| /* |
| * Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| #include <linux/err.h> |
| #include <linux/io.h> |
| #include <linux/msm_ion.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/iommu.h> |
| #include <linux/pfn.h> |
| #include <linux/dma-mapping.h> |
| #include "ion_priv.h" |
| |
| #include <asm/mach/map.h> |
| #include <asm/page.h> |
| #include <asm/cacheflush.h> |
| #include <mach/iommu_domains.h> |
| |
| struct ion_iommu_heap { |
| struct ion_heap heap; |
| unsigned int has_outer_cache; |
| }; |
| |
| /* |
| * We will attempt to allocate high-order pages and store those in an |
| * sg_list. However, some APIs expect an array of struct page * where |
| * each page is of size PAGE_SIZE. We use this extra structure to |
| * carry around an array of such pages (derived from the high-order |
| * pages with nth_page). |
| */ |
| struct ion_iommu_priv_data { |
| struct page **pages; |
| int nrpages; |
| unsigned long size; |
| }; |
| |
| #define MAX_VMAP_RETRIES 10 |
| |
| static const unsigned int orders[] = {8, 4, 0}; |
| static const int num_orders = ARRAY_SIZE(orders); |
| |
| struct page_info { |
| struct page *page; |
| unsigned int order; |
| struct list_head list; |
| }; |
| |
| static unsigned int order_to_size(int order) |
| { |
| return PAGE_SIZE << order; |
| } |
| |
| static struct page_info *alloc_largest_available(unsigned long size, |
| unsigned int max_order) |
| { |
| struct page *page; |
| struct page_info *info; |
| int i; |
| |
| for (i = 0; i < num_orders; i++) { |
| gfp_t gfp; |
| if (size < order_to_size(orders[i])) |
| continue; |
| if (max_order < orders[i]) |
| continue; |
| |
| gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COMP; |
| if (orders[i]) |
| gfp |= __GFP_NOWARN; |
| |
| page = alloc_pages(gfp, orders[i]); |
| if (!page) |
| continue; |
| |
| info = kmalloc(sizeof(struct page_info), GFP_KERNEL); |
| info->page = page; |
| info->order = orders[i]; |
| return info; |
| } |
| return NULL; |
| } |
| |
| static int ion_iommu_heap_allocate(struct ion_heap *heap, |
| struct ion_buffer *buffer, |
| unsigned long size, unsigned long align, |
| unsigned long flags) |
| { |
| int ret, i; |
| struct list_head pages_list; |
| struct page_info *info, *tmp_info; |
| struct ion_iommu_priv_data *data = NULL; |
| |
| if (msm_use_iommu()) { |
| struct scatterlist *sg; |
| struct sg_table *table; |
| int j; |
| void *ptr = NULL; |
| unsigned int npages_to_vmap, total_pages, num_large_pages = 0; |
| long size_remaining = PAGE_ALIGN(size); |
| unsigned int max_order = ION_IS_CACHED(flags) ? 0 : orders[0]; |
| |
| data = kmalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&pages_list); |
| while (size_remaining > 0) { |
| info = alloc_largest_available(size_remaining, |
| max_order); |
| if (!info) { |
| ret = -ENOMEM; |
| goto err_free_data; |
| } |
| list_add_tail(&info->list, &pages_list); |
| size_remaining -= order_to_size(info->order); |
| max_order = info->order; |
| num_large_pages++; |
| } |
| |
| data->size = PFN_ALIGN(size); |
| data->nrpages = data->size >> PAGE_SHIFT; |
| data->pages = kzalloc(sizeof(struct page *)*data->nrpages, |
| GFP_KERNEL); |
| if (!data->pages) { |
| ret = -ENOMEM; |
| goto err_free_data; |
| } |
| |
| table = buffer->sg_table = |
| kzalloc(sizeof(struct sg_table), GFP_KERNEL); |
| |
| if (!table) { |
| ret = -ENOMEM; |
| goto err1; |
| } |
| ret = sg_alloc_table(table, num_large_pages, GFP_KERNEL); |
| if (ret) |
| goto err2; |
| |
| i = 0; |
| sg = table->sgl; |
| list_for_each_entry_safe(info, tmp_info, &pages_list, list) { |
| struct page *page = info->page; |
| sg_set_page(sg, page, order_to_size(info->order), 0); |
| sg_dma_address(sg) = sg_phys(sg); |
| sg = sg_next(sg); |
| for (j = 0; j < (1 << info->order); ++j) |
| data->pages[i++] = nth_page(page, j); |
| list_del(&info->list); |
| kfree(info); |
| } |
| |
| /* |
| * As an optimization, we omit __GFP_ZERO from |
| * alloc_page above and manually zero out all of the |
| * pages in one fell swoop here. To safeguard against |
| * insufficient vmalloc space, we only vmap |
| * `npages_to_vmap' at a time, starting with a |
| * conservative estimate of 1/8 of the total number of |
| * vmalloc pages available. Note that the `pages' |
| * array is composed of all 4K pages, irrespective of |
| * the size of the pages on the sg list. |
| */ |
| npages_to_vmap = ((VMALLOC_END - VMALLOC_START)/8) |
| >> PAGE_SHIFT; |
| total_pages = data->nrpages; |
| for (i = 0; i < total_pages; i += npages_to_vmap) { |
| npages_to_vmap = min(npages_to_vmap, total_pages - i); |
| for (j = 0; j < MAX_VMAP_RETRIES && npages_to_vmap; |
| ++j) { |
| ptr = vmap(&data->pages[i], npages_to_vmap, |
| VM_IOREMAP, pgprot_kernel); |
| if (ptr) |
| break; |
| else |
| npages_to_vmap >>= 1; |
| } |
| if (!ptr) { |
| pr_err("Couldn't vmap the pages for zeroing\n"); |
| ret = -ENOMEM; |
| goto err3; |
| } |
| memset(ptr, 0, npages_to_vmap * PAGE_SIZE); |
| vunmap(ptr); |
| } |
| |
| if (!ION_IS_CACHED(flags)) |
| dma_sync_sg_for_device(NULL, table->sgl, table->nents, |
| DMA_BIDIRECTIONAL); |
| |
| buffer->priv_virt = data; |
| return 0; |
| |
| } else { |
| return -ENOMEM; |
| } |
| |
| |
| err3: |
| sg_free_table(buffer->sg_table); |
| err2: |
| kfree(buffer->sg_table); |
| buffer->sg_table = 0; |
| err1: |
| kfree(data->pages); |
| err_free_data: |
| kfree(data); |
| |
| list_for_each_entry_safe(info, tmp_info, &pages_list, list) { |
| if (info->page) |
| __free_pages(info->page, info->order); |
| list_del(&info->list); |
| kfree(info); |
| } |
| return ret; |
| } |
| |
| static void ion_iommu_heap_free(struct ion_buffer *buffer) |
| { |
| int i; |
| struct scatterlist *sg; |
| struct sg_table *table = buffer->sg_table; |
| struct ion_iommu_priv_data *data = buffer->priv_virt; |
| |
| if (!table) |
| return; |
| if (!data) |
| return; |
| |
| for_each_sg(table->sgl, sg, table->nents, i) |
| __free_pages(sg_page(sg), get_order(sg_dma_len(sg))); |
| |
| sg_free_table(table); |
| kfree(table); |
| table = 0; |
| kfree(data->pages); |
| kfree(data); |
| } |
| |
| void *ion_iommu_heap_map_kernel(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| struct ion_iommu_priv_data *data = buffer->priv_virt; |
| pgprot_t page_prot = PAGE_KERNEL; |
| |
| if (!data) |
| return NULL; |
| |
| if (!ION_IS_CACHED(buffer->flags)) |
| page_prot = pgprot_writecombine(page_prot); |
| |
| buffer->vaddr = vmap(data->pages, data->nrpages, VM_IOREMAP, page_prot); |
| |
| return buffer->vaddr; |
| } |
| |
| void ion_iommu_heap_unmap_kernel(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| if (!buffer->vaddr) |
| return; |
| |
| vunmap(buffer->vaddr); |
| buffer->vaddr = NULL; |
| } |
| |
| int ion_iommu_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer, |
| struct vm_area_struct *vma) |
| { |
| struct sg_table *table = buffer->sg_table; |
| unsigned long addr = vma->vm_start; |
| unsigned long offset = vma->vm_pgoff * PAGE_SIZE; |
| struct scatterlist *sg; |
| int i; |
| |
| if (!ION_IS_CACHED(buffer->flags)) |
| vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); |
| |
| for_each_sg(table->sgl, sg, table->nents, i) { |
| struct page *page = sg_page(sg); |
| unsigned long remainder = vma->vm_end - addr; |
| unsigned long len = sg_dma_len(sg); |
| |
| if (offset >= sg_dma_len(sg)) { |
| offset -= sg_dma_len(sg); |
| continue; |
| } else if (offset) { |
| page += offset / PAGE_SIZE; |
| len = sg_dma_len(sg) - offset; |
| offset = 0; |
| } |
| len = min(len, remainder); |
| remap_pfn_range(vma, addr, page_to_pfn(page), len, |
| vma->vm_page_prot); |
| addr += len; |
| if (addr >= vma->vm_end) |
| return 0; |
| } |
| return 0; |
| } |
| |
| int ion_iommu_heap_map_iommu(struct ion_buffer *buffer, |
| struct ion_iommu_map *data, |
| unsigned int domain_num, |
| unsigned int partition_num, |
| unsigned long align, |
| unsigned long iova_length, |
| unsigned long flags) |
| { |
| struct iommu_domain *domain; |
| int ret = 0; |
| unsigned long extra; |
| int prot = IOMMU_WRITE | IOMMU_READ; |
| prot |= ION_IS_CACHED(flags) ? IOMMU_CACHE : 0; |
| |
| BUG_ON(!msm_use_iommu()); |
| |
| data->mapped_size = iova_length; |
| extra = iova_length - buffer->size; |
| |
| /* Use the biggest alignment to allow bigger IOMMU mappings. |
| * Use the first entry since the first entry will always be the |
| * biggest entry. To take advantage of bigger mapping sizes both the |
| * VA and PA addresses have to be aligned to the biggest size. |
| */ |
| if (buffer->sg_table->sgl->length > align) |
| align = buffer->sg_table->sgl->length; |
| |
| ret = msm_allocate_iova_address(domain_num, partition_num, |
| data->mapped_size, align, |
| &data->iova_addr); |
| |
| if (ret) |
| goto out; |
| |
| domain = msm_get_iommu_domain(domain_num); |
| |
| if (!domain) { |
| ret = -ENOMEM; |
| goto out1; |
| } |
| |
| ret = iommu_map_range(domain, data->iova_addr, |
| buffer->sg_table->sgl, |
| buffer->size, prot); |
| if (ret) { |
| pr_err("%s: could not map %lx in domain %p\n", |
| __func__, data->iova_addr, domain); |
| goto out1; |
| } |
| |
| if (extra) { |
| unsigned long extra_iova_addr = data->iova_addr + buffer->size; |
| unsigned long phys_addr = sg_phys(buffer->sg_table->sgl); |
| ret = msm_iommu_map_extra(domain, extra_iova_addr, phys_addr, |
| extra, SZ_4K, prot); |
| if (ret) |
| goto out2; |
| } |
| return ret; |
| |
| out2: |
| iommu_unmap_range(domain, data->iova_addr, buffer->size); |
| out1: |
| msm_free_iova_address(data->iova_addr, domain_num, partition_num, |
| buffer->size); |
| |
| out: |
| |
| return ret; |
| } |
| |
| void ion_iommu_heap_unmap_iommu(struct ion_iommu_map *data) |
| { |
| unsigned int domain_num; |
| unsigned int partition_num; |
| struct iommu_domain *domain; |
| |
| BUG_ON(!msm_use_iommu()); |
| |
| domain_num = iommu_map_domain(data); |
| partition_num = iommu_map_partition(data); |
| |
| domain = msm_get_iommu_domain(domain_num); |
| |
| if (!domain) { |
| WARN(1, "Could not get domain %d. Corruption?\n", domain_num); |
| return; |
| } |
| |
| iommu_unmap_range(domain, data->iova_addr, data->mapped_size); |
| msm_free_iova_address(data->iova_addr, domain_num, partition_num, |
| data->mapped_size); |
| |
| return; |
| } |
| |
| static int ion_iommu_cache_ops(struct ion_heap *heap, struct ion_buffer *buffer, |
| void *vaddr, unsigned int offset, unsigned int length, |
| unsigned int cmd) |
| { |
| void (*outer_cache_op)(phys_addr_t, phys_addr_t); |
| struct ion_iommu_heap *iommu_heap = |
| container_of(heap, struct ion_iommu_heap, heap); |
| |
| switch (cmd) { |
| case ION_IOC_CLEAN_CACHES: |
| if (!vaddr) |
| dma_sync_sg_for_device(NULL, buffer->sg_table->sgl, |
| buffer->sg_table->nents, DMA_TO_DEVICE); |
| else |
| dmac_clean_range(vaddr, vaddr + length); |
| outer_cache_op = outer_clean_range; |
| break; |
| case ION_IOC_INV_CACHES: |
| if (!vaddr) |
| dma_sync_sg_for_cpu(NULL, buffer->sg_table->sgl, |
| buffer->sg_table->nents, DMA_FROM_DEVICE); |
| else |
| dmac_inv_range(vaddr, vaddr + length); |
| outer_cache_op = outer_inv_range; |
| break; |
| case ION_IOC_CLEAN_INV_CACHES: |
| if (!vaddr) { |
| dma_sync_sg_for_device(NULL, buffer->sg_table->sgl, |
| buffer->sg_table->nents, DMA_TO_DEVICE); |
| dma_sync_sg_for_cpu(NULL, buffer->sg_table->sgl, |
| buffer->sg_table->nents, DMA_FROM_DEVICE); |
| } else { |
| dmac_flush_range(vaddr, vaddr + length); |
| } |
| outer_cache_op = outer_flush_range; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (iommu_heap->has_outer_cache) { |
| unsigned long pstart; |
| unsigned int i; |
| struct ion_iommu_priv_data *data = buffer->priv_virt; |
| if (!data) |
| return -ENOMEM; |
| |
| for (i = 0; i < data->nrpages; ++i) { |
| pstart = page_to_phys(data->pages[i]); |
| outer_cache_op(pstart, pstart + PAGE_SIZE); |
| } |
| } |
| return 0; |
| } |
| |
| static struct sg_table *ion_iommu_heap_map_dma(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| return buffer->sg_table; |
| } |
| |
| static void ion_iommu_heap_unmap_dma(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| } |
| |
| static struct ion_heap_ops iommu_heap_ops = { |
| .allocate = ion_iommu_heap_allocate, |
| .free = ion_iommu_heap_free, |
| .map_user = ion_iommu_heap_map_user, |
| .map_kernel = ion_iommu_heap_map_kernel, |
| .unmap_kernel = ion_iommu_heap_unmap_kernel, |
| .map_iommu = ion_iommu_heap_map_iommu, |
| .unmap_iommu = ion_iommu_heap_unmap_iommu, |
| .cache_op = ion_iommu_cache_ops, |
| .map_dma = ion_iommu_heap_map_dma, |
| .unmap_dma = ion_iommu_heap_unmap_dma, |
| }; |
| |
| struct ion_heap *ion_iommu_heap_create(struct ion_platform_heap *heap_data) |
| { |
| struct ion_iommu_heap *iommu_heap; |
| |
| iommu_heap = kzalloc(sizeof(struct ion_iommu_heap), GFP_KERNEL); |
| if (!iommu_heap) |
| return ERR_PTR(-ENOMEM); |
| |
| iommu_heap->heap.ops = &iommu_heap_ops; |
| iommu_heap->heap.type = ION_HEAP_TYPE_IOMMU; |
| iommu_heap->has_outer_cache = heap_data->has_outer_cache; |
| |
| return &iommu_heap->heap; |
| } |
| |
| void ion_iommu_heap_destroy(struct ion_heap *heap) |
| { |
| struct ion_iommu_heap *iommu_heap = |
| container_of(heap, struct ion_iommu_heap, heap); |
| |
| kfree(iommu_heap); |
| iommu_heap = NULL; |
| } |