blob: dc42aad92497331f3478d7b99bcf6516e9b4b087 [file] [log] [blame]
/* Copyright (c) 2008-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/android_pmem.h>
#include <linux/bootmem.h>
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/mfd/tps65023.h>
#include <linux/bma150.h>
#include <linux/power_supply.h>
#include <linux/clk.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/mach/mmc.h>
#include <mach/vreg.h>
#include <mach/mpp.h>
#include <mach/board.h>
#include <mach/sirc.h>
#include <mach/dma.h>
#include <mach/rpc_hsusb.h>
#include <mach/rpc_pmapp.h>
#include <mach/msm_hsusb.h>
#include <mach/msm_serial_hs.h>
#include <mach/msm_touchpad.h>
#include <mach/msm_i2ckbd.h>
#include <mach/pmic.h>
#include <mach/camera.h>
#include <mach/memory.h>
#include <mach/msm_spi.h>
#include <mach/msm_tsif.h>
#include <mach/msm_battery.h>
#include <mach/rpc_server_handset.h>
#include <mach/socinfo.h>
#include "devices.h"
#include "timer.h"
#include "msm-keypad-devices.h"
#include "pm.h"
#include "proc_comm.h"
#ifdef CONFIG_USB_ANDROID
#include <linux/usb/android_composite.h>
#endif
#define TOUCHPAD_SUSPEND 34
#define TOUCHPAD_IRQ 38
#define MSM_PMEM_SF_SIZE 0x1700000
#define SMEM_SPINLOCK_I2C "S:6"
#define MSM_PMEM_ADSP_SIZE 0x2A05000
#define MSM_FB_SIZE 0x2EE000
#define MSM_AUDIO_SIZE 0x80000
#ifdef CONFIG_MSM_SOC_REV_A
#define MSM_SMI_BASE 0xE0000000
#else
#define MSM_SMI_BASE 0x00000000
#endif
#define MSM_SHARED_RAM_PHYS (MSM_SMI_BASE + 0x00100000)
#define MSM_PMEM_SMI_BASE (MSM_SMI_BASE + 0x02B00000)
#define MSM_PMEM_SMI_SIZE 0x01500000
#define MSM_FB_BASE MSM_PMEM_SMI_BASE
#define MSM_PMEM_SMIPOOL_BASE (MSM_FB_BASE + MSM_FB_SIZE)
#define MSM_PMEM_SMIPOOL_SIZE (MSM_PMEM_SMI_SIZE - MSM_FB_SIZE)
#define PMEM_KERNEL_EBI1_SIZE 0x28000
#define PMIC_VREG_WLAN_LEVEL 2600
#define PMIC_VREG_GP6_LEVEL 2900
#define FPGA_SDCC_STATUS 0x70000280
static struct resource smc91x_resources[] = {
[0] = {
.flags = IORESOURCE_MEM,
},
[1] = {
.flags = IORESOURCE_IRQ,
},
};
#ifdef CONFIG_USB_FUNCTION
static struct usb_mass_storage_platform_data usb_mass_storage_pdata = {
.nluns = 0x02,
.buf_size = 16384,
.vendor = "GOOGLE",
.product = "Mass storage",
.release = 0xffff,
};
static struct platform_device mass_storage_device = {
.name = "usb_mass_storage",
.id = -1,
.dev = {
.platform_data = &usb_mass_storage_pdata,
},
};
#endif
#ifdef CONFIG_USB_ANDROID
static char *usb_functions_default[] = {
"diag",
"modem",
"nmea",
"rmnet",
"usb_mass_storage",
};
static char *usb_functions_default_adb[] = {
"diag",
"adb",
"modem",
"nmea",
"rmnet",
"usb_mass_storage",
};
static char *usb_functions_rndis[] = {
"rndis",
};
static char *usb_functions_rndis_adb[] = {
"rndis",
"adb",
};
static char *usb_functions_all[] = {
#ifdef CONFIG_USB_ANDROID_RNDIS
"rndis",
#endif
#ifdef CONFIG_USB_ANDROID_DIAG
"diag",
#endif
"adb",
#ifdef CONFIG_USB_F_SERIAL
"modem",
"nmea",
#endif
#ifdef CONFIG_USB_ANDROID_RMNET
"rmnet",
#endif
"usb_mass_storage",
#ifdef CONFIG_USB_ANDROID_ACM
"acm",
#endif
};
static struct android_usb_product usb_products[] = {
{
.product_id = 0x9026,
.num_functions = ARRAY_SIZE(usb_functions_default),
.functions = usb_functions_default,
},
{
.product_id = 0x9025,
.num_functions = ARRAY_SIZE(usb_functions_default_adb),
.functions = usb_functions_default_adb,
},
{
.product_id = 0xf00e,
.num_functions = ARRAY_SIZE(usb_functions_rndis),
.functions = usb_functions_rndis,
},
{
.product_id = 0x9024,
.num_functions = ARRAY_SIZE(usb_functions_rndis_adb),
.functions = usb_functions_rndis_adb,
},
};
static struct usb_mass_storage_platform_data mass_storage_pdata = {
.nluns = 1,
.vendor = "Qualcomm Incorporated",
.product = "Mass storage",
.release = 0x0100,
};
static struct platform_device usb_mass_storage_device = {
.name = "usb_mass_storage",
.id = -1,
.dev = {
.platform_data = &mass_storage_pdata,
},
};
static struct usb_ether_platform_data rndis_pdata = {
/* ethaddr is filled by board_serialno_setup */
.vendorID = 0x05C6,
.vendorDescr = "Qualcomm Incorporated",
};
static struct platform_device rndis_device = {
.name = "rndis",
.id = -1,
.dev = {
.platform_data = &rndis_pdata,
},
};
static struct android_usb_platform_data android_usb_pdata = {
.vendor_id = 0x05C6,
.product_id = 0x9026,
.version = 0x0100,
.product_name = "Qualcomm HSUSB Device",
.manufacturer_name = "Qualcomm Incorporated",
.num_products = ARRAY_SIZE(usb_products),
.products = usb_products,
.num_functions = ARRAY_SIZE(usb_functions_all),
.functions = usb_functions_all,
.serial_number = "1234567890ABCDEF",
};
static struct platform_device android_usb_device = {
.name = "android_usb",
.id = -1,
.dev = {
.platform_data = &android_usb_pdata,
},
};
static int __init board_serialno_setup(char *serialno)
{
int i;
char *src = serialno;
/* create a fake MAC address from our serial number.
* first byte is 0x02 to signify locally administered.
*/
rndis_pdata.ethaddr[0] = 0x02;
for (i = 0; *src; i++) {
/* XOR the USB serial across the remaining bytes */
rndis_pdata.ethaddr[i % (ETH_ALEN - 1) + 1] ^= *src++;
}
android_usb_pdata.serial_number = serialno;
return 1;
}
__setup("androidboot.serialno=", board_serialno_setup);
#endif
static struct platform_device smc91x_device = {
.name = "smc91x",
.id = 0,
.num_resources = ARRAY_SIZE(smc91x_resources),
.resource = smc91x_resources,
};
#ifdef CONFIG_USB_FUNCTION
static struct usb_function_map usb_functions_map[] = {
{"diag", 0},
{"adb", 1},
{"modem", 2},
{"nmea", 3},
{"mass_storage", 4},
{"ethernet", 5},
};
/* dynamic composition */
static struct usb_composition usb_func_composition[] = {
{
.product_id = 0x9012,
.functions = 0x5, /* 0101 */
},
{
.product_id = 0x9013,
.functions = 0x15, /* 10101 */
},
{
.product_id = 0x9014,
.functions = 0x30, /* 110000 */
},
{
.product_id = 0x9015,
.functions = 0x12, /* 10010 */
},
{
.product_id = 0x9016,
.functions = 0xD, /* 01101 */
},
{
.product_id = 0x9017,
.functions = 0x1D, /* 11101 */
},
{
.product_id = 0xF000,
.functions = 0x10, /* 10000 */
},
{
.product_id = 0xF009,
.functions = 0x20, /* 100000 */
},
{
.product_id = 0x9018,
.functions = 0x1F, /* 011111 */
},
{
.product_id = 0x901A,
.functions = 0x0F, /* 01111 */
},
};
#endif
static struct msm_handset_platform_data hs_platform_data = {
.hs_name = "8k_handset",
.pwr_key_delay_ms = 500, /* 0 will disable end key */
};
static struct platform_device hs_device = {
.name = "msm-handset",
.id = -1,
.dev = {
.platform_data = &hs_platform_data,
},
};
#ifdef CONFIG_USB_FS_HOST
static struct msm_gpio fsusb_config[] = {
{ GPIO_CFG(139, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "fs_dat" },
{ GPIO_CFG(140, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "fs_se0" },
{ GPIO_CFG(141, 3, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "fs_oe_n" },
};
static int fsusb_gpio_init(void)
{
return msm_gpios_request(fsusb_config, ARRAY_SIZE(fsusb_config));
}
static void msm_fsusb_setup_gpio(unsigned int enable)
{
if (enable)
msm_gpios_enable(fsusb_config, ARRAY_SIZE(fsusb_config));
else
msm_gpios_disable(fsusb_config, ARRAY_SIZE(fsusb_config));
}
#endif
#define MSM_USB_BASE ((unsigned)addr)
static struct msm_hsusb_platform_data msm_hsusb_pdata = {
#ifdef CONFIG_USB_FUNCTION
.version = 0x0100,
.phy_info = (USB_PHY_INTEGRATED | USB_PHY_MODEL_180NM),
.vendor_id = 0x5c6,
.product_name = "Qualcomm HSUSB Device",
.serial_number = "1234567890ABCDEF",
.manufacturer_name = "Qualcomm Incorporated",
.compositions = usb_func_composition,
.num_compositions = ARRAY_SIZE(usb_func_composition),
.function_map = usb_functions_map,
.num_functions = ARRAY_SIZE(usb_functions_map),
.config_gpio = NULL,
#endif
};
static struct vreg *vreg_usb;
static void msm_hsusb_vbus_power(unsigned phy_info, int on)
{
switch (PHY_TYPE(phy_info)) {
case USB_PHY_INTEGRATED:
if (on)
msm_hsusb_vbus_powerup();
else
msm_hsusb_vbus_shutdown();
break;
case USB_PHY_SERIAL_PMIC:
if (on)
vreg_enable(vreg_usb);
else
vreg_disable(vreg_usb);
break;
default:
pr_err("%s: undefined phy type ( %X ) \n", __func__,
phy_info);
}
}
static struct msm_usb_host_platform_data msm_usb_host_pdata = {
.phy_info = (USB_PHY_INTEGRATED | USB_PHY_MODEL_180NM),
};
#ifdef CONFIG_USB_FS_HOST
static struct msm_usb_host_platform_data msm_usb_host2_pdata = {
.phy_info = USB_PHY_SERIAL_PMIC,
.config_gpio = msm_fsusb_setup_gpio,
.vbus_power = msm_hsusb_vbus_power,
};
#endif
static struct android_pmem_platform_data android_pmem_kernel_ebi1_pdata = {
.name = PMEM_KERNEL_EBI1_DATA_NAME,
/* if no allocator_type, defaults to PMEM_ALLOCATORTYPE_BITMAP,
* the only valid choice at this time. The board structure is
* set to all zeros by the C runtime initialization and that is now
* the enum value of PMEM_ALLOCATORTYPE_BITMAP, now forced to 0 in
* include/linux/android_pmem.h.
*/
.cached = 0,
};
#ifdef CONFIG_KERNEL_PMEM_SMI_REGION
static struct android_pmem_platform_data android_pmem_kernel_smi_pdata = {
.name = PMEM_KERNEL_SMI_DATA_NAME,
/* if no allocator_type, defaults to PMEM_ALLOCATORTYPE_BITMAP,
* the only valid choice at this time. The board structure is
* set to all zeros by the C runtime initialization and that is now
* the enum value of PMEM_ALLOCATORTYPE_BITMAP, now forced to 0 in
* include/linux/android_pmem.h.
*/
.cached = 0,
};
#endif
static struct android_pmem_platform_data android_pmem_pdata = {
.name = "pmem",
.allocator_type = PMEM_ALLOCATORTYPE_ALLORNOTHING,
.cached = 1,
};
static struct android_pmem_platform_data android_pmem_adsp_pdata = {
.name = "pmem_adsp",
.allocator_type = PMEM_ALLOCATORTYPE_BITMAP,
.cached = 0,
};
static struct android_pmem_platform_data android_pmem_smipool_pdata = {
.name = "pmem_smipool",
.size = MSM_PMEM_SMIPOOL_SIZE,
.allocator_type = PMEM_ALLOCATORTYPE_BITMAP,
.cached = 0,
};
static struct platform_device android_pmem_device = {
.name = "android_pmem",
.id = 0,
.dev = { .platform_data = &android_pmem_pdata },
};
static struct platform_device android_pmem_adsp_device = {
.name = "android_pmem",
.id = 1,
.dev = { .platform_data = &android_pmem_adsp_pdata },
};
static struct platform_device android_pmem_smipool_device = {
.name = "android_pmem",
.id = 2,
.dev = { .platform_data = &android_pmem_smipool_pdata },
};
static struct platform_device android_pmem_kernel_ebi1_device = {
.name = "android_pmem",
.id = 3,
.dev = { .platform_data = &android_pmem_kernel_ebi1_pdata },
};
#ifdef CONFIG_KERNEL_PMEM_SMI_REGION
static struct platform_device android_pmem_kernel_smi_device = {
.name = "android_pmem",
.id = 4,
.dev = { .platform_data = &android_pmem_kernel_smi_pdata },
};
#endif
static struct resource msm_fb_resources[] = {
{
.flags = IORESOURCE_DMA,
}
};
static int msm_fb_detect_panel(const char *name)
{
int ret = -EPERM;
if (machine_is_qsd8x50_ffa()) {
if (!strncmp(name, "mddi_toshiba_wvga_pt", 20))
ret = 0;
else
ret = -ENODEV;
} else if ((machine_is_qsd8x50_surf())
&& !strcmp(name, "lcdc_external"))
ret = 0;
return ret;
}
static struct msm_fb_platform_data msm_fb_pdata = {
.detect_client = msm_fb_detect_panel,
};
static struct platform_device msm_fb_device = {
.name = "msm_fb",
.id = 0,
.num_resources = ARRAY_SIZE(msm_fb_resources),
.resource = msm_fb_resources,
.dev = {
.platform_data = &msm_fb_pdata,
}
};
static struct msm_gpio bma_spi_gpio_config_data[] = {
{ GPIO_CFG(22, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "bma_irq" },
};
static int msm_bma_gpio_setup(struct device *dev)
{
int rc;
rc = msm_gpios_request_enable(bma_spi_gpio_config_data,
ARRAY_SIZE(bma_spi_gpio_config_data));
return rc;
}
static void msm_bma_gpio_teardown(struct device *dev)
{
msm_gpios_disable_free(bma_spi_gpio_config_data,
ARRAY_SIZE(bma_spi_gpio_config_data));
}
static struct bma150_platform_data bma_pdata = {
.setup = msm_bma_gpio_setup,
.teardown = msm_bma_gpio_teardown,
};
static struct resource qsd_spi_resources[] = {
{
.name = "spi_irq_in",
.start = INT_SPI_INPUT,
.end = INT_SPI_INPUT,
.flags = IORESOURCE_IRQ,
},
{
.name = "spi_irq_out",
.start = INT_SPI_OUTPUT,
.end = INT_SPI_OUTPUT,
.flags = IORESOURCE_IRQ,
},
{
.name = "spi_irq_err",
.start = INT_SPI_ERROR,
.end = INT_SPI_ERROR,
.flags = IORESOURCE_IRQ,
},
{
.name = "spi_base",
.start = 0xA1200000,
.end = 0xA1200000 + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
{
.name = "spidm_channels",
.flags = IORESOURCE_DMA,
},
{
.name = "spidm_crci",
.flags = IORESOURCE_DMA,
},
};
static struct platform_device qsd_device_spi = {
.name = "spi_qsd",
.id = 0,
.num_resources = ARRAY_SIZE(qsd_spi_resources),
.resource = qsd_spi_resources,
};
static struct spi_board_info msm_spi_board_info[] __initdata = {
{
.modalias = "bma150",
.mode = SPI_MODE_3,
.irq = MSM_GPIO_TO_INT(22),
.bus_num = 0,
.chip_select = 0,
.max_speed_hz = 10000000,
.platform_data = &bma_pdata,
},
};
#define CT_CSR_PHYS 0xA8700000
#define TCSR_SPI_MUX (ct_csr_base + 0x54)
static int msm_qsd_spi_dma_config(void)
{
void __iomem *ct_csr_base = 0;
u32 spi_mux;
int ret = 0;
ct_csr_base = ioremap(CT_CSR_PHYS, PAGE_SIZE);
if (!ct_csr_base) {
pr_err("%s: Could not remap %x\n", __func__, CT_CSR_PHYS);
return -1;
}
spi_mux = readl(TCSR_SPI_MUX);
switch (spi_mux) {
case (1):
qsd_spi_resources[4].start = DMOV_HSUART1_RX_CHAN;
qsd_spi_resources[4].end = DMOV_HSUART1_TX_CHAN;
qsd_spi_resources[5].start = DMOV_HSUART1_RX_CRCI;
qsd_spi_resources[5].end = DMOV_HSUART1_TX_CRCI;
break;
case (2):
qsd_spi_resources[4].start = DMOV_HSUART2_RX_CHAN;
qsd_spi_resources[4].end = DMOV_HSUART2_TX_CHAN;
qsd_spi_resources[5].start = DMOV_HSUART2_RX_CRCI;
qsd_spi_resources[5].end = DMOV_HSUART2_TX_CRCI;
break;
case (3):
qsd_spi_resources[4].start = DMOV_CE_OUT_CHAN;
qsd_spi_resources[4].end = DMOV_CE_IN_CHAN;
qsd_spi_resources[5].start = DMOV_CE_OUT_CRCI;
qsd_spi_resources[5].end = DMOV_CE_IN_CRCI;
break;
default:
ret = -1;
}
iounmap(ct_csr_base);
return ret;
}
static struct msm_gpio qsd_spi_gpio_config_data[] = {
{ GPIO_CFG(17, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "spi_clk" },
{ GPIO_CFG(18, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "spi_mosi" },
{ GPIO_CFG(19, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "spi_miso" },
{ GPIO_CFG(20, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), "spi_cs0" },
{ GPIO_CFG(21, 0, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_16MA), "spi_pwr" },
};
static int msm_qsd_spi_gpio_config(void)
{
int rc;
rc = msm_gpios_request_enable(qsd_spi_gpio_config_data,
ARRAY_SIZE(qsd_spi_gpio_config_data));
if (rc)
return rc;
/* Set direction for SPI_PWR */
gpio_direction_output(21, 1);
return 0;
}
static void msm_qsd_spi_gpio_release(void)
{
msm_gpios_disable_free(qsd_spi_gpio_config_data,
ARRAY_SIZE(qsd_spi_gpio_config_data));
}
static struct msm_spi_platform_data qsd_spi_pdata = {
.max_clock_speed = 19200000,
.gpio_config = msm_qsd_spi_gpio_config,
.gpio_release = msm_qsd_spi_gpio_release,
.dma_config = msm_qsd_spi_dma_config,
};
static void __init msm_qsd_spi_init(void)
{
qsd_device_spi.dev.platform_data = &qsd_spi_pdata;
}
static int mddi_toshiba_pmic_bl(int level)
{
int ret = -EPERM;
if (machine_is_qsd8x50_ffa()) {
ret = pmic_set_led_intensity(LED_LCD, level);
if (ret)
printk(KERN_WARNING "%s: can't set lcd backlight!\n",
__func__);
}
return ret;
}
static struct msm_panel_common_pdata mddi_toshiba_pdata = {
.pmic_backlight = mddi_toshiba_pmic_bl,
};
static struct platform_device mddi_toshiba_device = {
.name = "mddi_toshiba",
.id = 0,
.dev = {
.platform_data = &mddi_toshiba_pdata,
}
};
static void msm_fb_vreg_config(const char *name, int on)
{
struct vreg *vreg;
int ret = 0;
vreg = vreg_get(NULL, name);
if (IS_ERR(vreg)) {
printk(KERN_ERR "%s: vreg_get(%s) failed (%ld)\n",
__func__, name, PTR_ERR(vreg));
return;
}
ret = (on) ? vreg_enable(vreg) : vreg_disable(vreg);
if (ret)
printk(KERN_ERR "%s: %s(%s) failed!\n",
__func__, (on) ? "vreg_enable" : "vreg_disable", name);
}
#define MDDI_RST_OUT_GPIO 100
static int mddi_power_save_on;
static int msm_fb_mddi_power_save(int on)
{
int flag_on = !!on;
int ret = 0;
if (mddi_power_save_on == flag_on)
return ret;
mddi_power_save_on = flag_on;
if (!flag_on && machine_is_qsd8x50_ffa()) {
gpio_set_value(MDDI_RST_OUT_GPIO, 0);
mdelay(1);
}
ret = pmic_lp_mode_control(flag_on ? OFF_CMD : ON_CMD,
PM_VREG_LP_MSME2_ID);
if (ret)
printk(KERN_ERR "%s: pmic_lp_mode_control failed!\n", __func__);
msm_fb_vreg_config("gp5", flag_on);
msm_fb_vreg_config("boost", flag_on);
if (flag_on && machine_is_qsd8x50_ffa()) {
gpio_set_value(MDDI_RST_OUT_GPIO, 0);
mdelay(1);
gpio_set_value(MDDI_RST_OUT_GPIO, 1);
gpio_set_value(MDDI_RST_OUT_GPIO, 1);
mdelay(1);
}
return ret;
}
static int msm_fb_mddi_sel_clk(u32 *clk_rate)
{
*clk_rate *= 2;
return 0;
}
static struct mddi_platform_data mddi_pdata = {
.mddi_power_save = msm_fb_mddi_power_save,
.mddi_sel_clk = msm_fb_mddi_sel_clk,
};
static struct msm_panel_common_pdata mdp_pdata = {
.gpio = 98,
};
static void __init msm_fb_add_devices(void)
{
msm_fb_register_device("mdp", &mdp_pdata);
msm_fb_register_device("pmdh", &mddi_pdata);
msm_fb_register_device("emdh", &mddi_pdata);
msm_fb_register_device("tvenc", 0);
msm_fb_register_device("lcdc", 0);
}
static struct resource msm_audio_resources[] = {
{
.flags = IORESOURCE_DMA,
},
{
.name = "aux_pcm_dout",
.start = 68,
.end = 68,
.flags = IORESOURCE_IO,
},
{
.name = "aux_pcm_din",
.start = 69,
.end = 69,
.flags = IORESOURCE_IO,
},
{
.name = "aux_pcm_syncout",
.start = 70,
.end = 70,
.flags = IORESOURCE_IO,
},
{
.name = "aux_pcm_clkin_a",
.start = 71,
.end = 71,
.flags = IORESOURCE_IO,
},
{
.name = "sdac_din",
.start = 144,
.end = 144,
.flags = IORESOURCE_IO,
},
{
.name = "sdac_dout",
.start = 145,
.end = 145,
.flags = IORESOURCE_IO,
},
{
.name = "sdac_wsout",
.start = 143,
.end = 143,
.flags = IORESOURCE_IO,
},
{
.name = "cc_i2s_clk",
.start = 142,
.end = 142,
.flags = IORESOURCE_IO,
},
{
.name = "audio_master_clkout",
.start = 146,
.end = 146,
.flags = IORESOURCE_IO,
},
{
.name = "audio_base_addr",
.start = 0xa0700000,
.end = 0xa0700000 + 4,
.flags = IORESOURCE_MEM,
},
};
static unsigned audio_gpio_on[] = {
GPIO_CFG(68, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* PCM_DOUT */
GPIO_CFG(69, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* PCM_DIN */
GPIO_CFG(70, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* PCM_SYNC */
GPIO_CFG(71, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* PCM_CLK */
GPIO_CFG(142, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* CC_I2S_CLK */
GPIO_CFG(143, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* SADC_WSOUT */
GPIO_CFG(144, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* SADC_DIN */
GPIO_CFG(145, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* SDAC_DOUT */
GPIO_CFG(146, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* MA_CLK_OUT */
};
static void __init audio_gpio_init(void)
{
int pin, rc;
for (pin = 0; pin < ARRAY_SIZE(audio_gpio_on); pin++) {
rc = gpio_tlmm_config(audio_gpio_on[pin],
GPIO_CFG_ENABLE);
if (rc) {
printk(KERN_ERR
"%s: gpio_tlmm_config(%#x)=%d\n",
__func__, audio_gpio_on[pin], rc);
return;
}
}
}
static struct platform_device msm_audio_device = {
.name = "msm_audio",
.id = 0,
.num_resources = ARRAY_SIZE(msm_audio_resources),
.resource = msm_audio_resources,
};
static struct resource bluesleep_resources[] = {
{
.name = "gpio_host_wake",
.start = 21,
.end = 21,
.flags = IORESOURCE_IO,
},
{
.name = "gpio_ext_wake",
.start = 19,
.end = 19,
.flags = IORESOURCE_IO,
},
{
.name = "host_wake",
.start = MSM_GPIO_TO_INT(21),
.end = MSM_GPIO_TO_INT(21),
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device msm_bluesleep_device = {
.name = "bluesleep",
.id = -1,
.num_resources = ARRAY_SIZE(bluesleep_resources),
.resource = bluesleep_resources,
};
#ifdef CONFIG_BT
static struct platform_device msm_bt_power_device = {
.name = "bt_power",
};
enum {
BT_SYSRST,
BT_WAKE,
BT_HOST_WAKE,
BT_VDD_IO,
BT_RFR,
BT_CTS,
BT_RX,
BT_TX,
BT_VDD_FREG
};
static struct msm_gpio bt_config_power_off[] = {
{ GPIO_CFG(18, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"BT SYSRST" },
{ GPIO_CFG(19, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"BT WAKE" },
{ GPIO_CFG(21, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"HOST WAKE" },
{ GPIO_CFG(22, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"BT VDD_IO" },
{ GPIO_CFG(43, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"UART1DM_RFR" },
{ GPIO_CFG(44, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"UART1DM_CTS" },
{ GPIO_CFG(45, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"UART1DM_RX" },
{ GPIO_CFG(46, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"UART1DM_TX" }
};
static struct msm_gpio bt_config_power_on[] = {
{ GPIO_CFG(18, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"BT SYSRST" },
{ GPIO_CFG(19, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"BT WAKE" },
{ GPIO_CFG(21, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"HOST WAKE" },
{ GPIO_CFG(22, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"BT VDD_IO" },
{ GPIO_CFG(43, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"UART1DM_RFR" },
{ GPIO_CFG(44, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"UART1DM_CTS" },
{ GPIO_CFG(45, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"UART1DM_RX" },
{ GPIO_CFG(46, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"UART1DM_TX" }
};
static struct msm_gpio wlan_config_power_off[] = {
{ GPIO_CFG(62, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"SDC2_CLK" },
{ GPIO_CFG(63, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"SDC2_CMD" },
{ GPIO_CFG(64, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"SDC2_D3" },
{ GPIO_CFG(65, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"SDC2_D2" },
{ GPIO_CFG(66, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"SDC2_D1" },
{ GPIO_CFG(67, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"SDC2_D0" },
{ GPIO_CFG(113, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"VDD_WLAN" },
{ GPIO_CFG(138, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"WLAN_PWD" }
};
static struct msm_gpio wlan_config_power_on[] = {
{ GPIO_CFG(62, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"SDC2_CLK" },
{ GPIO_CFG(63, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"SDC2_CMD" },
{ GPIO_CFG(64, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"SDC2_D3" },
{ GPIO_CFG(65, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"SDC2_D2" },
{ GPIO_CFG(66, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"SDC2_D1" },
{ GPIO_CFG(67, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"SDC2_D0" },
{ GPIO_CFG(113, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"VDD_WLAN" },
{ GPIO_CFG(138, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
"WLAN_PWD" }
};
static int bluetooth_power(int on)
{
int rc;
struct vreg *vreg_wlan;
vreg_wlan = vreg_get(NULL, "wlan");
if (IS_ERR(vreg_wlan)) {
printk(KERN_ERR "%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_wlan));
return PTR_ERR(vreg_wlan);
}
if (on) {
/* units of mV, steps of 50 mV */
rc = vreg_set_level(vreg_wlan, PMIC_VREG_WLAN_LEVEL);
if (rc) {
printk(KERN_ERR "%s: vreg wlan set level failed (%d)\n",
__func__, rc);
return -EIO;
}
rc = vreg_enable(vreg_wlan);
if (rc) {
printk(KERN_ERR "%s: vreg wlan enable failed (%d)\n",
__func__, rc);
return -EIO;
}
rc = msm_gpios_enable(bt_config_power_on,
ARRAY_SIZE(bt_config_power_on));
if (rc < 0) {
printk(KERN_ERR
"%s: bt power on gpio config failed: %d\n",
__func__, rc);
return rc;
}
if (machine_is_qsd8x50_ffa()) {
rc = msm_gpios_enable
(wlan_config_power_on,
ARRAY_SIZE(wlan_config_power_on));
if (rc < 0) {
printk
(KERN_ERR
"%s: wlan power on gpio config failed: %d\n",
__func__, rc);
return rc;
}
}
gpio_set_value(22, on); /* VDD_IO */
gpio_set_value(18, on); /* SYSRST */
if (machine_is_qsd8x50_ffa()) {
gpio_set_value(138, 0); /* WLAN: CHIP_PWD */
gpio_set_value(113, on); /* WLAN */
}
} else {
if (machine_is_qsd8x50_ffa()) {
gpio_set_value(138, on); /* WLAN: CHIP_PWD */
gpio_set_value(113, on); /* WLAN */
}
gpio_set_value(18, on); /* SYSRST */
gpio_set_value(22, on); /* VDD_IO */
rc = vreg_disable(vreg_wlan);
if (rc) {
printk(KERN_ERR "%s: vreg wlan disable failed (%d)\n",
__func__, rc);
return -EIO;
}
rc = msm_gpios_enable(bt_config_power_off,
ARRAY_SIZE(bt_config_power_off));
if (rc < 0) {
printk(KERN_ERR
"%s: bt power off gpio config failed: %d\n",
__func__, rc);
return rc;
}
if (machine_is_qsd8x50_ffa()) {
rc = msm_gpios_enable
(wlan_config_power_off,
ARRAY_SIZE(wlan_config_power_off));
if (rc < 0) {
printk
(KERN_ERR
"%s: wlan power off gpio config failed: %d\n",
__func__, rc);
return rc;
}
}
}
printk(KERN_DEBUG "Bluetooth power switch: %d\n", on);
return 0;
}
static void __init bt_power_init(void)
{
struct vreg *vreg_bt;
int rc;
if (machine_is_qsd8x50_ffa()) {
gpio_set_value(138, 0); /* WLAN: CHIP_PWD */
gpio_set_value(113, 0); /* WLAN */
}
gpio_set_value(18, 0); /* SYSRST */
gpio_set_value(22, 0); /* VDD_IO */
/* do not have vreg bt defined, gp6 is the same */
/* vreg_get parameter 1 (struct device *) is ignored */
vreg_bt = vreg_get(NULL, "gp6");
if (IS_ERR(vreg_bt)) {
printk(KERN_ERR "%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_bt));
goto exit;
}
/* units of mV, steps of 50 mV */
rc = vreg_set_level(vreg_bt, PMIC_VREG_GP6_LEVEL);
if (rc) {
printk(KERN_ERR "%s: vreg bt set level failed (%d)\n",
__func__, rc);
goto exit;
}
rc = vreg_enable(vreg_bt);
if (rc) {
printk(KERN_ERR "%s: vreg bt enable failed (%d)\n",
__func__, rc);
goto exit;
}
if (bluetooth_power(0))
goto exit;
msm_bt_power_device.dev.platform_data = &bluetooth_power;
printk(KERN_DEBUG "Bluetooth power switch: initialized\n");
exit:
return;
}
#else
#define bt_power_init(x) do {} while (0)
#endif
static struct platform_device msm_device_pmic_leds = {
.name = "pmic-leds",
.id = -1,
};
/* TSIF begin */
#if defined(CONFIG_TSIF) || defined(CONFIG_TSIF_MODULE)
#define TSIF_A_SYNC GPIO_CFG(106, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA)
#define TSIF_A_DATA GPIO_CFG(107, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA)
#define TSIF_A_EN GPIO_CFG(108, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA)
#define TSIF_A_CLK GPIO_CFG(109, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA)
static const struct msm_gpio tsif_gpios[] = {
{ .gpio_cfg = TSIF_A_CLK, .label = "tsif_clk", },
{ .gpio_cfg = TSIF_A_EN, .label = "tsif_en", },
{ .gpio_cfg = TSIF_A_DATA, .label = "tsif_data", },
{ .gpio_cfg = TSIF_A_SYNC, .label = "tsif_sync", },
};
static struct msm_tsif_platform_data tsif_platform_data = {
.num_gpios = ARRAY_SIZE(tsif_gpios),
.gpios = tsif_gpios,
.tsif_clk = "tsif_clk",
.tsif_ref_clk = "tsif_ref_clk",
};
#endif /* defined(CONFIG_TSIF) || defined(CONFIG_TSIF_MODULE) */
/* TSIF end */
#ifdef CONFIG_QSD_SVS
#define TPS65023_MAX_DCDC1 1600
#else
#define TPS65023_MAX_DCDC1 CONFIG_QSD_PMIC_DEFAULT_DCDC1
#endif
static int qsd8x50_tps65023_set_dcdc1(int mVolts)
{
int rc = 0;
#ifdef CONFIG_QSD_SVS
rc = tps65023_set_dcdc1_level(mVolts);
/* By default the TPS65023 will be initialized to 1.225V.
* So we can safely switch to any frequency within this
* voltage even if the device is not probed/ready.
*/
if (rc == -ENODEV && mVolts <= CONFIG_QSD_PMIC_DEFAULT_DCDC1)
rc = 0;
#else
/* Disallow frequencies not supported in the default PMIC
* output voltage.
*/
if (mVolts > CONFIG_QSD_PMIC_DEFAULT_DCDC1)
rc = -EFAULT;
#endif
return rc;
}
static struct msm_acpu_clock_platform_data qsd8x50_clock_data = {
.acpu_switch_time_us = 20,
.max_speed_delta_khz = 256000,
.vdd_switch_time_us = 62,
.max_vdd = TPS65023_MAX_DCDC1,
.acpu_set_vdd = qsd8x50_tps65023_set_dcdc1,
};
static void touchpad_gpio_release(void)
{
gpio_free(TOUCHPAD_IRQ);
gpio_free(TOUCHPAD_SUSPEND);
}
static int touchpad_gpio_setup(void)
{
int rc;
int suspend_pin = TOUCHPAD_SUSPEND;
int irq_pin = TOUCHPAD_IRQ;
unsigned suspend_cfg =
GPIO_CFG(suspend_pin, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA);
unsigned irq_cfg =
GPIO_CFG(irq_pin, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA);
rc = gpio_request(irq_pin, "msm_touchpad_irq");
if (rc) {
pr_err("gpio_request failed on pin %d (rc=%d)\n",
irq_pin, rc);
goto err_gpioconfig;
}
rc = gpio_request(suspend_pin, "msm_touchpad_suspend");
if (rc) {
pr_err("gpio_request failed on pin %d (rc=%d)\n",
suspend_pin, rc);
goto err_gpioconfig;
}
rc = gpio_tlmm_config(suspend_cfg, GPIO_CFG_ENABLE);
if (rc) {
pr_err("gpio_tlmm_config failed on pin %d (rc=%d)\n",
suspend_pin, rc);
goto err_gpioconfig;
}
rc = gpio_tlmm_config(irq_cfg, GPIO_CFG_ENABLE);
if (rc) {
pr_err("gpio_tlmm_config failed on pin %d (rc=%d)\n",
irq_pin, rc);
goto err_gpioconfig;
}
return rc;
err_gpioconfig:
touchpad_gpio_release();
return rc;
}
static struct msm_touchpad_platform_data msm_touchpad_data = {
.gpioirq = TOUCHPAD_IRQ,
.gpiosuspend = TOUCHPAD_SUSPEND,
.gpio_setup = touchpad_gpio_setup,
.gpio_shutdown = touchpad_gpio_release
};
#define KBD_RST 35
#define KBD_IRQ 36
static void kbd_gpio_release(void)
{
gpio_free(KBD_IRQ);
gpio_free(KBD_RST);
}
static int kbd_gpio_setup(void)
{
int rc;
int respin = KBD_RST;
int irqpin = KBD_IRQ;
unsigned rescfg =
GPIO_CFG(respin, 0, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA);
unsigned irqcfg =
GPIO_CFG(irqpin, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA);
rc = gpio_request(irqpin, "gpio_keybd_irq");
if (rc) {
pr_err("gpio_request failed on pin %d (rc=%d)\n",
irqpin, rc);
goto err_gpioconfig;
}
rc = gpio_request(respin, "gpio_keybd_reset");
if (rc) {
pr_err("gpio_request failed on pin %d (rc=%d)\n",
respin, rc);
goto err_gpioconfig;
}
rc = gpio_tlmm_config(rescfg, GPIO_CFG_ENABLE);
if (rc) {
pr_err("gpio_tlmm_config failed on pin %d (rc=%d)\n",
respin, rc);
goto err_gpioconfig;
}
rc = gpio_tlmm_config(irqcfg, GPIO_CFG_ENABLE);
if (rc) {
pr_err("gpio_tlmm_config failed on pin %d (rc=%d)\n",
irqpin, rc);
goto err_gpioconfig;
}
return rc;
err_gpioconfig:
kbd_gpio_release();
return rc;
}
/* use gpio output pin to toggle keyboard external reset pin */
static void kbd_hwreset(int kbd_mclrpin)
{
gpio_direction_output(kbd_mclrpin, 0);
gpio_direction_output(kbd_mclrpin, 1);
}
static struct msm_i2ckbd_platform_data msm_kybd_data = {
.hwrepeat = 0,
.scanset1 = 1,
.gpioreset = KBD_RST,
.gpioirq = KBD_IRQ,
.gpio_setup = kbd_gpio_setup,
.gpio_shutdown = kbd_gpio_release,
.hw_reset = kbd_hwreset,
};
static struct i2c_board_info msm_i2c_board_info[] __initdata = {
{
I2C_BOARD_INFO("glidesensor", 0x2A),
.irq = MSM_GPIO_TO_INT(TOUCHPAD_IRQ),
.platform_data = &msm_touchpad_data
},
{
I2C_BOARD_INFO("msm-i2ckbd", 0x3A),
.type = "msm-i2ckbd",
.irq = MSM_GPIO_TO_INT(KBD_IRQ),
.platform_data = &msm_kybd_data
},
#ifdef CONFIG_MT9D112
{
I2C_BOARD_INFO("mt9d112", 0x78 >> 1),
},
#endif
#ifdef CONFIG_S5K3E2FX
{
I2C_BOARD_INFO("s5k3e2fx", 0x20 >> 1),
},
#endif
#ifdef CONFIG_MT9P012
{
I2C_BOARD_INFO("mt9p012", 0x6C >> 1),
},
#endif
#ifdef CONFIG_MT9P012_KM
{
I2C_BOARD_INFO("mt9p012_km", 0x6C >> 2),
},
#endif
#if defined(CONFIG_MT9T013) || defined(CONFIG_SENSORS_MT9T013)
{
I2C_BOARD_INFO("mt9t013", 0x6C),
},
#endif
{
I2C_BOARD_INFO("tps65023", 0x48),
},
};
#ifdef CONFIG_MSM_CAMERA
static uint32_t camera_off_gpio_table[] = {
/* parallel CAMERA interfaces */
GPIO_CFG(0, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT0 */
GPIO_CFG(1, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT1 */
GPIO_CFG(2, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT2 */
GPIO_CFG(3, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT3 */
GPIO_CFG(4, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT4 */
GPIO_CFG(5, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT5 */
GPIO_CFG(6, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT6 */
GPIO_CFG(7, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT7 */
GPIO_CFG(8, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT8 */
GPIO_CFG(9, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT9 */
GPIO_CFG(10, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT10 */
GPIO_CFG(11, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT11 */
GPIO_CFG(12, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* PCLK */
GPIO_CFG(13, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* HSYNC_IN */
GPIO_CFG(14, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* VSYNC_IN */
GPIO_CFG(15, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* MCLK */
};
static uint32_t camera_on_gpio_table[] = {
/* parallel CAMERA interfaces */
GPIO_CFG(0, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT0 */
GPIO_CFG(1, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT1 */
GPIO_CFG(2, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT2 */
GPIO_CFG(3, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT3 */
GPIO_CFG(4, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT4 */
GPIO_CFG(5, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT5 */
GPIO_CFG(6, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT6 */
GPIO_CFG(7, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT7 */
GPIO_CFG(8, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT8 */
GPIO_CFG(9, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT9 */
GPIO_CFG(10, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT10 */
GPIO_CFG(11, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* DAT11 */
GPIO_CFG(12, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* PCLK */
GPIO_CFG(13, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* HSYNC_IN */
GPIO_CFG(14, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA), /* VSYNC_IN */
GPIO_CFG(15, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_16MA), /* MCLK */
};
static uint32_t camera_on_gpio_ffa_table[] = {
/* parallel CAMERA interfaces */
GPIO_CFG(95, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_16MA), /* I2C_SCL */
GPIO_CFG(96, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_16MA), /* I2C_SDA */
/* FFA front Sensor Reset */
GPIO_CFG(137, 1, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_16MA),
};
static uint32_t camera_off_gpio_ffa_table[] = {
/* FFA front Sensor Reset */
GPIO_CFG(137, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_16MA),
};
static void config_gpio_table(uint32_t *table, int len)
{
int n, rc;
for (n = 0; n < len; n++) {
rc = gpio_tlmm_config(table[n], GPIO_CFG_ENABLE);
if (rc) {
printk(KERN_ERR "%s: gpio_tlmm_config(%#x)=%d\n",
__func__, table[n], rc);
break;
}
}
}
static struct vreg *vreg_gp2;
static struct vreg *vreg_gp3;
static void msm_camera_vreg_config(int vreg_en)
{
int rc;
if (vreg_gp2 == NULL) {
vreg_gp2 = vreg_get(NULL, "gp2");
if (IS_ERR(vreg_gp2)) {
printk(KERN_ERR "%s: vreg_get(%s) failed (%ld)\n",
__func__, "gp2", PTR_ERR(vreg_gp2));
return;
}
rc = vreg_set_level(vreg_gp2, 1800);
if (rc) {
printk(KERN_ERR "%s: GP2 set_level failed (%d)\n",
__func__, rc);
}
}
if (vreg_gp3 == NULL) {
vreg_gp3 = vreg_get(NULL, "gp3");
if (IS_ERR(vreg_gp3)) {
printk(KERN_ERR "%s: vreg_get(%s) failed (%ld)\n",
__func__, "gp3", PTR_ERR(vreg_gp3));
return;
}
rc = vreg_set_level(vreg_gp3, 2800);
if (rc) {
printk(KERN_ERR "%s: GP3 set level failed (%d)\n",
__func__, rc);
}
}
if (vreg_en) {
rc = vreg_enable(vreg_gp2);
if (rc) {
printk(KERN_ERR "%s: GP2 enable failed (%d)\n",
__func__, rc);
}
rc = vreg_enable(vreg_gp3);
if (rc) {
printk(KERN_ERR "%s: GP3 enable failed (%d)\n",
__func__, rc);
}
} else {
rc = vreg_disable(vreg_gp2);
if (rc) {
printk(KERN_ERR "%s: GP2 disable failed (%d)\n",
__func__, rc);
}
rc = vreg_disable(vreg_gp3);
if (rc) {
printk(KERN_ERR "%s: GP3 disable failed (%d)\n",
__func__, rc);
}
}
}
static int config_camera_on_gpios(void)
{
int vreg_en = 1;
if (machine_is_qsd8x50_ffa()) {
config_gpio_table(camera_on_gpio_ffa_table,
ARRAY_SIZE(camera_on_gpio_ffa_table));
msm_camera_vreg_config(vreg_en);
gpio_set_value(137, 0);
}
config_gpio_table(camera_on_gpio_table,
ARRAY_SIZE(camera_on_gpio_table));
return 0;
}
static void config_camera_off_gpios(void)
{
int vreg_en = 0;
if (machine_is_qsd8x50_ffa()) {
config_gpio_table(camera_off_gpio_ffa_table,
ARRAY_SIZE(camera_off_gpio_ffa_table));
msm_camera_vreg_config(vreg_en);
}
config_gpio_table(camera_off_gpio_table,
ARRAY_SIZE(camera_off_gpio_table));
}
static struct resource msm_camera_resources[] = {
{
.start = 0xA0F00000,
.end = 0xA0F00000 + SZ_1M - 1,
.flags = IORESOURCE_MEM,
},
{
.start = INT_VFE,
.end = INT_VFE,
.flags = IORESOURCE_IRQ,
},
};
static struct msm_camera_device_platform_data msm_camera_device_data = {
.camera_gpio_on = config_camera_on_gpios,
.camera_gpio_off = config_camera_off_gpios,
.ioext.mdcphy = MSM_MDC_PHYS,
.ioext.mdcsz = MSM_MDC_SIZE,
.ioext.appphy = MSM_CLK_CTL_PHYS,
.ioext.appsz = MSM_CLK_CTL_SIZE,
};
int pmic_set_flash_led_current(enum pmic8058_leds id, unsigned mA)
{
int rc;
rc = pmic_flash_led_set_current(mA);
return rc;
}
static struct msm_camera_sensor_flash_src msm_flash_src = {
.flash_sr_type = MSM_CAMERA_FLASH_SRC_PMIC,
._fsrc.pmic_src.num_of_src = 1,
._fsrc.pmic_src.low_current = 30,
._fsrc.pmic_src.high_current = 100,
._fsrc.pmic_src.led_src_1 = 0,
._fsrc.pmic_src.led_src_2 = 0,
._fsrc.pmic_src.pmic_set_current = pmic_set_flash_led_current,
};
#ifdef CONFIG_MT9D112
static struct msm_camera_sensor_flash_data flash_mt9d112 = {
.flash_type = MSM_CAMERA_FLASH_LED,
.flash_src = &msm_flash_src
};
static struct msm_camera_sensor_info msm_camera_sensor_mt9d112_data = {
.sensor_name = "mt9d112",
.sensor_reset = 17,
.sensor_pwd = 85,
.vcm_pwd = 0,
.vcm_enable = 0,
.pdata = &msm_camera_device_data,
.resource = msm_camera_resources,
.num_resources = ARRAY_SIZE(msm_camera_resources),
.flash_data = &flash_mt9d112
};
static struct platform_device msm_camera_sensor_mt9d112 = {
.name = "msm_camera_mt9d112",
.dev = {
.platform_data = &msm_camera_sensor_mt9d112_data,
},
};
#endif
#ifdef CONFIG_S5K3E2FX
static struct msm_camera_sensor_flash_data flash_s5k3e2fx = {
.flash_type = MSM_CAMERA_FLASH_LED,
.flash_src = &msm_flash_src
};
static struct msm_camera_sensor_info msm_camera_sensor_s5k3e2fx_data = {
.sensor_name = "s5k3e2fx",
.sensor_reset = 17,
.sensor_pwd = 85,
/*.vcm_pwd = 31, */ /* CAM1_VCM_EN, enabled in a9 */
.vcm_enable = 0,
.pdata = &msm_camera_device_data,
.resource = msm_camera_resources,
.num_resources = ARRAY_SIZE(msm_camera_resources),
.flash_data = &flash_s5k3e2fx
};
static struct platform_device msm_camera_sensor_s5k3e2fx = {
.name = "msm_camera_s5k3e2fx",
.dev = {
.platform_data = &msm_camera_sensor_s5k3e2fx_data,
},
};
#endif
#ifdef CONFIG_MT9P012
static struct msm_camera_sensor_flash_data flash_mt9p012 = {
.flash_type = MSM_CAMERA_FLASH_LED,
.flash_src = &msm_flash_src
};
static struct msm_camera_sensor_info msm_camera_sensor_mt9p012_data = {
.sensor_name = "mt9p012",
.sensor_reset = 17,
.sensor_pwd = 85,
.vcm_pwd = 88,
.vcm_enable = 0,
.pdata = &msm_camera_device_data,
.resource = msm_camera_resources,
.num_resources = ARRAY_SIZE(msm_camera_resources),
.flash_data = &flash_mt9p012
};
static struct platform_device msm_camera_sensor_mt9p012 = {
.name = "msm_camera_mt9p012",
.dev = {
.platform_data = &msm_camera_sensor_mt9p012_data,
},
};
#endif
#ifdef CONFIG_MT9P012_KM
static struct msm_camera_sensor_flash_data flash_mt9p012_km = {
.flash_type = MSM_CAMERA_FLASH_LED,
.flash_src = &msm_flash_src
};
static struct msm_camera_sensor_info msm_camera_sensor_mt9p012_km_data = {
.sensor_name = "mt9p012_km",
.sensor_reset = 17,
.sensor_pwd = 85,
.vcm_pwd = 88,
.vcm_enable = 0,
.pdata = &msm_camera_device_data,
.resource = msm_camera_resources,
.num_resources = ARRAY_SIZE(msm_camera_resources),
.flash_data = &flash_mt9p012_km
};
static struct platform_device msm_camera_sensor_mt9p012_km = {
.name = "msm_camera_mt9p012_km",
.dev = {
.platform_data = &msm_camera_sensor_mt9p012_km_data,
},
};
#endif
#ifdef CONFIG_MT9T013
static struct msm_camera_sensor_flash_data flash_mt9t013 = {
.flash_type = MSM_CAMERA_FLASH_LED,
.flash_src = &msm_flash_src
};
static struct msm_camera_sensor_info msm_camera_sensor_mt9t013_data = {
.sensor_name = "mt9t013",
.sensor_reset = 17,
.sensor_pwd = 85,
.vcm_pwd = 0,
.vcm_enable = 0,
.pdata = &msm_camera_device_data,
.resource = msm_camera_resources,
.num_resources = ARRAY_SIZE(msm_camera_resources),
.flash_data = &flash_mt9t013
};
static struct platform_device msm_camera_sensor_mt9t013 = {
.name = "msm_camera_mt9t013",
.dev = {
.platform_data = &msm_camera_sensor_mt9t013_data,
},
};
#endif
#endif /*CONFIG_MSM_CAMERA*/
static u32 msm_calculate_batt_capacity(u32 current_voltage);
static struct msm_psy_batt_pdata msm_psy_batt_data = {
.voltage_min_design = 3200,
.voltage_max_design = 4200,
.avail_chg_sources = AC_CHG | USB_CHG ,
.batt_technology = POWER_SUPPLY_TECHNOLOGY_LION,
.calculate_capacity = &msm_calculate_batt_capacity,
};
static u32 msm_calculate_batt_capacity(u32 current_voltage)
{
u32 low_voltage = msm_psy_batt_data.voltage_min_design;
u32 high_voltage = msm_psy_batt_data.voltage_max_design;
return (current_voltage - low_voltage) * 100
/ (high_voltage - low_voltage);
}
static struct platform_device msm_batt_device = {
.name = "msm-battery",
.id = -1,
.dev.platform_data = &msm_psy_batt_data,
};
static int hsusb_rpc_connect(int connect)
{
if (connect)
return msm_hsusb_rpc_connect();
else
return msm_hsusb_rpc_close();
}
static int msm_hsusb_pmic_notif_init(void (*callback)(int online), int init)
{
int ret;
if (init) {
ret = msm_pm_app_rpc_init(callback);
} else {
msm_pm_app_rpc_deinit(callback);
ret = 0;
}
return ret;
}
static int msm_hsusb_ldo_init(int init);
static int msm_hsusb_ldo_enable(int enable);
static struct msm_otg_platform_data msm_otg_pdata = {
.rpc_connect = hsusb_rpc_connect,
.pmic_vbus_notif_init = msm_hsusb_pmic_notif_init,
.pemp_level = PRE_EMPHASIS_WITH_10_PERCENT,
.cdr_autoreset = CDR_AUTO_RESET_DEFAULT,
.drv_ampl = HS_DRV_AMPLITUDE_5_PERCENT,
.vbus_power = msm_hsusb_vbus_power,
.chg_vbus_draw = hsusb_chg_vbus_draw,
.chg_connected = hsusb_chg_connected,
.chg_init = hsusb_chg_init,
.phy_can_powercollapse = 1,
.ldo_init = msm_hsusb_ldo_init,
.ldo_enable = msm_hsusb_ldo_enable,
.pclk_src_name = "ebi1_usb_clk",
};
static struct msm_hsusb_gadget_platform_data msm_gadget_pdata;
static struct platform_device *devices[] __initdata = {
&msm_fb_device,
&mddi_toshiba_device,
&smc91x_device,
&msm_device_smd,
&msm_device_dmov,
&android_pmem_kernel_ebi1_device,
#ifdef CONFIG_KERNEL_PMEM_SMI_REGION
&android_pmem_kernel_smi_device,
#endif
&android_pmem_device,
&android_pmem_adsp_device,
&android_pmem_smipool_device,
&msm_device_nand,
&msm_device_i2c,
&qsd_device_spi,
#ifdef CONFIG_USB_FUNCTION
&mass_storage_device,
#endif
#ifdef CONFIG_USB_ANDROID
&usb_mass_storage_device,
&rndis_device,
#ifdef CONFIG_USB_ANDROID_DIAG
&usb_diag_device,
#endif
#ifdef CONFIG_USB_F_SERIAL
&usb_gadget_fserial_device,
#endif
&android_usb_device,
#endif
&msm_device_tssc,
&msm_audio_device,
&msm_device_uart_dm1,
&msm_bluesleep_device,
#ifdef CONFIG_BT
&msm_bt_power_device,
#endif
#if !defined(CONFIG_MSM_SERIAL_DEBUGGER)
&msm_device_uart3,
#endif
&msm_device_pmic_leds,
&msm_kgsl_3d0,
&hs_device,
#if defined(CONFIG_TSIF) || defined(CONFIG_TSIF_MODULE)
&msm_device_tsif,
#endif
#ifdef CONFIG_MT9T013
&msm_camera_sensor_mt9t013,
#endif
#ifdef CONFIG_MT9D112
&msm_camera_sensor_mt9d112,
#endif
#ifdef CONFIG_S5K3E2FX
&msm_camera_sensor_s5k3e2fx,
#endif
#ifdef CONFIG_MT9P012
&msm_camera_sensor_mt9p012,
#endif
#ifdef CONFIG_MT9P012_KM
&msm_camera_sensor_mt9p012_km,
#endif
&msm_batt_device,
};
static void __init qsd8x50_init_irq(void)
{
msm_init_irq();
msm_init_sirc();
}
static void usb_mpp_init(void)
{
unsigned rc;
unsigned mpp_usb = 20;
if (machine_is_qsd8x50_ffa()) {
rc = mpp_config_digital_out(mpp_usb,
MPP_CFG(MPP_DLOGIC_LVL_VDD,
MPP_DLOGIC_OUT_CTRL_HIGH));
if (rc)
pr_err("%s: configuring mpp pin"
"to enable 3.3V LDO failed\n", __func__);
}
}
/* TBD: 8x50 FFAs have internal 3p3 voltage regulator as opposed to
* external 3p3 voltage regulator on Surf platform. There is no way
* s/w can detect fi concerned regulator is internal or external to
* to MSM. Internal 3p3 regulator is powered through boost voltage
* regulator where as external 3p3 regulator is powered through VPH.
* So for internal voltage regulator it is required to power on
* boost voltage regulator first. Unfortunately some of the FFAs are
* re-worked to install external 3p3 regulator. For now, assuming all
* FFAs have 3p3 internal regulators and all SURFs have external 3p3
* regulator as there is no way s/w can determine if theregulator is
* internal or external. May be, we can implement this flag as kernel
* boot parameters so that we can change code behaviour dynamically
*/
static int regulator_3p3_is_internal;
static struct vreg *vreg_5v;
static struct vreg *vreg_3p3;
static int msm_hsusb_ldo_init(int init)
{
if (init) {
if (regulator_3p3_is_internal) {
vreg_5v = vreg_get(NULL, "boost");
if (IS_ERR(vreg_5v))
return PTR_ERR(vreg_5v);
vreg_set_level(vreg_5v, 5000);
}
vreg_3p3 = vreg_get(NULL, "usb");
if (IS_ERR(vreg_3p3))
return PTR_ERR(vreg_3p3);
vreg_set_level(vreg_3p3, 3300);
} else {
if (regulator_3p3_is_internal)
vreg_put(vreg_5v);
vreg_put(vreg_3p3);
}
return 0;
}
static int msm_hsusb_ldo_enable(int enable)
{
static int ldo_status;
int ret;
if (ldo_status == enable)
return 0;
if (regulator_3p3_is_internal && (!vreg_5v || IS_ERR(vreg_5v)))
return -ENODEV;
if (!vreg_3p3 || IS_ERR(vreg_3p3))
return -ENODEV;
ldo_status = enable;
if (enable) {
if (regulator_3p3_is_internal) {
ret = vreg_enable(vreg_5v);
if (ret)
return ret;
/* power supply to 3p3 regulator can vary from
* USB VBUS or VREG 5V. If the power supply is
* USB VBUS cable disconnection cannot be
* deteted. Select power supply to VREG 5V
*/
/* TBD: comeup with a better name */
ret = pmic_vote_3p3_pwr_sel_switch(1);
if (ret)
return ret;
}
ret = vreg_enable(vreg_3p3);
return ret;
} else {
if (regulator_3p3_is_internal) {
ret = vreg_disable(vreg_5v);
if (ret)
return ret;
ret = pmic_vote_3p3_pwr_sel_switch(0);
if (ret)
return ret;
}
ret = vreg_disable(vreg_3p3);
return ret;
}
}
static void __init qsd8x50_init_usb(void)
{
usb_mpp_init();
if (machine_is_qsd8x50_ffa())
regulator_3p3_is_internal = 1;
#ifdef CONFIG_USB_MSM_OTG_72K
platform_device_register(&msm_device_otg);
#endif
#ifdef CONFIG_USB_FUNCTION_MSM_HSUSB
platform_device_register(&msm_device_hsusb_peripheral);
#endif
#ifdef CONFIG_USB_MSM_72K
platform_device_register(&msm_device_gadget_peripheral);
#endif
if (machine_is_qsd8x50_ffa())
return;
vreg_usb = vreg_get(NULL, "boost");
if (IS_ERR(vreg_usb)) {
printk(KERN_ERR "%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_usb));
return;
}
platform_device_register(&msm_device_hsusb_otg);
msm_add_host(0, &msm_usb_host_pdata);
#ifdef CONFIG_USB_FS_HOST
if (fsusb_gpio_init())
return;
msm_add_host(1, &msm_usb_host2_pdata);
#endif
}
static struct vreg *vreg_mmc;
#if (defined(CONFIG_MMC_MSM_SDC1_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC2_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC3_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC4_SUPPORT))
struct sdcc_gpio {
struct msm_gpio *cfg_data;
uint32_t size;
};
static struct msm_gpio sdc1_cfg_data[] = {
{GPIO_CFG(51, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc1_dat_3"},
{GPIO_CFG(52, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc1_dat_2"},
{GPIO_CFG(53, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc1_dat_1"},
{GPIO_CFG(54, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc1_dat_0"},
{GPIO_CFG(55, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc1_cmd"},
{GPIO_CFG(56, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "sdc1_clk"},
};
static struct msm_gpio sdc2_cfg_data[] = {
{GPIO_CFG(62, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "sdc2_clk"},
{GPIO_CFG(63, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc2_cmd"},
{GPIO_CFG(64, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc2_dat_3"},
{GPIO_CFG(65, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc2_dat_2"},
{GPIO_CFG(66, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc2_dat_1"},
{GPIO_CFG(67, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc2_dat_0"},
};
static struct msm_gpio sdc3_cfg_data[] = {
{GPIO_CFG(88, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "sdc3_clk"},
{GPIO_CFG(89, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_cmd"},
{GPIO_CFG(90, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_3"},
{GPIO_CFG(91, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_2"},
{GPIO_CFG(92, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_1"},
{GPIO_CFG(93, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_0"},
#ifdef CONFIG_MMC_MSM_SDC3_8_BIT_SUPPORT
{GPIO_CFG(158, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_4"},
{GPIO_CFG(159, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_5"},
{GPIO_CFG(160, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_6"},
{GPIO_CFG(161, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc3_dat_7"},
#endif
};
static struct msm_gpio sdc4_cfg_data[] = {
{GPIO_CFG(142, 3, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA), "sdc4_clk"},
{GPIO_CFG(143, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc4_cmd"},
{GPIO_CFG(144, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc4_dat_0"},
{GPIO_CFG(145, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc4_dat_1"},
{GPIO_CFG(146, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc4_dat_2"},
{GPIO_CFG(147, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_8MA), "sdc4_dat_3"},
};
static struct sdcc_gpio sdcc_cfg_data[] = {
{
.cfg_data = sdc1_cfg_data,
.size = ARRAY_SIZE(sdc1_cfg_data),
},
{
.cfg_data = sdc2_cfg_data,
.size = ARRAY_SIZE(sdc2_cfg_data),
},
{
.cfg_data = sdc3_cfg_data,
.size = ARRAY_SIZE(sdc3_cfg_data),
},
{
.cfg_data = sdc4_cfg_data,
.size = ARRAY_SIZE(sdc4_cfg_data),
},
};
static unsigned long vreg_sts, gpio_sts;
static void msm_sdcc_setup_gpio(int dev_id, unsigned int enable)
{
int rc = 0;
struct sdcc_gpio *curr;
curr = &sdcc_cfg_data[dev_id - 1];
if (!(test_bit(dev_id, &gpio_sts)^enable))
return;
if (enable) {
set_bit(dev_id, &gpio_sts);
rc = msm_gpios_request_enable(curr->cfg_data, curr->size);
if (rc)
printk(KERN_ERR "%s: Failed to turn on GPIOs for slot %d\n",
__func__, dev_id);
} else {
clear_bit(dev_id, &gpio_sts);
msm_gpios_disable_free(curr->cfg_data, curr->size);
}
}
static uint32_t msm_sdcc_setup_power(struct device *dv, unsigned int vdd)
{
int rc = 0;
struct platform_device *pdev;
pdev = container_of(dv, struct platform_device, dev);
msm_sdcc_setup_gpio(pdev->id, !!vdd);
if (vdd == 0) {
if (!vreg_sts)
return 0;
clear_bit(pdev->id, &vreg_sts);
if (!vreg_sts) {
rc = vreg_disable(vreg_mmc);
if (rc)
printk(KERN_ERR "%s: return val: %d \n",
__func__, rc);
}
return 0;
}
if (!vreg_sts) {
rc = vreg_set_level(vreg_mmc, PMIC_VREG_GP6_LEVEL);
if (!rc)
rc = vreg_enable(vreg_mmc);
if (rc)
printk(KERN_ERR "%s: return val: %d \n",
__func__, rc);
}
set_bit(pdev->id, &vreg_sts);
return 0;
}
#endif
#if (defined(CONFIG_MMC_MSM_SDC1_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC2_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC4_SUPPORT))
static int msm_sdcc_get_wpswitch(struct device *dv)
{
void __iomem *wp_addr = 0;
uint32_t ret = 0;
struct platform_device *pdev;
if (!machine_is_qsd8x50_surf())
return -1;
pdev = container_of(dv, struct platform_device, dev);
wp_addr = ioremap(FPGA_SDCC_STATUS, 4);
if (!wp_addr) {
pr_err("%s: Could not remap %x\n", __func__, FPGA_SDCC_STATUS);
return -ENOMEM;
}
ret = (readl(wp_addr) >> ((pdev->id - 1) << 1)) & (0x03);
pr_info("%s: WP/CD Status for Slot %d = 0x%x \n", __func__,
pdev->id, ret);
iounmap(wp_addr);
return ((ret == 0x02) ? 1 : 0);
}
#endif
#ifdef CONFIG_MMC_MSM_SDC1_SUPPORT
static struct mmc_platform_data qsd8x50_sdc1_data = {
.ocr_mask = MMC_VDD_27_28 | MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
.wpswitch = msm_sdcc_get_wpswitch,
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 25000000,
.msmsdcc_fmax = 49152000,
.nonremovable = 0,
};
#endif
#ifdef CONFIG_MMC_MSM_SDC2_SUPPORT
static struct mmc_platform_data qsd8x50_sdc2_data = {
.ocr_mask = MMC_VDD_27_28 | MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
.wpswitch = msm_sdcc_get_wpswitch,
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 25000000,
.msmsdcc_fmax = 49152000,
.nonremovable = 1,
};
#endif
#ifdef CONFIG_MMC_MSM_SDC3_SUPPORT
static struct mmc_platform_data qsd8x50_sdc3_data = {
.ocr_mask = MMC_VDD_27_28 | MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
#ifdef CONFIG_MMC_MSM_SDC3_8_BIT_SUPPORT
.mmc_bus_width = MMC_CAP_8_BIT_DATA,
#else
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
#endif
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 25000000,
.msmsdcc_fmax = 49152000,
.nonremovable = 0,
};
#endif
#ifdef CONFIG_MMC_MSM_SDC4_SUPPORT
static struct mmc_platform_data qsd8x50_sdc4_data = {
.ocr_mask = MMC_VDD_27_28 | MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
.wpswitch = msm_sdcc_get_wpswitch,
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 25000000,
.msmsdcc_fmax = 49152000,
.nonremovable = 0,
};
#endif
static void __init qsd8x50_init_mmc(void)
{
if (machine_is_qsd8x50_ffa())
vreg_mmc = vreg_get(NULL, "gp6");
else
vreg_mmc = vreg_get(NULL, "gp5");
if (IS_ERR(vreg_mmc)) {
printk(KERN_ERR "%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_mmc));
return;
}
#ifdef CONFIG_MMC_MSM_SDC1_SUPPORT
msm_add_sdcc(1, &qsd8x50_sdc1_data);
#endif
if (machine_is_qsd8x50_surf()) {
#ifdef CONFIG_MMC_MSM_SDC2_SUPPORT
msm_add_sdcc(2, &qsd8x50_sdc2_data);
#endif
#ifdef CONFIG_MMC_MSM_SDC3_SUPPORT
msm_add_sdcc(3, &qsd8x50_sdc3_data);
#endif
#ifdef CONFIG_MMC_MSM_SDC4_SUPPORT
msm_add_sdcc(4, &qsd8x50_sdc4_data);
#endif
}
}
static void __init qsd8x50_cfg_smc91x(void)
{
int rc = 0;
if (machine_is_qsd8x50_surf()) {
smc91x_resources[0].start = 0x70000300;
smc91x_resources[0].end = 0x700003ff;
smc91x_resources[1].start = MSM_GPIO_TO_INT(156);
smc91x_resources[1].end = MSM_GPIO_TO_INT(156);
} else if (machine_is_qsd8x50_ffa()) {
smc91x_resources[0].start = 0x84000300;
smc91x_resources[0].end = 0x840003ff;
smc91x_resources[1].start = MSM_GPIO_TO_INT(87);
smc91x_resources[1].end = MSM_GPIO_TO_INT(87);
rc = gpio_tlmm_config(GPIO_CFG(87, 0, GPIO_CFG_INPUT,
GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
GPIO_CFG_ENABLE);
if (rc) {
printk(KERN_ERR "%s: gpio_tlmm_config=%d\n",
__func__, rc);
}
} else
printk(KERN_ERR "%s: invalid machine type\n", __func__);
}
static struct msm_pm_platform_data msm_pm_data[MSM_PM_SLEEP_MODE_NR] = {
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 1,
.suspend_enabled = 1,
.latency = 8594,
.residency = 23740,
},
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_NO_XO_SHUTDOWN] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 1,
.suspend_enabled = 1,
.latency = 4594,
.residency = 23740,
},
[MSM_PM_SLEEP_MODE_RAMP_DOWN_AND_WAIT_FOR_INTERRUPT] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 0,
.suspend_enabled = 1,
.latency = 443,
.residency = 1098,
},
[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 1,
.suspend_enabled = 1,
.latency = 2,
.residency = 0,
},
};
static void
msm_i2c_gpio_config(int iface, int config_type)
{
int gpio_scl;
int gpio_sda;
if (iface) {
gpio_scl = 60;
gpio_sda = 61;
} else {
gpio_scl = 95;
gpio_sda = 96;
}
if (config_type) {
gpio_tlmm_config(GPIO_CFG(gpio_scl, 1, GPIO_CFG_INPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_16MA), GPIO_CFG_ENABLE);
gpio_tlmm_config(GPIO_CFG(gpio_sda, 1, GPIO_CFG_INPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_16MA), GPIO_CFG_ENABLE);
} else {
gpio_tlmm_config(GPIO_CFG(gpio_scl, 0, GPIO_CFG_OUTPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_16MA), GPIO_CFG_ENABLE);
gpio_tlmm_config(GPIO_CFG(gpio_sda, 0, GPIO_CFG_OUTPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_16MA), GPIO_CFG_ENABLE);
}
}
static struct msm_i2c_platform_data msm_i2c_pdata = {
.clk_freq = 100000,
.rsl_id = SMEM_SPINLOCK_I2C,
.pri_clk = 95,
.pri_dat = 96,
.aux_clk = 60,
.aux_dat = 61,
.msm_i2c_config_gpio = msm_i2c_gpio_config,
};
static void __init msm_device_i2c_init(void)
{
if (gpio_request(95, "i2c_pri_clk"))
pr_err("failed to request gpio i2c_pri_clk\n");
if (gpio_request(96, "i2c_pri_dat"))
pr_err("failed to request gpio i2c_pri_dat\n");
if (gpio_request(60, "i2c_sec_clk"))
pr_err("failed to request gpio i2c_sec_clk\n");
if (gpio_request(61, "i2c_sec_dat"))
pr_err("failed to request gpio i2c_sec_dat\n");
msm_i2c_pdata.rmutex = 1;
msm_i2c_pdata.pm_lat =
msm_pm_data[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_NO_XO_SHUTDOWN]
.latency;
msm_device_i2c.dev.platform_data = &msm_i2c_pdata;
}
static unsigned pmem_kernel_ebi1_size = PMEM_KERNEL_EBI1_SIZE;
static int __init pmem_kernel_ebi1_size_setup(char *p)
{
pmem_kernel_ebi1_size = memparse(p, NULL);
return 0;
}
early_param("pmem_kernel_ebi1_size", pmem_kernel_ebi1_size_setup);
#ifdef CONFIG_KERNEL_PMEM_SMI_REGION
static unsigned pmem_kernel_smi_size = MSM_PMEM_SMIPOOL_SIZE;
static int __init pmem_kernel_smi_size_setup(char *p)
{
pmem_kernel_smi_size = memparse(p, NULL);
/* Make sure that we don't allow more SMI memory then is
available - the kernel mapping code has no way of knowing
if it has gone over the edge */
if (pmem_kernel_smi_size > MSM_PMEM_SMIPOOL_SIZE)
pmem_kernel_smi_size = MSM_PMEM_SMIPOOL_SIZE;
return 0;
}
early_param("pmem_kernel_smi_size", pmem_kernel_smi_size_setup);
#endif
static unsigned pmem_sf_size = MSM_PMEM_SF_SIZE;
static int __init pmem_sf_size_setup(char *p)
{
pmem_sf_size = memparse(p, NULL);
return 0;
}
early_param("pmem_sf_size", pmem_sf_size_setup);
static unsigned pmem_adsp_size = MSM_PMEM_ADSP_SIZE;
static int __init pmem_adsp_size_setup(char *p)
{
pmem_adsp_size = memparse(p, NULL);
return 0;
}
early_param("pmem_adsp_size", pmem_adsp_size_setup);
static unsigned audio_size = MSM_AUDIO_SIZE;
static int __init audio_size_setup(char *p)
{
audio_size = memparse(p, NULL);
return 0;
}
early_param("audio_size", audio_size_setup);
static void __init qsd8x50_init(void)
{
if (socinfo_init() < 0)
printk(KERN_ERR "%s: socinfo_init() failed!\n",
__func__);
msm_clock_init(&qds8x50_clock_init_data);
qsd8x50_cfg_smc91x();
msm_acpu_clock_init(&qsd8x50_clock_data);
msm_hsusb_pdata.swfi_latency =
msm_pm_data
[MSM_PM_SLEEP_MODE_RAMP_DOWN_AND_WAIT_FOR_INTERRUPT].latency;
msm_device_hsusb_peripheral.dev.platform_data = &msm_hsusb_pdata;
msm_otg_pdata.swfi_latency =
msm_pm_data
[MSM_PM_SLEEP_MODE_RAMP_DOWN_AND_WAIT_FOR_INTERRUPT].latency;
msm_device_otg.dev.platform_data = &msm_otg_pdata;
msm_device_gadget_peripheral.dev.platform_data = &msm_gadget_pdata;
msm_gadget_pdata.is_phy_status_timer_on = 1;
#if defined(CONFIG_TSIF) || defined(CONFIG_TSIF_MODULE)
msm_device_tsif.dev.platform_data = &tsif_platform_data;
#endif
platform_add_devices(devices, ARRAY_SIZE(devices));
msm_fb_add_devices();
#ifdef CONFIG_MSM_CAMERA
config_camera_off_gpios(); /* might not be necessary */
#endif
qsd8x50_init_usb();
qsd8x50_init_mmc();
bt_power_init();
audio_gpio_init();
msm_device_i2c_init();
msm_qsd_spi_init();
i2c_register_board_info(0, msm_i2c_board_info,
ARRAY_SIZE(msm_i2c_board_info));
spi_register_board_info(msm_spi_board_info,
ARRAY_SIZE(msm_spi_board_info));
msm_pm_set_platform_data(msm_pm_data, ARRAY_SIZE(msm_pm_data));
#ifdef CONFIG_SURF_FFA_GPIO_KEYPAD
if (machine_is_qsd8x50_ffa())
platform_device_register(&keypad_device_8k_ffa);
else
platform_device_register(&keypad_device_surf);
#endif
}
static void __init qsd8x50_allocate_memory_regions(void)
{
void *addr;
unsigned long size;
size = pmem_kernel_ebi1_size;
if (size) {
addr = alloc_bootmem_align(size, 0x100000);
android_pmem_kernel_ebi1_pdata.size = size;
pr_info("allocating %lu bytes at %p (%lx physical) for kernel"
" ebi1 pmem arena\n", size, addr, __pa(addr));
}
#ifdef CONFIG_KERNEL_PMEM_SMI_REGION
size = pmem_kernel_smi_size;
if (size > MSM_PMEM_SMIPOOL_SIZE) {
printk(KERN_ERR "pmem kernel smi arena size %lu is too big\n",
size);
size = MSM_PMEM_SMIPOOL_SIZE;
}
android_pmem_kernel_smi_pdata.size = size;
pr_info("allocating %lu bytes at %lx (%lx physical)"
"for pmem kernel smi arena\n", size,
(long unsigned int) MSM_PMEM_SMIPOOL_BASE,
__pa(MSM_PMEM_SMIPOOL_BASE));
#endif
size = pmem_sf_size;
if (size) {
addr = alloc_bootmem(size);
android_pmem_pdata.size = size;
pr_info("allocating %lu bytes at %p (%lx physical) for sf "
"pmem arena\n", size, addr, __pa(addr));
}
size = pmem_adsp_size;
if (size) {
addr = alloc_bootmem(size);
android_pmem_adsp_pdata.size = size;
pr_info("allocating %lu bytes at %p (%lx physical) for adsp "
"pmem arena\n", size, addr, __pa(addr));
}
size = MSM_FB_SIZE;
addr = (void *)MSM_FB_BASE;
msm_fb_resources[0].start = (unsigned long)addr;
msm_fb_resources[0].end = msm_fb_resources[0].start + size - 1;
pr_info("using %lu bytes of SMI at %lx physical for fb\n",
size, (unsigned long)addr);
size = audio_size ? : MSM_AUDIO_SIZE;
addr = alloc_bootmem(size);
msm_audio_resources[0].start = __pa(addr);
msm_audio_resources[0].end = msm_audio_resources[0].start + size - 1;
pr_info("allocating %lu bytes at %p (%lx physical) for audio\n",
size, addr, __pa(addr));
}
static void __init qsd8x50_map_io(void)
{
msm_shared_ram_phys = MSM_SHARED_RAM_PHYS;
msm_map_qsd8x50_io();
qsd8x50_allocate_memory_regions();
}
MACHINE_START(QSD8X50_SURF, "QCT QSD8X50 SURF")
.boot_params = PLAT_PHYS_OFFSET + 0x100,
.map_io = qsd8x50_map_io,
.init_irq = qsd8x50_init_irq,
.init_machine = qsd8x50_init,
.timer = &msm_timer,
MACHINE_END
MACHINE_START(QSD8X50_FFA, "QCT QSD8X50 FFA")
.boot_params = PLAT_PHYS_OFFSET + 0x100,
.map_io = qsd8x50_map_io,
.init_irq = qsd8x50_init_irq,
.init_machine = qsd8x50_init,
.timer = &msm_timer,
MACHINE_END