| |
| /* JEDEC Flash Interface. |
| * This is an older type of interface for self programming flash. It is |
| * commonly use in older AMD chips and is obsolete compared with CFI. |
| * It is called JEDEC because the JEDEC association distributes the ID codes |
| * for the chips. |
| * |
| * See the AMD flash databook for information on how to operate the interface. |
| * |
| * This code does not support anything wider than 8 bit flash chips, I am |
| * not going to guess how to send commands to them, plus I expect they will |
| * all speak CFI.. |
| * |
| * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $ |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/jedec.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/compatmac.h> |
| |
| static struct mtd_info *jedec_probe(struct map_info *); |
| static int jedec_probe8(struct map_info *map,unsigned long base, |
| struct jedec_private *priv); |
| static int jedec_probe16(struct map_info *map,unsigned long base, |
| struct jedec_private *priv); |
| static int jedec_probe32(struct map_info *map,unsigned long base, |
| struct jedec_private *priv); |
| static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, |
| unsigned long len); |
| static int flash_erase(struct mtd_info *mtd, struct erase_info *instr); |
| static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, |
| size_t *retlen, const u_char *buf); |
| |
| static unsigned long my_bank_size; |
| |
| /* Listing of parts and sizes. We need this table to learn the sector |
| size of the chip and the total length */ |
| static const struct JEDECTable JEDEC_table[] = { |
| { |
| .jedec = 0x013D, |
| .name = "AMD Am29F017D", |
| .size = 2*1024*1024, |
| .sectorsize = 64*1024, |
| .capabilities = MTD_CAP_NORFLASH |
| }, |
| { |
| .jedec = 0x01AD, |
| .name = "AMD Am29F016", |
| .size = 2*1024*1024, |
| .sectorsize = 64*1024, |
| .capabilities = MTD_CAP_NORFLASH |
| }, |
| { |
| .jedec = 0x01D5, |
| .name = "AMD Am29F080", |
| .size = 1*1024*1024, |
| .sectorsize = 64*1024, |
| .capabilities = MTD_CAP_NORFLASH |
| }, |
| { |
| .jedec = 0x01A4, |
| .name = "AMD Am29F040", |
| .size = 512*1024, |
| .sectorsize = 64*1024, |
| .capabilities = MTD_CAP_NORFLASH |
| }, |
| { |
| .jedec = 0x20E3, |
| .name = "AMD Am29W040B", |
| .size = 512*1024, |
| .sectorsize = 64*1024, |
| .capabilities = MTD_CAP_NORFLASH |
| }, |
| { |
| .jedec = 0xC2AD, |
| .name = "Macronix MX29F016", |
| .size = 2*1024*1024, |
| .sectorsize = 64*1024, |
| .capabilities = MTD_CAP_NORFLASH |
| }, |
| { .jedec = 0x0 } |
| }; |
| |
| static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); |
| static void jedec_sync(struct mtd_info *mtd) {}; |
| static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf); |
| static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf); |
| |
| static struct mtd_info *jedec_probe(struct map_info *map); |
| |
| |
| |
| static struct mtd_chip_driver jedec_chipdrv = { |
| .probe = jedec_probe, |
| .name = "jedec", |
| .module = THIS_MODULE |
| }; |
| |
| /* Probe entry point */ |
| |
| static struct mtd_info *jedec_probe(struct map_info *map) |
| { |
| struct mtd_info *MTD; |
| struct jedec_private *priv; |
| unsigned long Base; |
| unsigned long SectorSize; |
| unsigned count; |
| unsigned I,Uniq; |
| char Part[200]; |
| memset(&priv,0,sizeof(priv)); |
| |
| MTD = kzalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL); |
| if (!MTD) |
| return NULL; |
| |
| priv = (struct jedec_private *)&MTD[1]; |
| |
| my_bank_size = map->size; |
| |
| if (map->size/my_bank_size > MAX_JEDEC_CHIPS) |
| { |
| printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n"); |
| kfree(MTD); |
| return NULL; |
| } |
| |
| for (Base = 0; Base < map->size; Base += my_bank_size) |
| { |
| // Perhaps zero could designate all tests? |
| if (map->buswidth == 0) |
| map->buswidth = 1; |
| |
| if (map->buswidth == 1){ |
| if (jedec_probe8(map,Base,priv) == 0) { |
| printk("did recognize jedec chip\n"); |
| kfree(MTD); |
| return NULL; |
| } |
| } |
| if (map->buswidth == 2) |
| jedec_probe16(map,Base,priv); |
| if (map->buswidth == 4) |
| jedec_probe32(map,Base,priv); |
| } |
| |
| // Get the biggest sector size |
| SectorSize = 0; |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| { |
| // printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec); |
| // printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize); |
| if (priv->chips[I].sectorsize > SectorSize) |
| SectorSize = priv->chips[I].sectorsize; |
| } |
| |
| // Quickly ensure that the other sector sizes are factors of the largest |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| { |
| if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize) |
| { |
| printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); |
| kfree(MTD); |
| return NULL; |
| } |
| } |
| |
| /* Generate a part name that includes the number of different chips and |
| other configuration information */ |
| count = 1; |
| strlcpy(Part,map->name,sizeof(Part)-10); |
| strcat(Part," "); |
| Uniq = 0; |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| { |
| const struct JEDECTable *JEDEC; |
| |
| if (priv->chips[I+1].jedec == priv->chips[I].jedec) |
| { |
| count++; |
| continue; |
| } |
| |
| // Locate the chip in the jedec table |
| JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); |
| if (JEDEC == 0) |
| { |
| printk("mtd: Internal Error, JEDEC not set\n"); |
| kfree(MTD); |
| return NULL; |
| } |
| |
| if (Uniq != 0) |
| strcat(Part,","); |
| Uniq++; |
| |
| if (count != 1) |
| sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); |
| else |
| sprintf(Part+strlen(Part),"%s",JEDEC->name); |
| if (strlen(Part) > sizeof(Part)*2/3) |
| break; |
| count = 1; |
| } |
| |
| /* Determine if the chips are organized in a linear fashion, or if there |
| are empty banks. Note, the last bank does not count here, only the |
| first banks are important. Holes on non-bank boundaries can not exist |
| due to the way the detection algorithm works. */ |
| if (priv->size < my_bank_size) |
| my_bank_size = priv->size; |
| priv->is_banked = 0; |
| //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size); |
| //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]); |
| if (!priv->size) { |
| printk("priv->size is zero\n"); |
| kfree(MTD); |
| return NULL; |
| } |
| if (priv->size/my_bank_size) { |
| if (priv->size/my_bank_size == 1) { |
| priv->size = my_bank_size; |
| } |
| else { |
| for (I = 0; I != priv->size/my_bank_size - 1; I++) |
| { |
| if (priv->bank_fill[I] != my_bank_size) |
| priv->is_banked = 1; |
| |
| /* This even could be eliminated, but new de-optimized read/write |
| functions have to be written */ |
| printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); |
| if (priv->bank_fill[I] != priv->bank_fill[0]) |
| { |
| printk("mtd: Failed. Cannot handle unsymmetric banking\n"); |
| kfree(MTD); |
| return NULL; |
| } |
| } |
| } |
| } |
| if (priv->is_banked == 1) |
| strcat(Part,", banked"); |
| |
| // printk("Part: '%s'\n",Part); |
| |
| memset(MTD,0,sizeof(*MTD)); |
| // strlcpy(MTD->name,Part,sizeof(MTD->name)); |
| MTD->name = map->name; |
| MTD->type = MTD_NORFLASH; |
| MTD->flags = MTD_CAP_NORFLASH; |
| MTD->writesize = 1; |
| MTD->erasesize = SectorSize*(map->buswidth); |
| // printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize); |
| MTD->size = priv->size; |
| // printk("MTD->size is %x\n",(unsigned int)MTD->size); |
| //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module? |
| MTD->erase = flash_erase; |
| if (priv->is_banked == 1) |
| MTD->read = jedec_read_banked; |
| else |
| MTD->read = jedec_read; |
| MTD->write = flash_write; |
| MTD->sync = jedec_sync; |
| MTD->priv = map; |
| map->fldrv_priv = priv; |
| map->fldrv = &jedec_chipdrv; |
| __module_get(THIS_MODULE); |
| return MTD; |
| } |
| |
| /* Helper for the JEDEC function, JEDEC numbers all have odd parity */ |
| static int checkparity(u_char C) |
| { |
| u_char parity = 0; |
| while (C != 0) |
| { |
| parity ^= C & 1; |
| C >>= 1; |
| } |
| |
| return parity == 1; |
| } |
| |
| |
| /* Take an array of JEDEC numbers that represent interleved flash chips |
| and process them. Check to make sure they are good JEDEC numbers, look |
| them up and then add them to the chip list */ |
| static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, |
| unsigned long base,struct jedec_private *priv) |
| { |
| unsigned I,J; |
| unsigned long Size; |
| unsigned long SectorSize; |
| const struct JEDECTable *JEDEC; |
| |
| // Test #2 JEDEC numbers exhibit odd parity |
| for (I = 0; I != Count; I++) |
| { |
| if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) |
| return 0; |
| } |
| |
| // Finally, just make sure all the chip sizes are the same |
| JEDEC = jedec_idtoinf(Mfg[0],Id[0]); |
| |
| if (JEDEC == 0) |
| { |
| printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); |
| return 0; |
| } |
| |
| Size = JEDEC->size; |
| SectorSize = JEDEC->sectorsize; |
| for (I = 0; I != Count; I++) |
| { |
| JEDEC = jedec_idtoinf(Mfg[0],Id[0]); |
| if (JEDEC == 0) |
| { |
| printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); |
| return 0; |
| } |
| |
| if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize) |
| { |
| printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); |
| return 0; |
| } |
| } |
| |
| // Load the Chips |
| for (I = 0; I != MAX_JEDEC_CHIPS; I++) |
| { |
| if (priv->chips[I].jedec == 0) |
| break; |
| } |
| |
| if (I + Count > MAX_JEDEC_CHIPS) |
| { |
| printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); |
| return 0; |
| } |
| |
| // Add them to the table |
| for (J = 0; J != Count; J++) |
| { |
| unsigned long Bank; |
| |
| JEDEC = jedec_idtoinf(Mfg[J],Id[J]); |
| priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; |
| priv->chips[I].size = JEDEC->size; |
| priv->chips[I].sectorsize = JEDEC->sectorsize; |
| priv->chips[I].base = base + J; |
| priv->chips[I].datashift = J*8; |
| priv->chips[I].capabilities = JEDEC->capabilities; |
| priv->chips[I].offset = priv->size + J; |
| |
| // log2 n :| |
| priv->chips[I].addrshift = 0; |
| for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); |
| |
| // Determine how filled this bank is. |
| Bank = base & (~(my_bank_size-1)); |
| if (priv->bank_fill[Bank/my_bank_size] < base + |
| (JEDEC->size << priv->chips[I].addrshift) - Bank) |
| priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; |
| I++; |
| } |
| |
| priv->size += priv->chips[I-1].size*Count; |
| |
| return priv->chips[I-1].size; |
| } |
| |
| /* Lookup the chip information from the JEDEC ID table. */ |
| static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) |
| { |
| __u16 Id = (mfr << 8) | id; |
| unsigned long I = 0; |
| for (I = 0; JEDEC_table[I].jedec != 0; I++) |
| if (JEDEC_table[I].jedec == Id) |
| return JEDEC_table + I; |
| return NULL; |
| } |
| |
| // Look for flash using an 8 bit bus interface |
| static int jedec_probe8(struct map_info *map,unsigned long base, |
| struct jedec_private *priv) |
| { |
| #define flread(x) map_read8(map,base+x) |
| #define flwrite(v,x) map_write8(map,v,base+x) |
| |
| const unsigned long AutoSel1 = 0xAA; |
| const unsigned long AutoSel2 = 0x55; |
| const unsigned long AutoSel3 = 0x90; |
| const unsigned long Reset = 0xF0; |
| __u32 OldVal; |
| __u8 Mfg[1]; |
| __u8 Id[1]; |
| unsigned I; |
| unsigned long Size; |
| |
| // Wait for any write/erase operation to settle |
| OldVal = flread(base); |
| for (I = 0; OldVal != flread(base) && I < 10000; I++) |
| OldVal = flread(base); |
| |
| // Reset the chip |
| flwrite(Reset,0x555); |
| |
| // Send the sequence |
| flwrite(AutoSel1,0x555); |
| flwrite(AutoSel2,0x2AA); |
| flwrite(AutoSel3,0x555); |
| |
| // Get the JEDEC numbers |
| Mfg[0] = flread(0); |
| Id[0] = flread(1); |
| // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); |
| |
| Size = handle_jedecs(map,Mfg,Id,1,base,priv); |
| // printk("handle_jedecs Size is %x\n",(unsigned int)Size); |
| if (Size == 0) |
| { |
| flwrite(Reset,0x555); |
| return 0; |
| } |
| |
| |
| // Reset. |
| flwrite(Reset,0x555); |
| |
| return 1; |
| |
| #undef flread |
| #undef flwrite |
| } |
| |
| // Look for flash using a 16 bit bus interface (ie 2 8-bit chips) |
| static int jedec_probe16(struct map_info *map,unsigned long base, |
| struct jedec_private *priv) |
| { |
| return 0; |
| } |
| |
| // Look for flash using a 32 bit bus interface (ie 4 8-bit chips) |
| static int jedec_probe32(struct map_info *map,unsigned long base, |
| struct jedec_private *priv) |
| { |
| #define flread(x) map_read32(map,base+((x)<<2)) |
| #define flwrite(v,x) map_write32(map,v,base+((x)<<2)) |
| |
| const unsigned long AutoSel1 = 0xAAAAAAAA; |
| const unsigned long AutoSel2 = 0x55555555; |
| const unsigned long AutoSel3 = 0x90909090; |
| const unsigned long Reset = 0xF0F0F0F0; |
| __u32 OldVal; |
| __u8 Mfg[4]; |
| __u8 Id[4]; |
| unsigned I; |
| unsigned long Size; |
| |
| // Wait for any write/erase operation to settle |
| OldVal = flread(base); |
| for (I = 0; OldVal != flread(base) && I < 10000; I++) |
| OldVal = flread(base); |
| |
| // Reset the chip |
| flwrite(Reset,0x555); |
| |
| // Send the sequence |
| flwrite(AutoSel1,0x555); |
| flwrite(AutoSel2,0x2AA); |
| flwrite(AutoSel3,0x555); |
| |
| // Test #1, JEDEC numbers are readable from 0x??00/0x??01 |
| if (flread(0) != flread(0x100) || |
| flread(1) != flread(0x101)) |
| { |
| flwrite(Reset,0x555); |
| return 0; |
| } |
| |
| // Split up the JEDEC numbers |
| OldVal = flread(0); |
| for (I = 0; I != 4; I++) |
| Mfg[I] = (OldVal >> (I*8)); |
| OldVal = flread(1); |
| for (I = 0; I != 4; I++) |
| Id[I] = (OldVal >> (I*8)); |
| |
| Size = handle_jedecs(map,Mfg,Id,4,base,priv); |
| if (Size == 0) |
| { |
| flwrite(Reset,0x555); |
| return 0; |
| } |
| |
| /* Check if there is address wrap around within a single bank, if this |
| returns JEDEC numbers then we assume that it is wrap around. Notice |
| we call this routine with the JEDEC return still enabled, if two or |
| more flashes have a truncated address space the probe test will still |
| work */ |
| if (base + (Size<<2)+0x555 < map->size && |
| base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size) |
| { |
| if (flread(base+Size) != flread(base+Size + 0x100) || |
| flread(base+Size + 1) != flread(base+Size + 0x101)) |
| { |
| jedec_probe32(map,base+Size,priv); |
| } |
| } |
| |
| // Reset. |
| flwrite(0xF0F0F0F0,0x555); |
| |
| return 1; |
| |
| #undef flread |
| #undef flwrite |
| } |
| |
| /* Linear read. */ |
| static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| |
| map_copy_from(map, buf, from, len); |
| *retlen = len; |
| return 0; |
| } |
| |
| /* Banked read. Take special care to jump past the holes in the bank |
| mapping. This version assumes symetry in the holes.. */ |
| static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct jedec_private *priv = map->fldrv_priv; |
| |
| *retlen = 0; |
| while (len > 0) |
| { |
| // Determine what bank and offset into that bank the first byte is |
| unsigned long bank = from & (~(priv->bank_fill[0]-1)); |
| unsigned long offset = from & (priv->bank_fill[0]-1); |
| unsigned long get = len; |
| if (priv->bank_fill[0] - offset < len) |
| get = priv->bank_fill[0] - offset; |
| |
| bank /= priv->bank_fill[0]; |
| map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); |
| |
| len -= get; |
| *retlen += get; |
| from += get; |
| } |
| return 0; |
| } |
| |
| /* Pass the flags value that the flash return before it re-entered read |
| mode. */ |
| static void jedec_flash_failed(unsigned char code) |
| { |
| /* Bit 5 being high indicates that there was an internal device |
| failure, erasure time limits exceeded or something */ |
| if ((code & (1 << 5)) != 0) |
| { |
| printk("mtd: Internal Flash failure\n"); |
| return; |
| } |
| printk("mtd: Programming didn't take\n"); |
| } |
| |
| /* This uses the erasure function described in the AMD Flash Handbook, |
| it will work for flashes with a fixed sector size only. Flashes with |
| a selection of sector sizes (ie the AMD Am29F800B) will need a different |
| routine. This routine tries to parallize erasing multiple chips/sectors |
| where possible */ |
| static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| // Does IO to the currently selected chip |
| #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) |
| #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) |
| |
| unsigned long Time = 0; |
| unsigned long NoTime = 0; |
| unsigned long start = instr->addr, len = instr->len; |
| unsigned int I; |
| struct map_info *map = mtd->priv; |
| struct jedec_private *priv = map->fldrv_priv; |
| |
| // Verify the arguments.. |
| if (start + len > mtd->size || |
| (start % mtd->erasesize) != 0 || |
| (len % mtd->erasesize) != 0 || |
| (len/mtd->erasesize) == 0) |
| return -EINVAL; |
| |
| jedec_flash_chip_scan(priv,start,len); |
| |
| // Start the erase sequence on each chip |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| { |
| unsigned long off; |
| struct jedec_flash_chip *chip = priv->chips + I; |
| |
| if (chip->length == 0) |
| continue; |
| |
| if (chip->start + chip->length > chip->size) |
| { |
| printk("DIE\n"); |
| return -EIO; |
| } |
| |
| flwrite(0xF0,chip->start + 0x555); |
| flwrite(0xAA,chip->start + 0x555); |
| flwrite(0x55,chip->start + 0x2AA); |
| flwrite(0x80,chip->start + 0x555); |
| flwrite(0xAA,chip->start + 0x555); |
| flwrite(0x55,chip->start + 0x2AA); |
| |
| /* Once we start selecting the erase sectors the delay between each |
| command must not exceed 50us or it will immediately start erasing |
| and ignore the other sectors */ |
| for (off = 0; off < len; off += chip->sectorsize) |
| { |
| // Check to make sure we didn't timeout |
| flwrite(0x30,chip->start + off); |
| if (off == 0) |
| continue; |
| if ((flread(chip->start + off) & (1 << 3)) != 0) |
| { |
| printk("mtd: Ack! We timed out the erase timer!\n"); |
| return -EIO; |
| } |
| } |
| } |
| |
| /* We could split this into a timer routine and return early, performing |
| background erasure.. Maybe later if the need warrents */ |
| |
| /* Poll the flash for erasure completion, specs say this can take as long |
| as 480 seconds to do all the sectors (for a 2 meg flash). |
| Erasure time is dependent on chip age, temp and wear.. */ |
| |
| /* This being a generic routine assumes a 32 bit bus. It does read32s |
| and bundles interleved chips into the same grouping. This will work |
| for all bus widths */ |
| Time = 0; |
| NoTime = 0; |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| { |
| struct jedec_flash_chip *chip = priv->chips + I; |
| unsigned long off = 0; |
| unsigned todo[4] = {0,0,0,0}; |
| unsigned todo_left = 0; |
| unsigned J; |
| |
| if (chip->length == 0) |
| continue; |
| |
| /* Find all chips in this data line, realistically this is all |
| or nothing up to the interleve count */ |
| for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) |
| { |
| if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == |
| (chip->base & (~((1<<chip->addrshift)-1)))) |
| { |
| todo_left++; |
| todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; |
| } |
| } |
| |
| /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], |
| (short)todo[2],(short)todo[3]); |
| */ |
| while (1) |
| { |
| __u32 Last[4]; |
| unsigned long Count = 0; |
| |
| /* During erase bit 7 is held low and bit 6 toggles, we watch this, |
| should it stop toggling or go high then the erase is completed, |
| or this is not really flash ;> */ |
| switch (map->buswidth) { |
| case 1: |
| Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| break; |
| case 2: |
| Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| break; |
| case 3: |
| Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| break; |
| } |
| Count = 3; |
| while (todo_left != 0) |
| { |
| for (J = 0; J != 4; J++) |
| { |
| __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF; |
| __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF; |
| __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; |
| if (todo[J] == 0) |
| continue; |
| |
| if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) |
| { |
| // printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); |
| continue; |
| } |
| |
| if (Byte1 == Byte2) |
| { |
| jedec_flash_failed(Byte3); |
| return -EIO; |
| } |
| |
| todo[J] = 0; |
| todo_left--; |
| } |
| |
| /* if (NoTime == 0) |
| Time += HZ/10 - schedule_timeout(HZ/10);*/ |
| NoTime = 0; |
| |
| switch (map->buswidth) { |
| case 1: |
| Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); |
| break; |
| case 2: |
| Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); |
| break; |
| case 4: |
| Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); |
| break; |
| } |
| Count++; |
| |
| /* // Count time, max of 15s per sector (according to AMD) |
| if (Time > 15*len/mtd->erasesize*HZ) |
| { |
| printk("mtd: Flash Erase Timed out\n"); |
| return -EIO; |
| } */ |
| } |
| |
| // Skip to the next chip if we used chip erase |
| if (chip->length == chip->size) |
| off = chip->size; |
| else |
| off += chip->sectorsize; |
| |
| if (off >= chip->length) |
| break; |
| NoTime = 1; |
| } |
| |
| for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) |
| { |
| if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == |
| (chip->base & (~((1<<chip->addrshift)-1)))) |
| priv->chips[J].length = 0; |
| } |
| } |
| |
| //printk("done\n"); |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| return 0; |
| |
| #undef flread |
| #undef flwrite |
| } |
| |
| /* This is the simple flash writing function. It writes to every byte, in |
| sequence. It takes care of how to properly address the flash if |
| the flash is interleved. It can only be used if all the chips in the |
| array are identical!*/ |
| static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| /* Does IO to the currently selected chip. It takes the bank addressing |
| base (which is divisible by the chip size) adds the necessary lower bits |
| of addrshift (interleave index) and then adds the control register index. */ |
| #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) |
| #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) |
| |
| struct map_info *map = mtd->priv; |
| struct jedec_private *priv = map->fldrv_priv; |
| unsigned long base; |
| unsigned long off; |
| size_t save_len = len; |
| |
| if (start + len > mtd->size) |
| return -EIO; |
| |
| //printk("Here"); |
| |
| //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); |
| while (len != 0) |
| { |
| struct jedec_flash_chip *chip = priv->chips; |
| unsigned long bank; |
| unsigned long boffset; |
| |
| // Compute the base of the flash. |
| off = ((unsigned long)start) % (chip->size << chip->addrshift); |
| base = start - off; |
| |
| // Perform banked addressing translation. |
| bank = base & (~(priv->bank_fill[0]-1)); |
| boffset = base & (priv->bank_fill[0]-1); |
| bank = (bank/priv->bank_fill[0])*my_bank_size; |
| base = bank + boffset; |
| |
| // printk("Flasing %X %X %X\n",base,chip->size,len); |
| // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); |
| |
| // Loop over this page |
| for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) |
| { |
| unsigned char oldbyte = map_read8(map,base+off); |
| unsigned char Last[4]; |
| unsigned long Count = 0; |
| |
| if (oldbyte == *buf) { |
| // printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len); |
| continue; |
| } |
| if (((~oldbyte) & *buf) != 0) |
| printk("mtd: warn: Trying to set a 0 to a 1\n"); |
| |
| // Write |
| flwrite(0xAA,0x555); |
| flwrite(0x55,0x2AA); |
| flwrite(0xA0,0x555); |
| map_write8(map,*buf,base + off); |
| Last[0] = map_read8(map,base + off); |
| Last[1] = map_read8(map,base + off); |
| Last[2] = map_read8(map,base + off); |
| |
| /* Wait for the flash to finish the operation. We store the last 4 |
| status bytes that have been retrieved so we can determine why |
| it failed. The toggle bits keep toggling when there is a |
| failure */ |
| for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && |
| Count < 10000; Count++) |
| Last[Count % 4] = map_read8(map,base + off); |
| if (Last[(Count - 1) % 4] != *buf) |
| { |
| jedec_flash_failed(Last[(Count - 3) % 4]); |
| return -EIO; |
| } |
| } |
| } |
| *retlen = save_len; |
| return 0; |
| } |
| |
| /* This is used to enhance the speed of the erase routine, |
| when things are being done to multiple chips it is possible to |
| parallize the operations, particularly full memory erases of multi |
| chip memories benifit */ |
| static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, |
| unsigned long len) |
| { |
| unsigned int I; |
| |
| // Zero the records |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| priv->chips[I].start = priv->chips[I].length = 0; |
| |
| // Intersect the region with each chip |
| for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
| { |
| struct jedec_flash_chip *chip = priv->chips + I; |
| unsigned long ByteStart; |
| unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); |
| |
| // End is before this chip or the start is after it |
| if (start+len < chip->offset || |
| ChipEndByte - (1 << chip->addrshift) < start) |
| continue; |
| |
| if (start < chip->offset) |
| { |
| ByteStart = chip->offset; |
| chip->start = 0; |
| } |
| else |
| { |
| chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; |
| ByteStart = start; |
| } |
| |
| if (start + len >= ChipEndByte) |
| chip->length = (ChipEndByte - ByteStart) >> chip->addrshift; |
| else |
| chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift; |
| } |
| } |
| |
| int __init jedec_init(void) |
| { |
| register_mtd_chip_driver(&jedec_chipdrv); |
| return 0; |
| } |
| |
| static void __exit jedec_exit(void) |
| { |
| unregister_mtd_chip_driver(&jedec_chipdrv); |
| } |
| |
| module_init(jedec_init); |
| module_exit(jedec_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al."); |
| MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips"); |