| #ifndef __ASM_SPINLOCK_H |
| #define __ASM_SPINLOCK_H |
| |
| #include <asm/atomic.h> |
| #include <asm/rwlock.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <linux/compiler.h> |
| |
| #ifdef CONFIG_PARAVIRT |
| #include <asm/paravirt.h> |
| #else |
| #define CLI_STRING "cli" |
| #define STI_STRING "sti" |
| #define CLI_STI_CLOBBERS |
| #define CLI_STI_INPUT_ARGS |
| #endif /* CONFIG_PARAVIRT */ |
| |
| /* |
| * Your basic SMP spinlocks, allowing only a single CPU anywhere |
| * |
| * Simple spin lock operations. There are two variants, one clears IRQ's |
| * on the local processor, one does not. |
| * |
| * We make no fairness assumptions. They have a cost. |
| * |
| * (the type definitions are in asm/spinlock_types.h) |
| */ |
| |
| static inline int __raw_spin_is_locked(raw_spinlock_t *x) |
| { |
| return *(volatile signed char *)(&(x)->slock) <= 0; |
| } |
| |
| static inline void __raw_spin_lock(raw_spinlock_t *lock) |
| { |
| asm volatile("\n1:\t" |
| LOCK_PREFIX " ; decb %0\n\t" |
| "jns 3f\n" |
| "2:\t" |
| "rep;nop\n\t" |
| "cmpb $0,%0\n\t" |
| "jle 2b\n\t" |
| "jmp 1b\n" |
| "3:\n\t" |
| : "+m" (lock->slock) : : "memory"); |
| } |
| |
| /* |
| * It is easier for the lock validator if interrupts are not re-enabled |
| * in the middle of a lock-acquire. This is a performance feature anyway |
| * so we turn it off: |
| * |
| * NOTE: there's an irqs-on section here, which normally would have to be |
| * irq-traced, but on CONFIG_TRACE_IRQFLAGS we never use this variant. |
| */ |
| #ifndef CONFIG_PROVE_LOCKING |
| static inline void __raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long flags) |
| { |
| asm volatile( |
| "\n1:\t" |
| LOCK_PREFIX " ; decb %[slock]\n\t" |
| "jns 5f\n" |
| "2:\t" |
| "testl $0x200, %[flags]\n\t" |
| "jz 4f\n\t" |
| STI_STRING "\n" |
| "3:\t" |
| "rep;nop\n\t" |
| "cmpb $0, %[slock]\n\t" |
| "jle 3b\n\t" |
| CLI_STRING "\n\t" |
| "jmp 1b\n" |
| "4:\t" |
| "rep;nop\n\t" |
| "cmpb $0, %[slock]\n\t" |
| "jg 1b\n\t" |
| "jmp 4b\n" |
| "5:\n\t" |
| : [slock] "+m" (lock->slock) |
| : [flags] "r" (flags) |
| CLI_STI_INPUT_ARGS |
| : "memory" CLI_STI_CLOBBERS); |
| } |
| #endif |
| |
| static inline int __raw_spin_trylock(raw_spinlock_t *lock) |
| { |
| char oldval; |
| asm volatile( |
| "xchgb %b0,%1" |
| :"=q" (oldval), "+m" (lock->slock) |
| :"0" (0) : "memory"); |
| return oldval > 0; |
| } |
| |
| /* |
| * __raw_spin_unlock based on writing $1 to the low byte. |
| * This method works. Despite all the confusion. |
| * (except on PPro SMP or if we are using OOSTORE, so we use xchgb there) |
| * (PPro errata 66, 92) |
| */ |
| |
| #if !defined(CONFIG_X86_OOSTORE) && !defined(CONFIG_X86_PPRO_FENCE) |
| |
| static inline void __raw_spin_unlock(raw_spinlock_t *lock) |
| { |
| asm volatile("movb $1,%0" : "+m" (lock->slock) :: "memory"); |
| } |
| |
| #else |
| |
| static inline void __raw_spin_unlock(raw_spinlock_t *lock) |
| { |
| char oldval = 1; |
| |
| asm volatile("xchgb %b0, %1" |
| : "=q" (oldval), "+m" (lock->slock) |
| : "0" (oldval) : "memory"); |
| } |
| |
| #endif |
| |
| static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock) |
| { |
| while (__raw_spin_is_locked(lock)) |
| cpu_relax(); |
| } |
| |
| /* |
| * Read-write spinlocks, allowing multiple readers |
| * but only one writer. |
| * |
| * NOTE! it is quite common to have readers in interrupts |
| * but no interrupt writers. For those circumstances we |
| * can "mix" irq-safe locks - any writer needs to get a |
| * irq-safe write-lock, but readers can get non-irqsafe |
| * read-locks. |
| * |
| * On x86, we implement read-write locks as a 32-bit counter |
| * with the high bit (sign) being the "contended" bit. |
| * |
| * The inline assembly is non-obvious. Think about it. |
| * |
| * Changed to use the same technique as rw semaphores. See |
| * semaphore.h for details. -ben |
| * |
| * the helpers are in arch/i386/kernel/semaphore.c |
| */ |
| |
| /** |
| * read_can_lock - would read_trylock() succeed? |
| * @lock: the rwlock in question. |
| */ |
| static inline int __raw_read_can_lock(raw_rwlock_t *x) |
| { |
| return (int)(x)->lock > 0; |
| } |
| |
| /** |
| * write_can_lock - would write_trylock() succeed? |
| * @lock: the rwlock in question. |
| */ |
| static inline int __raw_write_can_lock(raw_rwlock_t *x) |
| { |
| return (x)->lock == RW_LOCK_BIAS; |
| } |
| |
| static inline void __raw_read_lock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t" |
| "jns 1f\n" |
| "call __read_lock_failed\n\t" |
| "1:\n" |
| ::"a" (rw) : "memory"); |
| } |
| |
| static inline void __raw_write_lock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX " subl $" RW_LOCK_BIAS_STR ",(%0)\n\t" |
| "jz 1f\n" |
| "call __write_lock_failed\n\t" |
| "1:\n" |
| ::"a" (rw) : "memory"); |
| } |
| |
| static inline int __raw_read_trylock(raw_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)lock; |
| atomic_dec(count); |
| if (atomic_read(count) >= 0) |
| return 1; |
| atomic_inc(count); |
| return 0; |
| } |
| |
| static inline int __raw_write_trylock(raw_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)lock; |
| if (atomic_sub_and_test(RW_LOCK_BIAS, count)) |
| return 1; |
| atomic_add(RW_LOCK_BIAS, count); |
| return 0; |
| } |
| |
| static inline void __raw_read_unlock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory"); |
| } |
| |
| static inline void __raw_write_unlock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX "addl $" RW_LOCK_BIAS_STR ", %0" |
| : "+m" (rw->lock) : : "memory"); |
| } |
| |
| #define _raw_spin_relax(lock) cpu_relax() |
| #define _raw_read_relax(lock) cpu_relax() |
| #define _raw_write_relax(lock) cpu_relax() |
| |
| #endif /* __ASM_SPINLOCK_H */ |