| /* |
| * pata_mpiix.c - Intel MPIIX PATA for new ATA layer |
| * (C) 2005-2006 Red Hat Inc |
| * Alan Cox <alan@redhat.com> |
| * |
| * The MPIIX is different enough to the PIIX4 and friends that we give it |
| * a separate driver. The old ide/pci code handles this by just not tuning |
| * MPIIX at all. |
| * |
| * The MPIIX also differs in another important way from the majority of PIIX |
| * devices. The chip is a bridge (pardon the pun) between the old world of |
| * ISA IDE and PCI IDE. Although the ATA timings are PCI configured the actual |
| * IDE controller is not decoded in PCI space and the chip does not claim to |
| * be IDE class PCI. This requires slightly non-standard probe logic compared |
| * with PCI IDE and also that we do not disable the device when our driver is |
| * unloaded (as it has many other functions). |
| * |
| * The driver conciously keeps this logic internally to avoid pushing quirky |
| * PATA history into the clean libata layer. |
| * |
| * Thinkpad specific note: If you boot an MPIIX using a thinkpad with a PCMCIA |
| * hard disk present this driver will not detect it. This is not a bug. In this |
| * configuration the secondary port of the MPIIX is disabled and the addresses |
| * are decoded by the PCMCIA bridge and therefore are for a generic IDE driver |
| * to operate. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <scsi/scsi_host.h> |
| #include <linux/libata.h> |
| |
| #define DRV_NAME "pata_mpiix" |
| #define DRV_VERSION "0.7.3" |
| |
| enum { |
| IDETIM = 0x6C, /* IDE control register */ |
| IORDY = (1 << 1), |
| PPE = (1 << 2), |
| FTIM = (1 << 0), |
| ENABLED = (1 << 15), |
| SECONDARY = (1 << 14) |
| }; |
| |
| static int mpiix_pre_reset(struct ata_port *ap) |
| { |
| struct pci_dev *pdev = to_pci_dev(ap->host->dev); |
| static const struct pci_bits mpiix_enable_bits[] = { |
| { 0x6D, 1, 0x80, 0x80 }, |
| { 0x6F, 1, 0x80, 0x80 } |
| }; |
| |
| if (!pci_test_config_bits(pdev, &mpiix_enable_bits[ap->port_no])) |
| return -ENOENT; |
| ap->cbl = ATA_CBL_PATA40; |
| return ata_std_prereset(ap); |
| } |
| |
| /** |
| * mpiix_error_handler - probe reset |
| * @ap: ATA port |
| * |
| * Perform the ATA probe and bus reset sequence plus specific handling |
| * for this hardware. The MPIIX has the enable bits in a different place |
| * to PIIX4 and friends. As a pure PIO device it has no cable detect |
| */ |
| |
| static void mpiix_error_handler(struct ata_port *ap) |
| { |
| ata_bmdma_drive_eh(ap, mpiix_pre_reset, ata_std_softreset, NULL, ata_std_postreset); |
| } |
| |
| /** |
| * mpiix_set_piomode - set initial PIO mode data |
| * @ap: ATA interface |
| * @adev: ATA device |
| * |
| * Called to do the PIO mode setup. The MPIIX allows us to program the |
| * IORDY sample point (2-5 clocks), recovery 1-4 clocks and whether |
| * prefetching or iordy are used. |
| * |
| * This would get very ugly because we can only program timing for one |
| * device at a time, the other gets PIO0. Fortunately libata calls |
| * our qc_issue_prot command before a command is issued so we can |
| * flip the timings back and forth to reduce the pain. |
| */ |
| |
| static void mpiix_set_piomode(struct ata_port *ap, struct ata_device *adev) |
| { |
| int control = 0; |
| int pio = adev->pio_mode - XFER_PIO_0; |
| struct pci_dev *pdev = to_pci_dev(ap->host->dev); |
| u16 idetim; |
| static const /* ISP RTC */ |
| u8 timings[][2] = { { 0, 0 }, |
| { 0, 0 }, |
| { 1, 0 }, |
| { 2, 1 }, |
| { 2, 3 }, }; |
| |
| pci_read_config_word(pdev, IDETIM, &idetim); |
| /* Mask the IORDY/TIME/PPE0 bank for this device */ |
| if (adev->class == ATA_DEV_ATA) |
| control |= PPE; /* PPE enable for disk */ |
| if (ata_pio_need_iordy(adev)) |
| control |= IORDY; /* IORDY */ |
| if (pio > 0) |
| control |= FTIM; /* This drive is on the fast timing bank */ |
| |
| /* Mask out timing and clear both TIME bank selects */ |
| idetim &= 0xCCEE; |
| idetim &= ~(0x07 << (2 * adev->devno)); |
| idetim |= (control << (2 * adev->devno)); |
| |
| idetim |= (timings[pio][0] << 12) | (timings[pio][1] << 8); |
| pci_write_config_word(pdev, IDETIM, idetim); |
| |
| /* We use ap->private_data as a pointer to the device currently |
| loaded for timing */ |
| ap->private_data = adev; |
| } |
| |
| /** |
| * mpiix_qc_issue_prot - command issue |
| * @qc: command pending |
| * |
| * Called when the libata layer is about to issue a command. We wrap |
| * this interface so that we can load the correct ATA timings if |
| * neccessary. Our logic also clears TIME0/TIME1 for the other device so |
| * that, even if we get this wrong, cycles to the other device will |
| * be made PIO0. |
| */ |
| |
| static unsigned int mpiix_qc_issue_prot(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_device *adev = qc->dev; |
| |
| /* If modes have been configured and the channel data is not loaded |
| then load it. We have to check if pio_mode is set as the core code |
| does not set adev->pio_mode to XFER_PIO_0 while probing as would be |
| logical */ |
| |
| if (adev->pio_mode && adev != ap->private_data) |
| mpiix_set_piomode(ap, adev); |
| |
| return ata_qc_issue_prot(qc); |
| } |
| |
| static struct scsi_host_template mpiix_sht = { |
| .module = THIS_MODULE, |
| .name = DRV_NAME, |
| .ioctl = ata_scsi_ioctl, |
| .queuecommand = ata_scsi_queuecmd, |
| .can_queue = ATA_DEF_QUEUE, |
| .this_id = ATA_SHT_THIS_ID, |
| .sg_tablesize = LIBATA_MAX_PRD, |
| .cmd_per_lun = ATA_SHT_CMD_PER_LUN, |
| .emulated = ATA_SHT_EMULATED, |
| .use_clustering = ATA_SHT_USE_CLUSTERING, |
| .proc_name = DRV_NAME, |
| .dma_boundary = ATA_DMA_BOUNDARY, |
| .slave_configure = ata_scsi_slave_config, |
| .slave_destroy = ata_scsi_slave_destroy, |
| .bios_param = ata_std_bios_param, |
| .resume = ata_scsi_device_resume, |
| .suspend = ata_scsi_device_suspend, |
| }; |
| |
| static struct ata_port_operations mpiix_port_ops = { |
| .port_disable = ata_port_disable, |
| .set_piomode = mpiix_set_piomode, |
| |
| .tf_load = ata_tf_load, |
| .tf_read = ata_tf_read, |
| .check_status = ata_check_status, |
| .exec_command = ata_exec_command, |
| .dev_select = ata_std_dev_select, |
| |
| .freeze = ata_bmdma_freeze, |
| .thaw = ata_bmdma_thaw, |
| .error_handler = mpiix_error_handler, |
| .post_internal_cmd = ata_bmdma_post_internal_cmd, |
| |
| .qc_prep = ata_qc_prep, |
| .qc_issue = mpiix_qc_issue_prot, |
| .data_xfer = ata_pio_data_xfer, |
| |
| .irq_handler = ata_interrupt, |
| .irq_clear = ata_bmdma_irq_clear, |
| |
| .port_start = ata_port_start, |
| .port_stop = ata_port_stop, |
| .host_stop = ata_host_stop |
| }; |
| |
| static int mpiix_init_one(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| /* Single threaded by the PCI probe logic */ |
| static struct ata_probe_ent probe[2]; |
| static int printed_version; |
| u16 idetim; |
| int enabled; |
| |
| if (!printed_version++) |
| dev_printk(KERN_DEBUG, &dev->dev, "version " DRV_VERSION "\n"); |
| |
| /* MPIIX has many functions which can be turned on or off according |
| to other devices present. Make sure IDE is enabled before we try |
| and use it */ |
| |
| pci_read_config_word(dev, IDETIM, &idetim); |
| if (!(idetim & ENABLED)) |
| return -ENODEV; |
| |
| /* We do our own plumbing to avoid leaking special cases for whacko |
| ancient hardware into the core code. There are two issues to |
| worry about. #1 The chip is a bridge so if in legacy mode and |
| without BARs set fools the setup. #2 If you pci_disable_device |
| the MPIIX your box goes castors up */ |
| |
| INIT_LIST_HEAD(&probe[0].node); |
| probe[0].dev = pci_dev_to_dev(dev); |
| probe[0].port_ops = &mpiix_port_ops; |
| probe[0].sht = &mpiix_sht; |
| probe[0].pio_mask = 0x1F; |
| probe[0].irq = 14; |
| probe[0].irq_flags = SA_SHIRQ; |
| probe[0].port_flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST; |
| probe[0].n_ports = 1; |
| probe[0].port[0].cmd_addr = 0x1F0; |
| probe[0].port[0].ctl_addr = 0x3F6; |
| probe[0].port[0].altstatus_addr = 0x3F6; |
| |
| /* The secondary lurks at different addresses but is otherwise |
| the same beastie */ |
| |
| INIT_LIST_HEAD(&probe[1].node); |
| probe[1] = probe[0]; |
| probe[1].irq = 15; |
| probe[1].port[0].cmd_addr = 0x170; |
| probe[1].port[0].ctl_addr = 0x376; |
| probe[1].port[0].altstatus_addr = 0x376; |
| |
| /* Let libata fill in the port details */ |
| ata_std_ports(&probe[0].port[0]); |
| ata_std_ports(&probe[1].port[0]); |
| |
| /* Now add the port that is active */ |
| enabled = (idetim & SECONDARY) ? 1 : 0; |
| |
| if (ata_device_add(&probe[enabled])) |
| return 0; |
| return -ENODEV; |
| } |
| |
| /** |
| * mpiix_remove_one - device unload |
| * @pdev: PCI device being removed |
| * |
| * Handle an unplug/unload event for a PCI device. Unload the |
| * PCI driver but do not use the default handler as we *MUST NOT* |
| * disable the device as it has other functions. |
| */ |
| |
| static void __devexit mpiix_remove_one(struct pci_dev *pdev) |
| { |
| struct device *dev = pci_dev_to_dev(pdev); |
| struct ata_host *host = dev_get_drvdata(dev); |
| |
| ata_host_remove(host); |
| dev_set_drvdata(dev, NULL); |
| } |
| |
| static const struct pci_device_id mpiix[] = { |
| { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_82371MX), }, |
| |
| { }, |
| }; |
| |
| static struct pci_driver mpiix_pci_driver = { |
| .name = DRV_NAME, |
| .id_table = mpiix, |
| .probe = mpiix_init_one, |
| .remove = mpiix_remove_one, |
| .suspend = ata_pci_device_suspend, |
| .resume = ata_pci_device_resume, |
| }; |
| |
| static int __init mpiix_init(void) |
| { |
| return pci_register_driver(&mpiix_pci_driver); |
| } |
| |
| static void __exit mpiix_exit(void) |
| { |
| pci_unregister_driver(&mpiix_pci_driver); |
| } |
| |
| MODULE_AUTHOR("Alan Cox"); |
| MODULE_DESCRIPTION("low-level driver for Intel MPIIX"); |
| MODULE_LICENSE("GPL"); |
| MODULE_DEVICE_TABLE(pci, mpiix); |
| MODULE_VERSION(DRV_VERSION); |
| |
| module_init(mpiix_init); |
| module_exit(mpiix_exit); |