
| inet_csk_schedule_ack(sk); |
| |
| SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", |
| tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); |
| |
| sk_stream_set_owner_r(skb, sk); |
| |
| if (!skb_peek(&tp->out_of_order_queue)) { |
| /* Initial out of order segment, build 1 SACK. */ |
| if (tcp_is_sack(tp)) { |
| tp->rx_opt.num_sacks = 1; |
| tp->rx_opt.dsack = 0; |
| tp->rx_opt.eff_sacks = 1; |
| tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; |
| tp->selective_acks[0].end_seq = |
| TCP_SKB_CB(skb)->end_seq; |
| } |
| __skb_queue_head(&tp->out_of_order_queue,skb); |
| } else { |
| struct sk_buff *skb1 = tp->out_of_order_queue.prev; |
| u32 seq = TCP_SKB_CB(skb)->seq; |
| u32 end_seq = TCP_SKB_CB(skb)->end_seq; |
| |
| if (seq == TCP_SKB_CB(skb1)->end_seq) { |
| __skb_append(skb1, skb, &tp->out_of_order_queue); |
| |
| if (!tp->rx_opt.num_sacks || |
| tp->selective_acks[0].end_seq != seq) |
| goto add_sack; |
| |
| /* Common case: data arrive in order after hole. */ |
| tp->selective_acks[0].end_seq = end_seq; |
| return; |
| } |
| |
| /* Find place to insert this segment. */ |
| do { |
| if (!after(TCP_SKB_CB(skb1)->seq, seq)) |
| break; |
| } while ((skb1 = skb1->prev) != |
| (struct sk_buff*)&tp->out_of_order_queue); |
| |
| /* Do skb overlap to previous one? */ |
| if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && |
| before(seq, TCP_SKB_CB(skb1)->end_seq)) { |
| if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { |
| /* All the bits are present. Drop. */ |
| __kfree_skb(skb); |
| tcp_dsack_set(tp, seq, end_seq); |
| goto add_sack; |
| } |
| if (after(seq, TCP_SKB_CB(skb1)->seq)) { |
| /* Partial overlap. */ |
| tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); |
| } else { |
| skb1 = skb1->prev; |
| } |
| } |
| __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); |
| |
| /* And clean segments covered by new one as whole. */ |
| while ((skb1 = skb->next) != |
| (struct sk_buff*)&tp->out_of_order_queue && |
| after(end_seq, TCP_SKB_CB(skb1)->seq)) { |
| if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { |
| tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); |
| break; |
| } |
| __skb_unlink(skb1, &tp->out_of_order_queue); |
| tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); |
| __kfree_skb(skb1); |
| } |
| |
| add_sack: |
| if (tcp_is_sack(tp)) |
| tcp_sack_new_ofo_skb(sk, seq, end_seq); |
| } |
| } |
| |
| /* Collapse contiguous sequence of skbs head..tail with |
| * sequence numbers start..end. |
| * Segments with FIN/SYN are not collapsed (only because this |
| * simplifies code) |
| */ |
| static void |
| tcp_collapse(struct sock *sk, struct sk_buff_head *list, |
| struct sk_buff *head, struct sk_buff *tail, |
| u32 start, u32 end) |
| { |
| struct sk_buff *skb; |
| |
| /* First, check that queue is collapsible and find |
| * the point where collapsing can be useful. */ |
| for (skb = head; skb != tail; ) { |
| /* No new bits? It is possible on ofo queue. */ |
| if (!before(start, TCP_SKB_CB(skb)->end_seq)) { |
| struct sk_buff *next = skb->next; |
| __skb_unlink(skb, list); |
| __kfree_skb(skb); |
| NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); |
| skb = next; |
| continue; |
| } |
| |
| /* The first skb to collapse is: |
| * - not SYN/FIN and |
| * - bloated or contains data before "start" or |
| * overlaps to the next one. |
| */ |
| if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && |
| (tcp_win_from_space(skb->truesize) > skb->len || |
| before(TCP_SKB_CB(skb)->seq, start) || |
| (skb->next != tail && |
| TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) |
| break; |
| |
| /* Decided to skip this, advance start seq. */ |
| start = TCP_SKB_CB(skb)->end_seq; |
| skb = skb->next; |
| } |
| if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) |
| return; |
| |
| while (before(start, end)) { |
| struct sk_buff *nskb; |
| int header = skb_headroom(skb); |
| int copy = SKB_MAX_ORDER(header, 0); |
| |
| /* Too big header? This can happen with IPv6. */ |
| if (copy < 0) |
| return; |
| if (end-start < copy) |
| copy = end-start; |
| nskb = alloc_skb(copy+header, GFP_ATOMIC); |
| if (!nskb) |
| return; |
| |
| skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); |
| skb_set_network_header(nskb, (skb_network_header(skb) - |
| skb->head)); |
| skb_set_transport_header(nskb, (skb_transport_header(skb) - |
| skb->head)); |
| skb_reserve(nskb, header); |
| memcpy(nskb->head, skb->head, header); |
| memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); |
| TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; |
| __skb_insert(nskb, skb->prev, skb, list); |
| sk_stream_set_owner_r(nskb, sk); |
| |
| /* Copy data, releasing collapsed skbs. */ |
| while (copy > 0) { |
| int offset = start - TCP_SKB_CB(skb)->seq; |
| int size = TCP_SKB_CB(skb)->end_seq - start; |
| |
| BUG_ON(offset < 0); |
| if (size > 0) { |
| size = min(copy, size); |
| if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) |
| BUG(); |
| TCP_SKB_CB(nskb)->end_seq += size; |
| copy -= size; |
| start += size; |
| } |
| if (!before(start, TCP_SKB_CB(skb)->end_seq)) { |
| struct sk_buff *next = skb->next; |
| __skb_unlink(skb, list); |
| __kfree_skb(skb); |
| NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); |
| skb = next; |
| if (skb == tail || |
| tcp_hdr(skb)->syn || |
| tcp_hdr(skb)->fin) |
| return; |
| } |
| } |
| } |
| } |
| |
| /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs |
| * and tcp_collapse() them until all the queue is collapsed. |
| */ |
| static void tcp_collapse_ofo_queue(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); |
| struct sk_buff *head; |
| u32 start, end; |
| |
| if (skb == NULL) |
| return; |
| |
| start = TCP_SKB_CB(skb)->seq; |
| end = TCP_SKB_CB(skb)->end_seq; |
| head = skb; |
| |
| for (;;) { |
| skb = skb->next; |
| |
| /* Segment is terminated when we see gap or when |
| * we are at the end of all the queue. */ |
| if (skb == (struct sk_buff *)&tp->out_of_order_queue || |
| after(TCP_SKB_CB(skb)->seq, end) || |
| before(TCP_SKB_CB(skb)->end_seq, start)) { |
| tcp_collapse(sk, &tp->out_of_order_queue, |
| head, skb, start, end); |
| head = skb; |
| if (skb == (struct sk_buff *)&tp->out_of_order_queue) |
| break; |
| /* Start new segment */ |
| start = TCP_SKB_CB(skb)->seq; |
| end = TCP_SKB_CB(skb)->end_seq; |
| } else { |
| if (before(TCP_SKB_CB(skb)->seq, start)) |
| start = TCP_SKB_CB(skb)->seq; |
| if (after(TCP_SKB_CB(skb)->end_seq, end)) |
| end = TCP_SKB_CB(skb)->end_seq; |
| } |
| } |
| } |
| |
| /* Reduce allocated memory if we can, trying to get |
| * the socket within its memory limits again. |
| * |
| * Return less than zero if we should start dropping frames |
| * until the socket owning process reads some of the data |
| * to stabilize the situation. |
| */ |
| static int tcp_prune_queue(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); |
| |
| NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); |
| |
| if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) |
| tcp_clamp_window(sk); |
| else if (tcp_memory_pressure) |
| tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); |
| |
| tcp_collapse_ofo_queue(sk); |
| tcp_collapse(sk, &sk->sk_receive_queue, |
| sk->sk_receive_queue.next, |
| (struct sk_buff*)&sk->sk_receive_queue, |
| tp->copied_seq, tp->rcv_nxt); |
| sk_stream_mem_reclaim(sk); |
| |
| if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) |
| return 0; |
| |
| /* Collapsing did not help, destructive actions follow. |
| * This must not ever occur. */ |
| |
| /* First, purge the out_of_order queue. */ |
| if (!skb_queue_empty(&tp->out_of_order_queue)) { |
| NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); |
| __skb_queue_purge(&tp->out_of_order_queue); |
| |
| /* Reset SACK state. A conforming SACK implementation will |
| * do the same at a timeout based retransmit. When a connection |
| * is in a sad state like this, we care only about integrity |
| * of the connection not performance. |
| */ |
| if (tcp_is_sack(tp)) |
| tcp_sack_reset(&tp->rx_opt); |
| sk_stream_mem_reclaim(sk); |
| } |
| |
| if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) |
| return 0; |
| |
| /* If we are really being abused, tell the caller to silently |
| * drop receive data on the floor. It will get retransmitted |
| * and hopefully then we'll have sufficient space. |
| */ |
| NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); |
| |
| /* Massive buffer overcommit. */ |
| tp->pred_flags = 0; |
| return -1; |
| } |
| |
| |
| /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. |
| * As additional protections, we do not touch cwnd in retransmission phases, |
| * and if application hit its sndbuf limit recently. |
| */ |
| void tcp_cwnd_application_limited(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && |
| sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { |
| /* Limited by application or receiver window. */ |
| u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); |
| u32 win_used = max(tp->snd_cwnd_used, init_win); |
| if (win_used < tp->snd_cwnd) { |
| tp->snd_ssthresh = tcp_current_ssthresh(sk); |
| tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; |
| } |
| tp->snd_cwnd_used = 0; |
| } |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| } |
| |
| static int tcp_should_expand_sndbuf(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* If the user specified a specific send buffer setting, do |
| * not modify it. |
| */ |
| if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) |
| return 0; |
| |
| /* If we are under global TCP memory pressure, do not expand. */ |
| if (tcp_memory_pressure) |
| return 0; |
| |
| /* If we are under soft global TCP memory pressure, do not expand. */ |
| if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) |
| return 0; |
| |
| /* If we filled the congestion window, do not expand. */ |
| if (tp->packets_out >= tp->snd_cwnd) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* When incoming ACK allowed to free some skb from write_queue, |
| * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket |
| * on the exit from tcp input handler. |
| * |
| * PROBLEM: sndbuf expansion does not work well with largesend. |
| */ |
| static void tcp_new_space(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tcp_should_expand_sndbuf(sk)) { |
| int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + |
| MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), |
| demanded = max_t(unsigned int, tp->snd_cwnd, |
| tp->reordering + 1); |
| sndmem *= 2*demanded; |
| if (sndmem > sk->sk_sndbuf) |
| sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); |
| tp->snd_cwnd_stamp = tcp_time_stamp; |
| } |
| |
| sk->sk_write_space(sk); |
| } |
| |
| static void tcp_check_space(struct sock *sk) |
| { |
| if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { |
| sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); |
| if (sk->sk_socket && |
| test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) |
| tcp_new_space(sk); |
| } |
| } |
| |
| static inline void tcp_data_snd_check(struct sock *sk) |
| { |
| tcp_push_pending_frames(sk); |
| tcp_check_space(sk); |
| } |
| |
| /* |
| * Check if sending an ack is needed. |
| */ |
| static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* More than one full frame received... */ |
| if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss |
| /* ... and right edge of window advances far enough. |
| * (tcp_recvmsg() will send ACK otherwise). Or... |
| */ |
| && __tcp_select_window(sk) >= tp->rcv_wnd) || |
| /* We ACK each frame or... */ |
| tcp_in_quickack_mode(sk) || |
| /* We have out of order data. */ |
| (ofo_possible && |
| skb_peek(&tp->out_of_order_queue))) { |
| /* Then ack it now */ |
| tcp_send_ack(sk); |
| } else { |
| /* Else, send delayed ack. */ |
| tcp_send_delayed_ack(sk); |
| } |
| } |
| |
| static inline void tcp_ack_snd_check(struct sock *sk) |
| { |
| if (!inet_csk_ack_scheduled(sk)) { |
| /* We sent a data segment already. */ |
| return; |
| } |
| __tcp_ack_snd_check(sk, 1); |
| } |
| |
| /* |
| * This routine is only called when we have urgent data |
| * signaled. Its the 'slow' part of tcp_urg. It could be |
| * moved inline now as tcp_urg is only called from one |
| * place. We handle URGent data wrong. We have to - as |
| * BSD still doesn't use the correction from RFC961. |
| * For 1003.1g we should support a new option TCP_STDURG to permit |
| * either form (or just set the sysctl tcp_stdurg). |
| */ |
| |
| static void tcp_check_urg(struct sock * sk, struct tcphdr * th) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| u32 ptr = ntohs(th->urg_ptr); |
| |
| if (ptr && !sysctl_tcp_stdurg) |
| ptr--; |
| ptr += ntohl(th->seq); |
| |
| /* Ignore urgent data that we've already seen and read. */ |
| if (after(tp->copied_seq, ptr)) |
| return; |
| |
| /* Do not replay urg ptr. |
| * |
| * NOTE: interesting situation not covered by specs. |
| * Misbehaving sender may send urg ptr, pointing to segment, |
| * which we already have in ofo queue. We are not able to fetch |
| * such data and will stay in TCP_URG_NOTYET until will be eaten |
| * by recvmsg(). Seems, we are not obliged to handle such wicked |
| * situations. But it is worth to think about possibility of some |
| * DoSes using some hypothetical application level deadlock. |
| */ |
| if (before(ptr, tp->rcv_nxt)) |
| return; |
| |
| /* Do we already have a newer (or duplicate) urgent pointer? */ |
| if (tp->urg_data && !after(ptr, tp->urg_seq)) |
| return; |
| |
| /* Tell the world about our new urgent pointer. */ |
| sk_send_sigurg(sk); |
| |
| /* We may be adding urgent data when the last byte read was |
| * urgent. To do this requires some care. We cannot just ignore |
| * tp->copied_seq since we would read the last urgent byte again |
| * as data, nor can we alter copied_seq until this data arrives |
| * or we break the semantics of SIOCATMARK (and thus sockatmark()) |
| * |
| * NOTE. Double Dutch. Rendering to plain English: author of comment |
| * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); |
| * and expect that both A and B disappear from stream. This is _wrong_. |
| * Though this happens in BSD with high probability, this is occasional. |
| * Any application relying on this is buggy. Note also, that fix "works" |
| * only in this artificial test. Insert some normal data between A and B and we will |
| * decline of BSD again. Verdict: it is better to remove to trap |
| * buggy users. |
| */ |
| if (tp->urg_seq == tp->copied_seq && tp->urg_data && |
| !sock_flag(sk, SOCK_URGINLINE) && |
| tp->copied_seq != tp->rcv_nxt) { |
| struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); |
| tp->copied_seq++; |
| if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { |
| __skb_unlink(skb, &sk->sk_receive_queue); |
| __kfree_skb(skb); |
| } |
| } |
| |
| tp->urg_data = TCP_URG_NOTYET; |
| tp->urg_seq = ptr; |
| |
| /* Disable header prediction. */ |
| tp->pred_flags = 0; |
| } |
| |
| /* This is the 'fast' part of urgent handling. */ |
| static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* Check if we get a new urgent pointer - normally not. */ |
| if (th->urg) |
| tcp_check_urg(sk,th); |
| |
| /* Do we wait for any urgent data? - normally not... */ |
| if (tp->urg_data == TCP_URG_NOTYET) { |
| u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - |
| th->syn; |
| |
| /* Is the urgent pointer pointing into this packet? */ |
| if (ptr < skb->len) { |
| u8 tmp; |
| if (skb_copy_bits(skb, ptr, &tmp, 1)) |
| BUG(); |
| tp->urg_data = TCP_URG_VALID | tmp; |
| if (!sock_flag(sk, SOCK_DEAD)) |
| sk->sk_data_ready(sk, 0); |
| } |
| } |
| } |
| |
| static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int chunk = skb->len - hlen; |
| int err; |
| |
| local_bh_enable(); |
| if (skb_csum_unnecessary(skb)) |
| err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); |
| else |
| err = skb_copy_and_csum_datagram_iovec(skb, hlen, |
| tp->ucopy.iov); |
| |
| if (!err) { |
| tp->ucopy.len -= chunk; |
| tp->copied_seq += chunk; |
| tcp_rcv_space_adjust(sk); |
| } |
| |
| local_bh_disable(); |
| return err; |
| } |
| |
| static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) |
| { |
| __sum16 result; |
| |
| if (sock_owned_by_user(sk)) { |
| local_bh_enable(); |
| result = __tcp_checksum_complete(skb); |
| local_bh_disable(); |
| } else { |
| result = __tcp_checksum_complete(skb); |
| } |
| return result; |
| } |
| |
| static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) |
| { |
| return !skb_csum_unnecessary(skb) && |
| __tcp_checksum_complete_user(sk, skb); |
| } |
| |
| #ifdef CONFIG_NET_DMA |
| static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int chunk = skb->len - hlen; |
| int dma_cookie; |
| int copied_early = 0; |
| |
| if (tp->ucopy.wakeup) |
| return 0; |
| |
| if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) |
| tp->ucopy.dma_chan = get_softnet_dma(); |
| |
| if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { |
| |
| dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, |
| skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); |
| |
| if (dma_cookie < 0) |
| goto out; |
| |
| tp->ucopy.dma_cookie = dma_cookie; |
| copied_early = 1; |
| |
| tp->ucopy.len -= chunk; |
| tp->copied_seq += chunk; |
| tcp_rcv_space_adjust(sk); |
| |
| if ((tp->ucopy.len == 0) || |
| (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || |
| (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { |
| tp->ucopy.wakeup = 1; |
| sk->sk_data_ready(sk, 0); |
| } |
| } else if (chunk > 0) { |
| tp->ucopy.wakeup = 1; |
| sk->sk_data_ready(sk, 0); |
| } |
| out: |
| return copied_early; |
| } |
| #endif /* CONFIG_NET_DMA */ |
| |
| /* |
| * TCP receive function for the ESTABLISHED state. |
| * |
| * It is split into a fast path and a slow path. The fast path is |
| * disabled when: |
| * - A zero window was announced from us - zero window probing |
| * is only handled properly in the slow path. |
| * - Out of order segments arrived. |
| * - Urgent data is expected. |
| * - There is no buffer space left |
| * - Unexpected TCP flags/window values/header lengths are received |
| * (detected by checking the TCP header against pred_flags) |
| * - Data is sent in both directions. Fast path only supports pure senders |
| * or pure receivers (this means either the sequence number or the ack |
| * value must stay constant) |
| * - Unexpected TCP option. |
| * |
| * When these conditions are not satisfied it drops into a standard |
| * receive procedure patterned after RFC793 to handle all cases. |
| * The first three cases are guaranteed by proper pred_flags setting, |
| * the rest is checked inline. Fast processing is turned on in |
| * tcp_data_queue when everything is OK. |
| */ |
| int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, |
| struct tcphdr *th, unsigned len) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* |
| * Header prediction. |
| * The code loosely follows the one in the famous |
| * "30 instruction TCP receive" Van Jacobson mail. |
| * |
| * Van's trick is to deposit buffers into socket queue |
| * on a device interrupt, to call tcp_recv function |
| * on the receive process context and checksum and copy |
| * the buffer to user space. smart... |
| * |
| * Our current scheme is not silly either but we take the |
| * extra cost of the net_bh soft interrupt processing... |
| * We do checksum and copy also but from device to kernel. |
| */ |
| |
| tp->rx_opt.saw_tstamp = 0; |
| |
| /* pred_flags is 0xS?10 << 16 + snd_wnd |
| * if header_prediction is to be made |
| * 'S' will always be tp->tcp_header_len >> 2 |
| * '?' will be 0 for the fast path, otherwise pred_flags is 0 to |
| * turn it off (when there are holes in the receive |
| * space for instance) |
| * PSH flag is ignored. |
| */ |
| |
| if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && |
| TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { |
| int tcp_header_len = tp->tcp_header_len; |
| |
| /* Timestamp header prediction: tcp_header_len |
| * is automatically equal to th->doff*4 due to pred_flags |
| * match. |
| */ |
| |
| /* Check timestamp */ |
| if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { |
| __be32 *ptr = (__be32 *)(th + 1); |
| |
| /* No? Slow path! */ |
| if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
| | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) |
| goto slow_path; |
| |
| tp->rx_opt.saw_tstamp = 1; |
| ++ptr; |
| tp->rx_opt.rcv_tsval = ntohl(*ptr); |
| ++ptr; |
| tp->rx_opt.rcv_tsecr = ntohl(*ptr); |
| |
| /* If PAWS failed, check it more carefully in slow path */ |
| if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) |
| goto slow_path; |
| |
| /* DO NOT update ts_recent here, if checksum fails |
| * and timestamp was corrupted part, it will result |
| * in a hung connection since we will drop all |
| * future packets due to the PAWS test. |
| */ |
| } |
| |
| if (len <= tcp_header_len) { |
| /* Bulk data transfer: sender */ |
| if (len == tcp_header_len) { |
| /* Predicted packet is in window by definition. |
| * seq == rcv_nxt and rcv_wup <= rcv_nxt. |
| * Hence, check seq<=rcv_wup reduces to: |
| */ |
| if (tcp_header_len == |
| (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && |
| tp->rcv_nxt == tp->rcv_wup) |
| tcp_store_ts_recent(tp); |
| |
| /* We know that such packets are checksummed |
| * on entry. |
| */ |
| tcp_ack(sk, skb, 0); |
| __kfree_skb(skb); |
| tcp_data_snd_check(sk); |
| return 0; |
| } else { /* Header too small */ |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| goto discard; |
| } |
| } else { |
| int eaten = 0; |
| int copied_early = 0; |
| |
| if (tp->copied_seq == tp->rcv_nxt && |
| len - tcp_header_len <= tp->ucopy.len) { |
| #ifdef CONFIG_NET_DMA |
| if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { |
| copied_early = 1; |
| eaten = 1; |
| } |
| #endif |
| if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { |
| __set_current_state(TASK_RUNNING); |
| |
| if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) |
| eaten = 1; |
| } |
| if (eaten) { |
| /* Predicted packet is in window by definition. |
| * seq == rcv_nxt and rcv_wup <= rcv_nxt. |
| * Hence, check seq<=rcv_wup reduces to: |
| */ |
| if (tcp_header_len == |
| (sizeof(struct tcphdr) + |
| TCPOLEN_TSTAMP_ALIGNED) && |
| tp->rcv_nxt == tp->rcv_wup) |
| tcp_store_ts_recent(tp); |
| |
| tcp_rcv_rtt_measure_ts(sk, skb); |
| |
| __skb_pull(skb, tcp_header_len); |
| tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); |
| } |
| if (copied_early) |
| tcp_cleanup_rbuf(sk, skb->len); |
| } |
| if (!eaten) { |
| if (tcp_checksum_complete_user(sk, skb)) |
| goto csum_error; |
| |
| /* Predicted packet is in window by definition. |
| * seq == rcv_nxt and rcv_wup <= rcv_nxt. |
| * Hence, check seq<=rcv_wup reduces to: |
| */ |
| if (tcp_header_len == |
| (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && |
| tp->rcv_nxt == tp->rcv_wup) |
| tcp_store_ts_recent(tp); |
| |
| tcp_rcv_rtt_measure_ts(sk, skb); |
| |
| if ((int)skb->truesize > sk->sk_forward_alloc) |
| goto step5; |
| |
| NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); |
| |
| /* Bulk data transfer: receiver */ |
| __skb_pull(skb,tcp_header_len); |
| __skb_queue_tail(&sk->sk_receive_queue, skb); |
| sk_stream_set_owner_r(skb, sk); |
| tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| } |
| |
| tcp_event_data_recv(sk, skb); |
| |
| if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { |
| /* Well, only one small jumplet in fast path... */ |
| tcp_ack(sk, skb, FLAG_DATA); |
| tcp_data_snd_check(sk); |
| if (!inet_csk_ack_scheduled(sk)) |
| goto no_ack; |
| } |
| |
| __tcp_ack_snd_check(sk, 0); |
| no_ack: |
| #ifdef CONFIG_NET_DMA |
| if (copied_early) |
| __skb_queue_tail(&sk->sk_async_wait_queue, skb); |
| else |
| #endif |
| if (eaten) |
| __kfree_skb(skb); |
| else |
| sk->sk_data_ready(sk, 0); |
| return 0; |
| } |
| } |
| |
| slow_path: |
| if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) |
| goto csum_error; |
| |
| /* |
| * RFC1323: H1. Apply PAWS check first. |
| */ |
| if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && |
| tcp_paws_discard(sk, skb)) { |
| if (!th->rst) { |
| NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); |
| tcp_send_dupack(sk, skb); |
| goto discard; |
| } |
| /* Resets are accepted even if PAWS failed. |
| |
| ts_recent update must be made after we are sure |
| that the packet is in window. |
| */ |
| } |
| |
| /* |
| * Standard slow path. |
| */ |
| |
| if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { |
| /* RFC793, page 37: "In all states except SYN-SENT, all reset |
| * (RST) segments are validated by checking their SEQ-fields." |
| * And page 69: "If an incoming segment is not acceptable, |
| * an acknowledgment should be sent in reply (unless the RST bit |
| * is set, if so drop the segment and return)". |
| */ |
| if (!th->rst) |
| tcp_send_dupack(sk, skb); |
| goto discard; |
| } |
| |
| if (th->rst) { |
| tcp_reset(sk); |
| goto discard; |
| } |
| |
| tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); |
| |
| if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); |
| tcp_reset(sk); |
| return 1; |
| } |
| |
| step5: |
| if (th->ack) |
| tcp_ack(sk, skb, FLAG_SLOWPATH); |
| |
| tcp_rcv_rtt_measure_ts(sk, skb); |
| |
| /* Process urgent data. */ |
| tcp_urg(sk, skb, th); |
| |
| /* step 7: process the segment text */ |
| tcp_data_queue(sk, skb); |
| |
| tcp_data_snd_check(sk); |
| tcp_ack_snd_check(sk); |
| return 0; |
| |
| csum_error: |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| |
| discard: |
| __kfree_skb(skb); |
| return 0; |
| } |
| |
| static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, |
| struct tcphdr *th, unsigned len) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| int saved_clamp = tp->rx_opt.mss_clamp; |
| |
| tcp_parse_options(skb, &tp->rx_opt, 0); |
| |
| if (th->ack) { |
| /* rfc793: |
| * "If the state is SYN-SENT then |
| * first check the ACK bit |
| * If the ACK bit is set |
| * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send |
| * a reset (unless the RST bit is set, if so drop |
| * the segment and return)" |
| * |
| * We do not send data with SYN, so that RFC-correct |
| * test reduces to: |
| */ |
| if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) |
| goto reset_and_undo; |
| |
| if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && |
| !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, |
| tcp_time_stamp)) { |
| NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); |
| goto reset_and_undo; |
| } |
| |
| /* Now ACK is acceptable. |
| * |
| * "If the RST bit is set |
| * If the ACK was acceptable then signal the user "error: |
| * connection reset", drop the segment, enter CLOSED state, |
| * delete TCB, and return." |
| */ |
| |
| if (th->rst) { |
| tcp_reset(sk); |
| goto discard; |
| } |
| |
| /* rfc793: |
| * "fifth, if neither of the SYN or RST bits is set then |
| * drop the segment and return." |
| * |
| * See note below! |
| * --ANK(990513) |
| */ |
| if (!th->syn) |
| goto discard_and_undo; |
| |
| /* rfc793: |
| * "If the SYN bit is on ... |
| * are acceptable then ... |
| * (our SYN has been ACKed), change the connection |
| * state to ESTABLISHED..." |
| */ |
| |
| TCP_ECN_rcv_synack(tp, th); |
| |
| tp->snd_wl1 = TCP_SKB_CB(skb)->seq; |
| tcp_ack(sk, skb, FLAG_SLOWPATH); |
| |
| /* Ok.. it's good. Set up sequence numbers and |
| * move to established. |
| */ |
| tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; |
| |
| /* RFC1323: The window in SYN & SYN/ACK segments is |
| * never scaled. |
| */ |
| tp->snd_wnd = ntohs(th->window); |
| tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); |
| |
| if (!tp->rx_opt.wscale_ok) { |
| tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; |
| tp->window_clamp = min(tp->window_clamp, 65535U); |
| } |
| |
| if (tp->rx_opt.saw_tstamp) { |
| tp->rx_opt.tstamp_ok = 1; |
| tp->tcp_header_len = |
| sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; |
| tcp_store_ts_recent(tp); |
| } else { |
| tp->tcp_header_len = sizeof(struct tcphdr); |
| } |
| |
| if (tcp_is_sack(tp) && sysctl_tcp_fack) |
| tcp_enable_fack(tp); |
| |
| tcp_mtup_init(sk); |
| tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| tcp_initialize_rcv_mss(sk); |
| |
| /* Remember, tcp_poll() does not lock socket! |
| * Change state from SYN-SENT only after copied_seq |
| * is initialized. */ |
| tp->copied_seq = tp->rcv_nxt; |
| smp_mb(); |
| tcp_set_state(sk, TCP_ESTABLISHED); |
| |
| security_inet_conn_established(sk, skb); |
| |
| /* Make sure socket is routed, for correct metrics. */ |
| icsk->icsk_af_ops->rebuild_header(sk); |
| |
| tcp_init_metrics(sk); |
| |
| tcp_init_congestion_control(sk); |
| |
| /* Prevent spurious tcp_cwnd_restart() on first data |
| * packet. |
| */ |
| tp->lsndtime = tcp_time_stamp; |
| |
| tcp_init_buffer_space(sk); |
| |
| if (sock_flag(sk, SOCK_KEEPOPEN)) |
| inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); |
| |
| if (!tp->rx_opt.snd_wscale) |
| __tcp_fast_path_on(tp, tp->snd_wnd); |
| else |
| tp->pred_flags = 0; |
| |
| if (!sock_flag(sk, SOCK_DEAD)) { |
| sk->sk_state_change(sk); |
| sk_wake_async(sk, 0, POLL_OUT); |
| } |
| |
| if (sk->sk_write_pending || |
| icsk->icsk_accept_queue.rskq_defer_accept || |
| icsk->icsk_ack.pingpong) { |
| /* Save one ACK. Data will be ready after |
| * several ticks, if write_pending is set. |
| * |
| * It may be deleted, but with this feature tcpdumps |
| * look so _wonderfully_ clever, that I was not able |
| * to stand against the temptation 8) --ANK |
| */ |
| inet_csk_schedule_ack(sk); |
| icsk->icsk_ack.lrcvtime = tcp_time_stamp; |
| icsk->icsk_ack.ato = TCP_ATO_MIN; |
| tcp_incr_quickack(sk); |
| tcp_enter_quickack_mode(sk); |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, |
| TCP_DELACK_MAX, TCP_RTO_MAX); |
| |
| discard: |
| __kfree_skb(skb); |
| return 0; |
| } else { |
| tcp_send_ack(sk); |
| } |
| return -1; |
| } |
| |
| /* No ACK in the segment */ |
| |
| if (th->rst) { |
| /* rfc793: |
| * "If the RST bit is set |
| * |
| * Otherwise (no ACK) drop the segment and return." |
| */ |
| |
| goto discard_and_undo; |
| } |
| |
| /* PAWS check. */ |
| if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) |
| goto discard_and_undo; |
| |
| if (th->syn) { |
| /* We see SYN without ACK. It is attempt of |
| * simultaneous connect with crossed SYNs. |
| * Particularly, it can be connect to self. |
| */ |
| tcp_set_state(sk, TCP_SYN_RECV); |
| |
| if (tp->rx_opt.saw_tstamp) { |
| tp->rx_opt.tstamp_ok = 1; |
| tcp_store_ts_recent(tp); |
| tp->tcp_header_len = |
| sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| } else { |
| tp->tcp_header_len = sizeof(struct tcphdr); |
| } |
| |
| tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; |
| |
| /* RFC1323: The window in SYN & SYN/ACK segments is |
| * never scaled. |
| */ |
| tp->snd_wnd = ntohs(th->window); |
| tp->snd_wl1 = TCP_SKB_CB(skb)->seq; |
| tp->max_window = tp->snd_wnd; |
| |
| TCP_ECN_rcv_syn(tp, th); |
| |
| tcp_mtup_init(sk); |
| tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); |
| tcp_initialize_rcv_mss(sk); |
| |
| |
| tcp_send_synack(sk); |
| #if 0 |
| /* Note, we could accept data and URG from this segment. |
| * There are no obstacles to make this. |
| * |
| * However, if we ignore data in ACKless segments sometimes, |
| * we have no reasons to accept it sometimes. |
| * Also, seems the code doing it in step6 of tcp_rcv_state_process |
| * is not flawless. So, discard packet for sanity. |
| * Uncomment this return to process the data. |
| */ |
| return -1; |
| #else |
| goto discard; |
| #endif |
| } |
| /* "fifth, if neither of the SYN or RST bits is set then |
| * drop the segment and return." |
| */ |
| |
| discard_and_undo: |
| tcp_clear_options(&tp->rx_opt); |
| tp->rx_opt.mss_clamp = saved_clamp; |
| goto discard; |
| |
| reset_and_undo: |
| tcp_clear_options(&tp->rx_opt); |
| tp->rx_opt.mss_clamp = saved_clamp; |
| return 1; |
| } |
| |
| |
| /* |
| * This function implements the receiving procedure of RFC 793 for |
| * all states except ESTABLISHED and TIME_WAIT. |
| * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be |
| * address independent. |
| */ |
| |
| int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, |
| struct tcphdr *th, unsigned len) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| int queued = 0; |
| |
| tp->rx_opt.saw_tstamp = 0; |
| |
| switch (sk->sk_state) { |
| case TCP_CLOSE: |
| goto discard; |
| |
| case TCP_LISTEN: |
| if (th->ack) |
| return 1; |
| |
| if (th->rst) |
| goto discard; |
| |
| if (th->syn) { |
| if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) |
| return 1; |
| |
| /* Now we have several options: In theory there is |
| * nothing else in the frame. KA9Q has an option to |
| * send data with the syn, BSD accepts data with the |
| * syn up to the [to be] advertised window and |
| * Solaris 2.1 gives you a protocol error. For now |
| * we just ignore it, that fits the spec precisely |
| * and avoids incompatibilities. It would be nice in |
| * future to drop through and process the data. |
| * |
| * Now that TTCP is starting to be used we ought to |
| * queue this data. |
| * But, this leaves one open to an easy denial of |
| * service attack, and SYN cookies can't defend |
| * against this problem. So, we drop the data |
| * in the interest of security over speed unless |
| * it's still in use. |
| */ |
| kfree_skb(skb); |
| return 0; |
| } |
| goto discard; |
| |
| case TCP_SYN_SENT: |
| queued = tcp_rcv_synsent_state_process(sk, skb, th, len); |
| if (queued >= 0) |
| return queued; |
| |
| /* Do step6 onward by hand. */ |
| tcp_urg(sk, skb, th); |
| __kfree_skb(skb); |
| tcp_data_snd_check(sk); |
| return 0; |
| } |
| |
| if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && |
| tcp_paws_discard(sk, skb)) { |
| if (!th->rst) { |
| NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); |
| tcp_send_dupack(sk, skb); |
| goto discard; |
| } |
| /* Reset is accepted even if it did not pass PAWS. */ |
| } |
| |
| /* step 1: check sequence number */ |
| if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { |
| if (!th->rst) |
| tcp_send_dupack(sk, skb); |
| goto discard; |
| } |
| |
| /* step 2: check RST bit */ |
| if (th->rst) { |
| tcp_reset(sk); |
| goto discard; |
| } |
| |
| tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); |
| |
| /* step 3: check security and precedence [ignored] */ |
| |
| /* step 4: |
| * |
| * Check for a SYN in window. |
| */ |
| if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { |
| NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); |
| tcp_reset(sk); |
| return 1; |
| } |
| |
| /* step 5: check the ACK field */ |
| if (th->ack) { |
| int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); |
| |
| switch (sk->sk_state) { |
| case TCP_SYN_RECV: |
| if (acceptable) { |
| tp->copied_seq = tp->rcv_nxt; |
| smp_mb(); |
| tcp_set_state(sk, TCP_ESTABLISHED); |
| sk->sk_state_change(sk); |
| |
| /* Note, that this wakeup is only for marginal |
| * crossed SYN case. Passively open sockets |
| * are not waked up, because sk->sk_sleep == |
| * NULL and sk->sk_socket == NULL. |
| */ |
| if (sk->sk_socket) { |
| sk_wake_async(sk,0,POLL_OUT); |
| } |
| |
| tp->snd_una = TCP_SKB_CB(skb)->ack_seq; |
| tp->snd_wnd = ntohs(th->window) << |
| tp->rx_opt.snd_wscale; |
| tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, |
| TCP_SKB_CB(skb)->seq); |
| |
| /* tcp_ack considers this ACK as duplicate |
| * and does not calculate rtt. |
| * Fix it at least with timestamps. |
| */ |
| if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && |
| !tp->srtt) |
| tcp_ack_saw_tstamp(sk, 0); |
| |
| if (tp->rx_opt.tstamp_ok) |
| tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; |
| |
| /* Make sure socket is routed, for |
| * correct metrics. |
| */ |
| icsk->icsk_af_ops->rebuild_header(sk); |
| |
| tcp_init_metrics(sk); |
| |
| tcp_init_congestion_control(sk); |
| |
| /* Prevent spurious tcp_cwnd_restart() on |
| * first data packet. |
| */ |
| tp->lsndtime = tcp_time_stamp; |
| |
| tcp_mtup_init(sk); |
| tcp_initialize_rcv_mss(sk); |
| tcp_init_buffer_space(sk); |
| tcp_fast_path_on(tp); |
| } else { |
| return 1; |
| } |
| break; |
| |
| case TCP_FIN_WAIT1: |
| if (tp->snd_una == tp->write_seq) { |
| tcp_set_state(sk, TCP_FIN_WAIT2); |
| sk->sk_shutdown |= SEND_SHUTDOWN; |
| dst_confirm(sk->sk_dst_cache); |
| |
| if (!sock_flag(sk, SOCK_DEAD)) |
| /* Wake up lingering close() */ |
| sk->sk_state_change(sk); |
| else { |
| int tmo; |
| |
| if (tp->linger2 < 0 || |
| (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && |
| after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { |
| tcp_done(sk); |
| NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); |
| return 1; |
| } |
| |
| tmo = tcp_fin_time(sk); |
| if (tmo > TCP_TIMEWAIT_LEN) { |
| inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); |
| } else if (th->fin || sock_owned_by_user(sk)) { |
| /* Bad case. We could lose such FIN otherwise. |
| * It is not a big problem, but it looks confusing |
| * and not so rare event. We still can lose it now, |
| * if it spins in bh_lock_sock(), but it is really |
| * marginal case. |
| */ |
| inet_csk_reset_keepalive_timer(sk, tmo); |
| } else { |
| tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); |
| goto discard; |
| } |
| } |
| } |
| break; |
| |
| case TCP_CLOSING: |
| if (tp->snd_una == tp->write_seq) { |
| tcp_time_wait(sk, TCP_TIME_WAIT, 0); |
| goto discard; |
| } |
| break; |
| |
| case TCP_LAST_ACK: |
| if (tp->snd_una == tp->write_seq) { |
| tcp_update_metrics(sk); |
| tcp_done(sk); |
| goto discard; |
| } |
| break; |
| } |
| } else |
| goto discard; |
| |
| /* step 6: check the URG bit */ |
| tcp_urg(sk, skb, th); |
| |
| /* step 7: process the segment text */ |
| switch (sk->sk_state) { |
| case TCP_CLOSE_WAIT: |
| case TCP_CLOSING: |
| case TCP_LAST_ACK: |
| if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) |
| break; |
| case TCP_FIN_WAIT1: |
| case TCP_FIN_WAIT2: |
| /* RFC 793 says to queue data in these states, |
| * RFC 1122 says we MUST send a reset. |
| * BSD 4.4 also does reset. |
| */ |
| if (sk->sk_shutdown & RCV_SHUTDOWN) { |
| if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && |
| after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { |
| NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); |
| tcp_reset(sk); |
| return 1; |
| } |
| } |
| /* Fall through */ |
| case TCP_ESTABLISHED: |
| tcp_data_queue(sk, skb); |
| queued = 1; |
| break; |
| } |
| |
| /* tcp_data could move socket to TIME-WAIT */ |
| if (sk->sk_state != TCP_CLOSE) { |
| tcp_data_snd_check(sk); |
| tcp_ack_snd_check(sk); |
| } |
| |
| if (!queued) { |
| discard: |
| __kfree_skb(skb); |
| } |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(sysctl_tcp_ecn); |
| EXPORT_SYMBOL(sysctl_tcp_reordering); |
| EXPORT_SYMBOL(tcp_parse_options); |
| EXPORT_SYMBOL(tcp_rcv_established); |
| EXPORT_SYMBOL(tcp_rcv_state_process); |
| EXPORT_SYMBOL(tcp_initialize_rcv_mss); |