blob: 708d658502d015dd005e5f1e4e090f64ff8b66fb [file] [log] [blame]
/* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Qualcomm QPNP Pulse Width Modulation (PWM) driver
*
* The HW module is also called LPG (Light Pattern Generator).
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/spmi.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/radix-tree.h>
#include <linux/qpnp/pwm.h>
#define QPNP_LPG_DRIVER_NAME "qcom,qpnp-pwm"
/* LPG Control for LPG_PATTERN_CONFIG */
#define QPNP_RAMP_DIRECTION_SHIFT 4
#define QPNP_RAMP_DIRECTION_MASK 0x10
#define QPNP_PATTERN_REPEAT_SHIFT 3
#define QPNP_PATTERN_REPEAT_MASK 0x08
#define QPNP_RAMP_TOGGLE_SHIFT 2
#define QPNP_RAMP_TOGGLE_MASK 0x04
#define QPNP_EN_PAUSE_HI_SHIFT 1
#define QPNP_EN_PAUSE_HI_MASK 0x02
#define QPNP_EN_PAUSE_LO_MASK 0x01
/* LPG Control for LPG_PWM_SIZE_CLK */
#define QPNP_PWM_SIZE_SHIFT 4
#define QPNP_PWM_SIZE_MASK 0x30
#define QPNP_PWM_FREQ_CLK_SELECT_SHIFT 0
#define QPNP_PWM_FREQ_CLK_SELECT_MASK 0x03
#define QPNP_PWM_SIZE_9_BIT 0x03
#define QPNP_SET_PWM_CLK(val, clk, pwm_size) \
do { \
val = (clk + 1) & QPNP_PWM_FREQ_CLK_SELECT_MASK; \
val |= ((pwm_size > 6 ? QPNP_PWM_SIZE_9_BIT : 0) << \
QPNP_PWM_SIZE_SHIFT) & QPNP_PWM_SIZE_MASK; \
} while (0)
#define QPNP_GET_PWM_SIZE(reg) ((reg & QPNP_PWM_SIZE_MASK) \
>> QPNP_PWM_SIZE_SHIFT)
/* LPG Control for LPG_PWM_FREQ_PREDIV_CLK */
#define QPNP_PWM_FREQ_PRE_DIVIDE_SHIFT 5
#define QPNP_PWM_FREQ_PRE_DIVIDE_MASK 0x60
#define QPNP_PWM_FREQ_EXP_MASK 0x07
#define QPNP_SET_PWM_FREQ_PREDIV(val, pre_div, pre_div_exp) \
do { \
val = (pre_div << QPNP_PWM_FREQ_PRE_DIVIDE_SHIFT) & \
QPNP_PWM_FREQ_PRE_DIVIDE_MASK; \
val |= pre_div_exp & QPNP_PWM_FREQ_EXP_MASK; \
} while (0)
/* LPG Control for LPG_PWM_TYPE_CONFIG */
#define QPNP_EN_GLITCH_REMOVAL_SHIFT 5
#define QPNP_EN_GLITCH_REMOVAL_MASK 0x20
#define QPNP_EN_FULL_SCALE_SHIFT 3
#define QPNP_EN_FULL_SCALE_MASK 0x08
#define QPNP_EN_PHASE_STAGGER_SHIFT 2
#define QPNP_EN_PHASE_STAGGER_MASK 0x04
#define QPNP_PHASE_STAGGER_MASK 0x03
/* LPG Control for PWM_VALUE_LSB */
#define QPNP_PWM_VALUE_LSB_MASK 0xFF
/* LPG Control for PWM_VALUE_MSB */
#define QPNP_PWM_VALUE_MSB_SHIFT 8
#define QPNP_PWM_VALUE_MSB_MASK 0x01
/* LPG Control for ENABLE_CONTROL */
#define QPNP_EN_PWM_HIGH_SHIFT 7
#define QPNP_EN_PWM_HIGH_MASK 0x80
#define QPNP_EN_PWM_LO_SHIFT 6
#define QPNP_EN_PWM_LO_MASK 0x40
#define QPNP_EN_PWM_OUTPUT_SHIFT 5
#define QPNP_EN_PWM_OUTPUT_MASK 0x20
#define QPNP_PWM_SRC_SELECT_SHIFT 2
#define QPNP_PWM_SRC_SELECT_MASK 0x04
#define QPNP_PWM_EN_RAMP_GEN_SHIFT 1
#define QPNP_PWM_EN_RAMP_GEN_MASK 0x02
#define QPNP_ENABLE_PWM(value) \
(value |= (1 << QPNP_EN_PWM_OUTPUT_SHIFT) & QPNP_EN_PWM_OUTPUT_MASK)
#define QPNP_DISABLE_PWM(value) (value &= ~QPNP_EN_PWM_OUTPUT_MASK)
/* LPG Control for RAMP_CONTROL */
#define QPNP_RAMP_START_MASK 0x01
#define QPNP_ENABLE_LUT(value) (value |= QPNP_RAMP_START_MASK)
#define QPNP_DISABLE_LUT(value) (value &= ~QPNP_RAMP_START_MASK)
/* LPG Control for RAMP_STEP_DURATION_LSB */
#define QPNP_RAMP_STEP_DURATION_LSB_MASK 0xFF
/* LPG Control for RAMP_STEP_DURATION_MSB */
#define QPNP_RAMP_STEP_DURATION_MSB_SHIFT 8
#define QPNP_RAMP_STEP_DURATION_MSB_MASK 0x01
#define QPNP_PWM_1KHZ 1024
#define QPNP_GET_RAMP_STEP_DURATION(ramp_time_ms) \
((ramp_time_ms * QPNP_PWM_1KHZ) / 1000)
/* LPG Control for PAUSE_HI_MULTIPLIER_LSB */
#define QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK 0xFF
/* LPG Control for PAUSE_HI_MULTIPLIER_MSB */
#define QPNP_PAUSE_HI_MULTIPLIER_MSB_SHIFT 8
#define QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK 0x1F
/* LPG Control for PAUSE_LO_MULTIPLIER_LSB */
#define QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK 0xFF
/* LPG Control for PAUSE_LO_MULTIPLIER_MSB */
#define QPNP_PAUSE_LO_MULTIPLIER_MSB_SHIFT 8
#define QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK 0x1F
/* LPG Control for HI_INDEX */
#define QPNP_HI_INDEX_MASK 0x3F
/* LPG Control for LO_INDEX */
#define QPNP_LO_INDEX_MASK 0x3F
#define NUM_CLOCKS 3
#define QPNP_PWM_M_MAX 7
#define NSEC_1024HZ (NSEC_PER_SEC / 1024)
#define NSEC_32768HZ (NSEC_PER_SEC / 32768)
#define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000)
#define NUM_LPG_PRE_DIVIDE 4
#define PRE_DIVIDE_1 1
#define PRE_DIVIDE_3 3
#define PRE_DIVIDE_5 5
#define PRE_DIVIDE_6 6
#define SPMI_LPG_REG_ADDR_BASE 0x40
#define SPMI_LPG_REG_ADDR(b, n) (b + SPMI_LPG_REG_ADDR_BASE + (n))
#define SPMI_MAX_BUF_LEN 8
/* SPMI LPG registers */
enum qpnp_lpg_registers_list {
QPNP_LPG_PATTERN_CONFIG,
QPNP_LPG_PWM_SIZE_CLK,
QPNP_LPG_PWM_FREQ_PREDIV_CLK,
QPNP_LPG_PWM_TYPE_CONFIG,
QPNP_PWM_VALUE_LSB,
QPNP_PWM_VALUE_MSB,
QPNP_ENABLE_CONTROL,
QPNP_RAMP_CONTROL,
QPNP_RAMP_STEP_DURATION_LSB = QPNP_RAMP_CONTROL + 9,
QPNP_RAMP_STEP_DURATION_MSB,
QPNP_PAUSE_HI_MULTIPLIER_LSB,
QPNP_PAUSE_HI_MULTIPLIER_MSB,
QPNP_PAUSE_LO_MULTIPLIER_LSB,
QPNP_PAUSE_LO_MULTIPLIER_MSB,
QPNP_HI_INDEX,
QPNP_LO_INDEX,
QPNP_TOTAL_LPG_SPMI_REGISTERS
};
/*
* Formula from HSID,
* pause_time (hi/lo) = (pause_cnt- 1)*(ramp_ms)
* OR,
* pause_cnt = (pause_time / ramp_ms) + 1
*/
#define QPNP_SET_PAUSE_CNT(to_pause_cnt, from_pause, ramp_ms) \
(to_pause_cnt = (from_pause / (ramp_ms ? ramp_ms : 1)) + 1)
static unsigned int pt_t[NUM_LPG_PRE_DIVIDE][NUM_CLOCKS] = {
{ PRE_DIVIDE_1 * NSEC_1024HZ,
PRE_DIVIDE_1 * NSEC_32768HZ,
PRE_DIVIDE_1 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_3 * NSEC_1024HZ,
PRE_DIVIDE_3 * NSEC_32768HZ,
PRE_DIVIDE_3 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_5 * NSEC_1024HZ,
PRE_DIVIDE_5 * NSEC_32768HZ,
PRE_DIVIDE_5 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_6 * NSEC_1024HZ,
PRE_DIVIDE_6 * NSEC_32768HZ,
PRE_DIVIDE_6 * NSEC_19P2MHZ,
},
};
static RADIX_TREE(lpg_dev_tree, GFP_KERNEL);
struct qpnp_lut_default_config {
u32 *duty_pct_list;
int size;
int start_idx;
};
struct qpnp_lut_config {
struct qpnp_lut_default_config def_config;
u8 *duty_pct_list;
int list_size;
int lo_index;
int hi_index;
int lut_pause_hi_cnt;
int lut_pause_lo_cnt;
int ramp_step_ms;
bool ramp_direction;
bool pattern_repeat;
bool ramp_toggle;
bool enable_pause_hi;
bool enable_pause_lo;
};
struct qpnp_lpg_config {
struct qpnp_lut_config lut_config;
u16 base_addr;
u16 lut_base_addr;
u16 lut_size;
bool bypass_lut;
bool lpg_configured;
};
struct qpnp_pwm_config {
int channel_id;
bool in_use;
const char *lable;
int pwm_value;
int pwm_period;
int pwm_duty;
struct pwm_period_config period;
};
/* Public facing structure */
struct pwm_device {
struct qpnp_lpg_chip *chip;
struct qpnp_pwm_config pwm_config;
};
struct qpnp_lpg_chip {
struct spmi_device *spmi_dev;
struct pwm_device pwm_dev;
struct mutex lpg_mutex;
struct qpnp_lpg_config lpg_config;
u8 qpnp_lpg_registers[QPNP_TOTAL_LPG_SPMI_REGISTERS];
};
/* Internal functions */
static inline void qpnp_set_pattern_config(u8 *val,
struct qpnp_lut_config *lut_config)
{
*val = lut_config->enable_pause_lo & QPNP_EN_PAUSE_LO_MASK;
*val |= (lut_config->enable_pause_hi << QPNP_EN_PAUSE_HI_SHIFT) &
QPNP_EN_PAUSE_HI_MASK;
*val |= (lut_config->ramp_toggle << QPNP_RAMP_TOGGLE_SHIFT) &
QPNP_RAMP_TOGGLE_MASK;
*val |= (lut_config->pattern_repeat << QPNP_PATTERN_REPEAT_SHIFT) &
QPNP_PATTERN_REPEAT_MASK;
*val |= (lut_config->ramp_direction << QPNP_RAMP_DIRECTION_SHIFT) &
QPNP_RAMP_DIRECTION_MASK;
}
static inline void qpnp_set_pwm_type_config(u8 *val, bool glitch,
bool full_scale, bool en_phase, bool phase)
{
*val = phase;
*val |= (en_phase << QPNP_EN_PHASE_STAGGER_SHIFT) &
QPNP_EN_PHASE_STAGGER_MASK;
*val |= (full_scale << QPNP_EN_FULL_SCALE_SHIFT) &
QPNP_EN_FULL_SCALE_MASK;
*val |= (glitch << QPNP_EN_GLITCH_REMOVAL_SHIFT) &
QPNP_EN_GLITCH_REMOVAL_MASK;
}
static inline void qpnp_set_control(u8 *val, bool pwm_hi, bool pwm_lo,
bool pwm_out, bool pwm_src, bool ramp_gen)
{
*val = (ramp_gen << QPNP_PWM_EN_RAMP_GEN_SHIFT) &
QPNP_PWM_EN_RAMP_GEN_MASK;
*val |= (pwm_src << QPNP_PWM_SRC_SELECT_SHIFT) &
QPNP_PWM_SRC_SELECT_MASK;
*val |= (pwm_out << QPNP_EN_PWM_OUTPUT_SHIFT) &
QPNP_EN_PWM_OUTPUT_MASK;
*val |= (pwm_lo << QPNP_EN_PWM_LO_SHIFT) & QPNP_EN_PWM_LO_MASK;
*val |= (pwm_hi << QPNP_EN_PWM_HIGH_SHIFT) & QPNP_EN_PWM_HIGH_MASK;
}
#define QPNP_ENABLE_LUT_CONTROL(p_val) qpnp_set_control(p_val, 1, 1, 1, 0, 1)
#define QPNP_ENABLE_PWM_CONTROL(p_val) qpnp_set_control(p_val, 1, 1, 0, 1, 0)
static inline void qpnp_convert_to_lut_flags(int *flags,
struct qpnp_lut_config *l_config)
{
*flags = ((l_config->ramp_direction ? PM_PWM_LUT_RAMP_UP : 0) |
(l_config->pattern_repeat ? PM_PWM_LUT_LOOP : 0)|
(l_config->ramp_toggle ? PM_PWM_LUT_REVERSE : 0) |
(l_config->enable_pause_hi ? PM_PWM_LUT_PAUSE_HI_EN : 0) |
(l_config->enable_pause_lo ? PM_PWM_LUT_PAUSE_LO_EN : 0));
}
static inline void qpnp_set_lut_params(struct lut_params *l_params,
struct qpnp_lut_config *l_config)
{
l_params->start_idx = l_config->def_config.start_idx;
l_params->idx_len = l_config->def_config.size;
l_params->lut_pause_hi = l_config->lut_pause_hi_cnt;
l_params->lut_pause_lo = l_config->lut_pause_lo_cnt;
l_params->ramp_step_ms = l_config->ramp_step_ms;
qpnp_convert_to_lut_flags(&l_params->flags, l_config);
}
static void qpnp_lpg_save(u8 *u8p, u8 mask, u8 val)
{
*u8p &= ~mask;
*u8p |= val & mask;
}
static int qpnp_lpg_save_and_write(u8 value, u8 mask, u8 *reg, u16 base_addr,
u16 offset, u16 size, struct qpnp_lpg_chip *chip)
{
qpnp_lpg_save(reg, mask, value);
return spmi_ext_register_writel(chip->spmi_dev->ctrl,
chip->spmi_dev->sid, SPMI_LPG_REG_ADDR(base_addr, offset), reg, size);
}
/*
* PWM Frequency = Clock Frequency / (N * T)
* or
* PWM Period = Clock Period * (N * T)
* where
* N = 2^9 or 2^6 for 9-bit or 6-bit PWM size
* T = Pre-divide * 2^m, where m = 0..7 (exponent)
*
* This is the formula to figure out m for the best pre-divide and clock:
* (PWM Period / N) = (Pre-divide * Clock Period) * 2^m
*/
static void qpnp_lpg_calc_period(unsigned int period_us,
struct pwm_period_config *period)
{
int n, m, clk, div;
int best_m, best_div, best_clk;
unsigned int last_err, cur_err, min_err;
unsigned int tmp_p, period_n;
/* PWM Period / N */
if (period_us < ((unsigned)(-1) / NSEC_PER_USEC)) {
period_n = (period_us * NSEC_PER_USEC) >> 6;
n = 6;
} else {
period_n = (period_us >> 9) * NSEC_PER_USEC;
n = 9;
}
min_err = last_err = (unsigned)(-1);
best_m = 0;
best_clk = 0;
best_div = 0;
for (clk = 0; clk < NUM_CLOCKS; clk++) {
for (div = 0; div < NUM_LPG_PRE_DIVIDE; div++) {
/* period_n = (PWM Period / N) */
/* tmp_p = (Pre-divide * Clock Period) * 2^m */
tmp_p = pt_t[div][clk];
for (m = 0; m <= QPNP_PWM_M_MAX; m++) {
if (period_n > tmp_p)
cur_err = period_n - tmp_p;
else
cur_err = tmp_p - period_n;
if (cur_err < min_err) {
min_err = cur_err;
best_m = m;
best_clk = clk;
best_div = div;
}
if (m && cur_err > last_err)
/* Break for bigger cur_err */
break;
last_err = cur_err;
tmp_p <<= 1;
}
}
}
/* Use higher resolution */
if (best_m >= 3 && n == 6) {
n += 3;
best_m -= 3;
}
period->pwm_size = n;
period->clk = best_clk;
period->pre_div = best_div;
period->pre_div_exp = best_m;
}
static void qpnp_lpg_calc_pwm_value(struct pwm_device *pwm,
unsigned int period_us,
unsigned int duty_us)
{
unsigned int max_pwm_value, tmp;
struct qpnp_pwm_config *pwm_config = &pwm->pwm_config;
/* Figure out pwm_value with overflow handling */
tmp = 1 << (sizeof(tmp) * 8 - pwm_config->period.pwm_size);
if (duty_us < tmp) {
tmp = duty_us << pwm_config->period.pwm_size;
pwm_config->pwm_value = tmp / period_us;
} else {
tmp = period_us >> pwm_config->period.pwm_size;
pwm_config->pwm_value = duty_us / tmp;
}
max_pwm_value = (1 << pwm_config->period.pwm_size) - 1;
if (pwm_config->pwm_value > max_pwm_value)
pwm_config->pwm_value = max_pwm_value;
}
static int qpnp_lpg_change_table(struct pwm_device *pwm,
int duty_pct[], int raw_value)
{
unsigned int pwm_value, max_pwm_value;
struct qpnp_lpg_chip *chip = pwm->chip;
struct qpnp_lut_config *lut = &chip->lpg_config.lut_config;
int i, pwm_size, rc = 0;
int burst_size = SPMI_MAX_BUF_LEN;
int list_len = lut->list_size << 1;
int offset = lut->lo_index << 2;
pwm_size = QPNP_GET_PWM_SIZE(
chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) &
QPNP_PWM_SIZE_9_BIT ? 9 : 6;
max_pwm_value = (1 << pwm_size) - 1;
if (unlikely(lut->list_size != (lut->hi_index - lut->lo_index + 1))) {
pr_err("LUT internal Data structure corruption detected\n");
pr_err("LUT list size: %d\n", lut->list_size);
pr_err("However, index size is: %d\n",
(lut->hi_index - lut->lo_index + 1));
return -EINVAL;
}
for (i = 0; i <= lut->list_size; i++) {
if (raw_value)
pwm_value = duty_pct[i];
else
pwm_value = (duty_pct[i] << pwm_size) / 100;
if (pwm_value > max_pwm_value)
pwm_value = max_pwm_value;
lut->duty_pct_list[i*2] = pwm_value;
lut->duty_pct_list[(i*2)+1] = (pwm_value >>
QPNP_PWM_VALUE_MSB_SHIFT) & QPNP_PWM_VALUE_MSB_MASK;
}
/* Write with max allowable burst mode, each entry is of two bytes */
for (i = 0; i < list_len;) {
if (i + burst_size >= list_len)
burst_size = list_len - i;
rc = spmi_ext_register_writel(chip->spmi_dev->ctrl,
chip->spmi_dev->sid,
chip->lpg_config.lut_base_addr + offset + i,
lut->duty_pct_list + i, burst_size);
i += burst_size;
}
return rc;
}
static void qpnp_lpg_save_period(struct pwm_device *pwm)
{
u8 mask, val;
struct qpnp_lpg_chip *chip = pwm->chip;
struct qpnp_pwm_config *pwm_config = &pwm->pwm_config;
QPNP_SET_PWM_CLK(val, pwm_config->period.clk,
pwm_config->period.pwm_size);
mask = QPNP_PWM_SIZE_MASK | QPNP_PWM_FREQ_CLK_SELECT_MASK;
qpnp_lpg_save(&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK],
mask, val);
QPNP_SET_PWM_FREQ_PREDIV(val, pwm_config->period.pre_div,
pwm_config->period.pre_div_exp);
mask = QPNP_PWM_FREQ_PRE_DIVIDE_MASK | QPNP_PWM_FREQ_EXP_MASK;
qpnp_lpg_save(&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK],
mask, val);
}
static int qpnp_lpg_save_pwm_value(struct pwm_device *pwm)
{
unsigned int max_pwm_value;
int pwm_size;
u8 mask, value;
struct qpnp_lpg_chip *chip = pwm->chip;
struct qpnp_pwm_config *pwm_config = &pwm->pwm_config;
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
int rc;
pwm_size = QPNP_GET_PWM_SIZE(
chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) &
QPNP_PWM_SIZE_9_BIT ? 9 : 6;
max_pwm_value = (1 << pwm_size) - 1;
if (pwm_config->pwm_value > max_pwm_value)
pwm_config->pwm_value = max_pwm_value;
value = pwm_config->pwm_value;
mask = QPNP_PWM_VALUE_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PWM_VALUE_LSB],
lpg_config->base_addr, QPNP_PWM_VALUE_LSB, 1, chip);
if (rc)
return rc;
value = (pwm_config->pwm_value >> QPNP_PWM_VALUE_MSB_SHIFT) &
QPNP_PWM_VALUE_MSB_MASK;
mask = QPNP_PWM_VALUE_MSB_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PWM_VALUE_MSB],
lpg_config->base_addr, QPNP_PWM_VALUE_MSB, 1, chip);
}
static int qpnp_lpg_configure_pattern(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lut_config *lut_config = &lpg_config->lut_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
qpnp_set_pattern_config(&value, lut_config);
mask = QPNP_RAMP_DIRECTION_MASK | QPNP_PATTERN_REPEAT_MASK |
QPNP_RAMP_TOGGLE_MASK | QPNP_EN_PAUSE_HI_MASK |
QPNP_EN_PAUSE_LO_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_LPG_PATTERN_CONFIG],
lpg_config->base_addr, QPNP_LPG_PATTERN_CONFIG, 1, chip);
}
static int qpnp_lpg_configure_pwm(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
int rc;
u8 value, mask;
rc = spmi_ext_register_writel(chip->spmi_dev->ctrl, chip->spmi_dev->sid,
SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PWM_SIZE_CLK),
&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK], 1);
if (rc)
return rc;
rc = spmi_ext_register_writel(chip->spmi_dev->ctrl, chip->spmi_dev->sid,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_FREQ_PREDIV_CLK),
&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK], 1);
if (rc)
return rc;
qpnp_set_pwm_type_config(&value, 1, 0, 0, 0);
mask = QPNP_EN_GLITCH_REMOVAL_MASK | QPNP_EN_FULL_SCALE_MASK |
QPNP_EN_PHASE_STAGGER_MASK | QPNP_PHASE_STAGGER_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_LPG_PWM_TYPE_CONFIG],
lpg_config->base_addr, QPNP_LPG_PWM_TYPE_CONFIG, 1, chip);
}
static int qpnp_pwm_configure_control(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
QPNP_ENABLE_PWM_CONTROL(&value);
mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK |
QPNP_EN_PWM_OUTPUT_MASK | QPNP_PWM_SRC_SELECT_MASK |
QPNP_PWM_EN_RAMP_GEN_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
lpg_config->base_addr, QPNP_ENABLE_CONTROL, 1, chip);
}
static int qpnp_lpg_configure_control(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
QPNP_ENABLE_LUT_CONTROL(&value);
mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK |
QPNP_EN_PWM_OUTPUT_MASK | QPNP_PWM_SRC_SELECT_MASK |
QPNP_PWM_EN_RAMP_GEN_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
lpg_config->base_addr, QPNP_ENABLE_CONTROL, 1, chip);
}
static int qpnp_lpg_configure_ramp_step_duration(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lut_config lut_config = lpg_config->lut_config;
struct qpnp_lpg_chip *chip = pwm->chip;
int rc, value;
u8 val, mask;
value = QPNP_GET_RAMP_STEP_DURATION(lut_config.ramp_step_ms);
val = value & QPNP_RAMP_STEP_DURATION_LSB_MASK;
mask = QPNP_RAMP_STEP_DURATION_LSB_MASK;
rc = qpnp_lpg_save_and_write(val, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_RAMP_STEP_DURATION_LSB],
lpg_config->base_addr, QPNP_RAMP_STEP_DURATION_LSB, 1, chip);
if (rc)
return rc;
val = (value >> QPNP_RAMP_STEP_DURATION_MSB_SHIFT) &
QPNP_RAMP_STEP_DURATION_MSB_MASK;
mask = QPNP_RAMP_STEP_DURATION_MSB_MASK;
return qpnp_lpg_save_and_write(val, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_RAMP_STEP_DURATION_MSB],
lpg_config->base_addr, QPNP_RAMP_STEP_DURATION_MSB, 1, chip);
}
static int qpnp_lpg_configure_pause(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lut_config lut_config = lpg_config->lut_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
int rc = 0;
if (lut_config.enable_pause_hi) {
value = lut_config.lut_pause_hi_cnt;
mask = QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_LSB],
lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_LSB, 1, chip);
if (rc)
return rc;
value = (lut_config.lut_pause_hi_cnt >>
QPNP_PAUSE_HI_MULTIPLIER_MSB_SHIFT) &
QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK;
mask = QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_MSB],
lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_MSB, 1, chip);
} else {
value = 0;
mask = QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_LSB],
lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_LSB, 1, chip);
if (rc)
return rc;
mask = QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_MSB],
lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_MSB, 1, chip);
if (rc)
return rc;
}
if (lut_config.enable_pause_lo) {
value = lut_config.lut_pause_lo_cnt;
mask = QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_LSB],
lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_LSB, 1, chip);
if (rc)
return rc;
value = (lut_config.lut_pause_lo_cnt >>
QPNP_PAUSE_LO_MULTIPLIER_MSB_SHIFT) &
QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK;
mask = QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_MSB],
lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_MSB, 1, chip);
} else {
value = 0;
mask = QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_LSB],
lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_LSB, 1, chip);
if (rc)
return rc;
mask = QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_MSB],
lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_MSB, 1, chip);
return rc;
}
return rc;
}
static int qpnp_lpg_configure_index(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lut_config lut_config = lpg_config->lut_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
int rc = 0;
value = lut_config.hi_index;
mask = QPNP_HI_INDEX_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_HI_INDEX],
lpg_config->base_addr, QPNP_HI_INDEX, 1, chip);
if (rc)
return rc;
value = lut_config.lo_index;
mask = QPNP_LO_INDEX_MASK;
rc = qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_LO_INDEX],
lpg_config->base_addr, QPNP_LO_INDEX, 1, chip);
return rc;
}
static int qpnp_lpg_change_lut(struct pwm_device *pwm)
{
int rc;
rc = qpnp_lpg_configure_pattern(pwm);
if (rc) {
pr_err("Failed to configure LUT pattern");
return rc;
}
rc = qpnp_lpg_configure_pwm(pwm);
if (rc) {
pr_err("Failed to configure LUT pattern");
return rc;
}
rc = qpnp_lpg_configure_control(pwm);
if (rc) {
pr_err("Failed to configure pause registers");
return rc;
}
rc = qpnp_lpg_configure_ramp_step_duration(pwm);
if (rc) {
pr_err("Failed to configure duty time");
return rc;
}
rc = qpnp_lpg_configure_pause(pwm);
if (rc) {
pr_err("Failed to configure pause registers");
return rc;
}
rc = qpnp_lpg_configure_index(pwm);
if (rc) {
pr_err("Failed to configure index registers");
return rc;
}
return rc;
}
static int qpnp_lpg_enable_lut(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
value = pwm->chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL];
QPNP_ENABLE_LUT(value);
mask = QPNP_RAMP_START_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL],
lpg_config->base_addr, QPNP_RAMP_CONTROL, 1, chip);
}
static int qpnp_lpg_disable_lut(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
value = pwm->chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL];
QPNP_DISABLE_LUT(value);
mask = QPNP_RAMP_START_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL],
lpg_config->base_addr, QPNP_RAMP_CONTROL, 1, chip);
}
static int qpnp_lpg_enable_pwm(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
value = pwm->chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL];
QPNP_ENABLE_PWM(value);
mask = QPNP_EN_PWM_OUTPUT_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
lpg_config->base_addr, QPNP_RAMP_CONTROL, 1, chip);
}
static int qpnp_lpg_disable_pwm(struct pwm_device *pwm)
{
struct qpnp_lpg_config *lpg_config = &pwm->chip->lpg_config;
struct qpnp_lpg_chip *chip = pwm->chip;
u8 value, mask;
value = pwm->chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL];
QPNP_DISABLE_PWM(value);
mask = QPNP_EN_PWM_OUTPUT_MASK;
return qpnp_lpg_save_and_write(value, mask,
&pwm->chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL],
lpg_config->base_addr, QPNP_RAMP_CONTROL, 1, chip);
}
static int _pwm_config(struct pwm_device *pwm, int duty_us, int period_us)
{
struct qpnp_pwm_config *pwm_config;
struct qpnp_lpg_chip *chip;
struct pwm_period_config *period;
int rc;
chip = pwm->chip;
pwm_config = &pwm->pwm_config;
period = &pwm_config->period;
if (pwm_config->pwm_period != period_us) {
qpnp_lpg_calc_period(period_us, period);
qpnp_lpg_save_period(pwm);
pwm_config->pwm_period = period_us;
}
pwm_config->pwm_duty = duty_us;
qpnp_lpg_calc_pwm_value(pwm, period_us, duty_us);
rc = qpnp_lpg_save_pwm_value(pwm);
if (rc) {
pr_err("Could not update PWM value for channel %d rc=%d\n",
pwm_config->channel_id, rc);
return rc;
}
rc = qpnp_lpg_configure_pwm(pwm);
if (rc) {
pr_err("Could not configure PWM clock for\n");
pr_err("channel %d rc=%d\n", pwm_config->channel_id, rc);
return rc;
}
rc = qpnp_pwm_configure_control(pwm);
if (rc) {
pr_err("Could not update PWM control for");
pr_err("channel %d rc=%d\n", pwm_config->channel_id, rc);
return rc;
}
pwm->chip->lpg_config.lpg_configured = 1;
pr_debug("duty/period=%u/%u usec: pwm_value=%d (of %d)\n",
(unsigned)duty_us, (unsigned)period_us,
pwm_config->pwm_value, 1 << period->pwm_size);
return 0;
}
static int _pwm_lut_config(struct pwm_device *pwm, int period_us,
int duty_pct[], struct lut_params lut_params)
{
struct qpnp_lpg_config *lpg_config;
struct qpnp_lut_config *lut_config;
struct qpnp_lut_default_config *def_lut_config =
&lut_config->def_config;
struct pwm_period_config *period;
struct qpnp_pwm_config *pwm_config;
int start_idx = lut_params.start_idx;
int len = lut_params.idx_len;
int flags = lut_params.flags;
int raw_lut, ramp_step_ms;
int rc = 0;
pwm_config = &pwm->pwm_config;
lpg_config = &pwm->chip->lpg_config;
lut_config = &lpg_config->lut_config;
def_lut_config = &lut_config->def_config;
if ((start_idx + len) > lpg_config->lut_size) {
pr_err("Exceed LUT limit\n");
return -EINVAL;
}
if ((unsigned)period_us > PM_PWM_PERIOD_MAX ||
(unsigned)period_us < PM_PWM_PERIOD_MIN) {
pr_err("Period out of range\n");
return -EINVAL;
}
if (!pwm_config->in_use) {
pr_err("channel_id: %d: stale handle?\n",
pwm_config->channel_id);
return -EINVAL;
}
period = &pwm_config->period;
if (pwm_config->pwm_period != period_us) {
qpnp_lpg_calc_period(period_us, period);
qpnp_lpg_save_period(pwm);
pwm_config->pwm_period = period_us;
}
if (flags & PM_PWM_LUT_NO_TABLE)
goto after_table_write;
raw_lut = 0;
if (flags & PM_PWM_LUT_USE_RAW_VALUE)
raw_lut = 1;
lut_config->list_size = len;
lut_config->lo_index = start_idx;
lut_config->hi_index = start_idx + len - 1;
/*
* LUT may not be specified in device tree by default.
* This is the first time user is configuring it.
*/
if (lpg_config->bypass_lut) {
def_lut_config->duty_pct_list = kzalloc(sizeof(u32) *
len, GFP_KERNEL);
if (!def_lut_config->duty_pct_list) {
pr_err("kzalloc failed on def_duty_pct_list\n");
return -ENOMEM;
}
lut_config->duty_pct_list = kzalloc(lpg_config->lut_size *
sizeof(u16), GFP_KERNEL);
if (!lut_config->duty_pct_list) {
pr_err("kzalloc failed on duty_pct_list\n");
kfree(def_lut_config->duty_pct_list);
return -ENOMEM;
}
def_lut_config->size = len;
def_lut_config->start_idx = start_idx;
memcpy(def_lut_config->duty_pct_list, duty_pct, len);
lpg_config->bypass_lut = 0;
}
rc = qpnp_lpg_change_table(pwm, duty_pct, raw_lut);
if (rc) {
pr_err("qpnp_lpg_change_table: rc=%d\n", rc);
return -EINVAL;
}
after_table_write:
ramp_step_ms = lut_params.ramp_step_ms;
if (ramp_step_ms > PM_PWM_LUT_RAMP_STEP_TIME_MAX)
ramp_step_ms = PM_PWM_LUT_RAMP_STEP_TIME_MAX;
QPNP_SET_PAUSE_CNT(lut_config->lut_pause_lo_cnt,
lut_params.lut_pause_lo, ramp_step_ms);
if (lut_config->lut_pause_lo_cnt > PM_PWM_LUT_PAUSE_MAX)
lut_config->lut_pause_lo_cnt = PM_PWM_LUT_PAUSE_MAX;
QPNP_SET_PAUSE_CNT(lut_config->lut_pause_hi_cnt,
lut_params.lut_pause_hi, ramp_step_ms);
if (lut_config->lut_pause_hi_cnt > PM_PWM_LUT_PAUSE_MAX)
lut_config->lut_pause_hi_cnt = PM_PWM_LUT_PAUSE_MAX;
lut_config->ramp_step_ms = ramp_step_ms;
lut_config->ramp_direction = !!(flags & PM_PWM_LUT_RAMP_UP);
lut_config->pattern_repeat = !!(flags & PM_PWM_LUT_LOOP);
lut_config->ramp_toggle = !!(flags & PM_PWM_LUT_REVERSE);
lut_config->enable_pause_hi = !!(flags & PM_PWM_LUT_PAUSE_HI_EN);
lut_config->enable_pause_lo = !!(flags & PM_PWM_LUT_PAUSE_LO_EN);
lpg_config->bypass_lut = 0;
rc = qpnp_lpg_change_lut(pwm);
if (!rc)
lpg_config->lpg_configured = 1;
return rc;
}
/* APIs */
/**
* pwm_request - request a PWM device
* @channel_id: PWM id or channel
* @lable: the label to identify the user
*/
struct pwm_device *pwm_request(int pwm_id, const char *lable)
{
struct qpnp_lpg_chip *chip;
struct pwm_device *pwm;
chip = radix_tree_lookup(&lpg_dev_tree, pwm_id);
if (!chip) {
pr_err("Could not find PWM Device for the\n");
pr_err("input pwm channel %d\n", pwm_id);
return ERR_PTR(-EINVAL);
}
mutex_lock(&chip->lpg_mutex);
pwm = &chip->pwm_dev;
if (pwm->pwm_config.in_use) {
pr_err("PWM device associated with the");
pr_err("input pwm id: %d is in use by %s",
pwm_id, pwm->pwm_config.lable);
pwm = ERR_PTR(-EBUSY);
} else {
pwm->pwm_config.in_use = 1;
pwm->pwm_config.lable = lable;
}
mutex_unlock(&chip->lpg_mutex);
return pwm;
}
EXPORT_SYMBOL_GPL(pwm_request);
/**
* pwm_free - free a PWM device
* @pwm: the PWM device
*/
void pwm_free(struct pwm_device *pwm)
{
struct qpnp_pwm_config *pwm_config;
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) {
pr_err("Invalid pwm handle or no pwm_chip\n");
return;
}
mutex_lock(&pwm->chip->lpg_mutex);
pwm_config = &pwm->pwm_config;
if (pwm_config->in_use) {
qpnp_lpg_disable_pwm(pwm);
qpnp_lpg_disable_lut(pwm);
pwm_config->in_use = 0;
pwm_config->lable = NULL;
pwm->chip->lpg_config.lpg_configured = 0;
}
mutex_unlock(&pwm->chip->lpg_mutex);
}
EXPORT_SYMBOL_GPL(pwm_free);
/**
* pwm_config - change a PWM device configuration
* @pwm: the PWM device
* @period_us: period in microseconds
* @duty_us: duty cycle in microseconds
*/
int pwm_config(struct pwm_device *pwm, int duty_us, int period_us)
{
int rc;
if (pwm == NULL || IS_ERR(pwm) ||
duty_us > period_us ||
(unsigned)period_us > PM_PWM_PERIOD_MAX ||
(unsigned)period_us < PM_PWM_PERIOD_MIN) {
pr_err("Invalid pwm handle or parameters\n");
return -EINVAL;
}
if (!pwm->pwm_config.in_use)
return -EINVAL;
mutex_lock(&pwm->chip->lpg_mutex);
rc = _pwm_config(pwm, duty_us, period_us);
mutex_unlock(&pwm->chip->lpg_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_config);
/**
* pwm_enable - start a PWM output toggling
* @pwm: the PWM device
*/
int pwm_enable(struct pwm_device *pwm)
{
struct qpnp_pwm_config *p_config;
struct qpnp_lpg_chip *chip;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) {
pr_err("Invalid pwm handle or no pwm_chip\n");
return -EINVAL;
}
mutex_lock(&pwm->chip->lpg_mutex);
chip = pwm->chip;
p_config = &pwm->pwm_config;
if (!p_config->in_use) {
pr_err("channel_id: %d: stale handle?\n", p_config->channel_id);
rc = -EINVAL;
goto out_unlock;
}
if (!pwm->chip->lpg_config.lpg_configured) {
pr_err("Request received to enable PWM for channel Id: %d\n",
p_config->channel_id);
pr_err("However, PWM isn't configured\n");
pr_err("falling back to defaultconfiguration\n");
rc = _pwm_config(pwm, p_config->pwm_duty,
p_config->pwm_period);
if (rc) {
pr_err("Could not apply default PWM config\n");
goto out_unlock;
}
}
rc = qpnp_lpg_enable_pwm(pwm);
out_unlock:
mutex_unlock(&pwm->chip->lpg_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_enable);
/**
* pwm_disable - stop a PWM output toggling
* @pwm: the PWM device
*/
void pwm_disable(struct pwm_device *pwm)
{
struct qpnp_pwm_config *pwm_config;
struct qpnp_lpg_chip *chip;
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) {
pr_err("Invalid pwm handle or no pwm_chip\n");
return;
}
mutex_lock(&pwm->chip->lpg_mutex);
chip = pwm->chip;
pwm_config = &pwm->pwm_config;
if (pwm_config->in_use) {
if (!pwm->chip->lpg_config.lpg_configured) {
pr_err("Request received to disable PWM for\n");
pr_err("channel Id: %d\n", pwm_config->channel_id);
pr_err("However PWM is not configured by any means\n");
goto out_unlock;
}
qpnp_lpg_disable_pwm(pwm);
}
out_unlock:
mutex_unlock(&pwm->chip->lpg_mutex);
}
EXPORT_SYMBOL_GPL(pwm_disable);
/**
* pwm_config_period - change PWM period
*
* @pwm: the PWM device
* @pwm_p: period in struct qpnp_lpg_period
*/
int pwm_config_period(struct pwm_device *pwm,
struct pwm_period_config *period)
{
struct qpnp_pwm_config *pwm_config;
struct qpnp_lpg_config *lpg_config;
struct qpnp_lpg_chip *chip;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm) || period == NULL)
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->lpg_mutex);
chip = pwm->chip;
pwm_config = &pwm->pwm_config;
lpg_config = &chip->lpg_config;
if (!pwm_config->in_use) {
rc = -EINVAL;
goto out_unlock;
}
pwm_config->period.pwm_size = period->pwm_size;
pwm_config->period.clk = period->clk;
pwm_config->period.pre_div = period->pre_div;
pwm_config->period.pre_div_exp = period->pre_div_exp;
qpnp_lpg_save_period(pwm);
rc = spmi_ext_register_writel(chip->spmi_dev->ctrl, chip->spmi_dev->sid,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_SIZE_CLK),
&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK], 1);
if (rc) {
pr_err("Write failed: QPNP_LPG_PWM_SIZE_CLK register, rc: %d\n",
rc);
goto out_unlock;
}
rc = spmi_ext_register_writel(chip->spmi_dev->ctrl, chip->spmi_dev->sid,
SPMI_LPG_REG_ADDR(lpg_config->base_addr,
QPNP_LPG_PWM_FREQ_PREDIV_CLK),
&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK], 1);
if (rc) {
pr_err("Failed to write to QPNP_LPG_PWM_FREQ_PREDIV_CLK\n");
pr_err("register, rc = %d\n", rc);
}
out_unlock:
mutex_unlock(&pwm->chip->lpg_mutex);
return rc;
}
EXPORT_SYMBOL(pwm_config_period);
/**
* pwm_config_pwm_value - change a PWM device configuration
* @pwm: the PWM device
* @pwm_value: the duty cycle in raw PWM value (< 2^pwm_size)
*/
int pwm_config_pwm_value(struct pwm_device *pwm, int pwm_value)
{
struct qpnp_lpg_config *lpg_config;
struct qpnp_pwm_config *pwm_config;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
lpg_config = &pwm->chip->lpg_config;
pwm_config = &pwm->pwm_config;
mutex_lock(&pwm->chip->lpg_mutex);
if (!pwm_config->in_use || !pwm_config->pwm_period) {
rc = -EINVAL;
goto out_unlock;
}
if (pwm_config->pwm_value == pwm_value)
goto out_unlock;
pwm_config->pwm_value = pwm_value;
rc = qpnp_lpg_save_pwm_value(pwm);
if (rc)
pr_err("Could not update PWM value for channel %d rc=%d\n",
pwm_config->channel_id, rc);
out_unlock:
mutex_unlock(&pwm->chip->lpg_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_config_pwm_value);
/**
* pwm_lut_config - change LPG LUT device configuration
* @pwm: the PWM device
* @period_us: period in micro second
* @duty_pct: array of duty cycles in percent, like 20, 50.
* @lut_params: Lookup table parameters
*/
int pwm_lut_config(struct pwm_device *pwm, int period_us,
int duty_pct[], struct lut_params lut_params)
{
int rc = 0;
if (pwm == NULL || IS_ERR(pwm) || !lut_params.idx_len) {
pr_err("Invalid pwm handle or idx_len=0\n");
return -EINVAL;
}
if (pwm->chip == NULL)
return -ENODEV;
if (duty_pct == NULL && !(lut_params.flags & PM_PWM_LUT_NO_TABLE)) {
pr_err("Invalid duty_pct with flag\n");
return -EINVAL;
}
mutex_lock(&pwm->chip->lpg_mutex);
rc = _pwm_lut_config(pwm, period_us, duty_pct, lut_params);
mutex_unlock(&pwm->chip->lpg_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_lut_config);
/**
* pwm_lut_enable - control a PWM device to start/stop LUT ramp
* @pwm: the PWM device
* @start: to start (1), or stop (0)
*/
int pwm_lut_enable(struct pwm_device *pwm, int start)
{
struct qpnp_lpg_config *lpg_config;
struct qpnp_pwm_config *p_config;
struct lut_params lut_params;
int rc = 0;
if (pwm == NULL || IS_ERR(pwm)) {
pr_err("Invalid pwm handle\n");
return -EINVAL;
}
if (pwm->chip == NULL)
return -ENODEV;
lpg_config = &pwm->chip->lpg_config;
p_config = &pwm->pwm_config;
mutex_lock(&pwm->chip->lpg_mutex);
if (start) {
if (!lpg_config->lpg_configured) {
pr_err("Request received to enable LUT for\n");
pr_err("LPG channel %d\n", pwm->pwm_config.channel_id);
pr_err("But LPG is not configured, falling back to\n");
pr_err(" default LUT configuration if available\n");
if (lpg_config->bypass_lut) {
pr_err("No default LUT configuration found\n");
pr_err("Use pwm_lut_config() to configure\n");
rc = -EINVAL;
goto out;
}
qpnp_set_lut_params(&lut_params,
&lpg_config->lut_config);
rc = _pwm_lut_config(pwm, p_config->pwm_period,
(int *)lpg_config->lut_config.def_config.duty_pct_list,
lut_params);
if (rc) {
pr_err("Could not set the default LUT conf\n");
goto out;
}
}
rc = qpnp_lpg_enable_lut(pwm);
} else {
if (unlikely(!lpg_config->lpg_configured)) {
pr_err("LPG isn't configured\n");
rc = -EINVAL;
goto out;
}
rc = qpnp_lpg_disable_lut(pwm);
}
out:
mutex_unlock(&pwm->chip->lpg_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pwm_lut_enable);
/* Fill in lpg device elements based on values found in device tree. */
static int qpnp_lpg_get_dt_config(struct spmi_device *spmi,
struct qpnp_lpg_chip *chip)
{
int rc;
struct resource *res;
struct device_node *of_node = spmi->dev.of_node;
struct qpnp_lpg_config *lpg_config = &chip->lpg_config;
struct pwm_device *pwm_dev = &chip->pwm_dev;
struct qpnp_lut_config *lut_config = &chip->lpg_config.lut_config;
struct qpnp_lut_default_config *def_lut_config =
&lut_config->def_config;
res = spmi_get_resource(spmi, 0, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&spmi->dev, "%s: node is missing base address\n",
__func__);
return -EINVAL;
}
lpg_config->base_addr = res->start;
res = spmi_get_resource(spmi, 0, IORESOURCE_MEM, 1);
if (!res) {
dev_err(&spmi->dev, "%s: node is missing LUT base address\n",
__func__);
return -EINVAL;
}
lpg_config->lut_base_addr = res->start;
/* Each entry of LUT is of 2 bytes */
lpg_config->lut_size = resource_size(res) >> 1;
rc = of_property_read_u32(of_node, "qcom,channel-id",
&pwm_dev->pwm_config.channel_id);
if (rc) {
dev_err(&spmi->dev, "%s: node is missing LPG channel id",
__func__);
return rc;
}
rc = of_property_read_u32(of_node, "qcom,period",
&pwm_dev->pwm_config.pwm_period);
if (rc) {
dev_err(&spmi->dev, "%s: node is missing PWM Period value",
__func__);
return rc;
}
if (!of_get_property(of_node, "qcom,duty-percents",
&def_lut_config->size)) {
lpg_config->bypass_lut = 1;
}
if (lpg_config->bypass_lut)
goto read_opt_props;
rc = of_property_read_u32(of_node, "qcom,start-index",
&def_lut_config->start_idx);
if (rc) {
dev_err(&spmi->dev, "Missing start index");
return rc;
}
def_lut_config->size /= sizeof(u32);
def_lut_config->duty_pct_list = kzalloc(sizeof(u32) *
def_lut_config->size, GFP_KERNEL);
if (!def_lut_config->duty_pct_list) {
dev_err(&spmi->dev, "%s: kzalloc failed on duty_pct_list\n",
__func__);
return -ENOMEM;
}
rc = of_property_read_u32_array(of_node, "qcom,duty-percents",
def_lut_config->duty_pct_list, def_lut_config->size);
if (rc) {
dev_err(&spmi->dev, "invalid or missing property:\n");
dev_err(&spmi->dev, "qcom,duty-pcts-list\n");
kfree(def_lut_config->duty_pct_list);
return rc;
}
lut_config->duty_pct_list = kzalloc(lpg_config->lut_size * sizeof(u16),
GFP_KERNEL);
if (!lut_config->duty_pct_list) {
dev_err(&spmi->dev, "can not allocate duty pct list\n");
kfree(def_lut_config->duty_pct_list);
return -ENOMEM;
}
read_opt_props:
/* Initialize optional config parameters from DT if provided */
of_property_read_u32(of_node, "qcom,duty",
&pwm_dev->pwm_config.pwm_duty);
of_property_read_u32(of_node, "qcom,ramp-step-duration",
&lut_config->ramp_step_ms);
of_property_read_u32(of_node, "qcom,lpg-lut-pause-hi",
&lut_config->lut_pause_hi_cnt);
of_property_read_u32(of_node, "qcom,lpg-lut-pause-lo",
&lut_config->lut_pause_lo_cnt);
of_property_read_u32(of_node, "qcom,lpg-lut-ramp-direction",
(u32 *)&lut_config->ramp_direction);
of_property_read_u32(of_node, "qcom,lpg-lut-pattern-repeat",
(u32 *)&lut_config->pattern_repeat);
of_property_read_u32(of_node, "qcom,lpg-lut-ramp-toggle",
(u32 *)&lut_config->ramp_toggle);
of_property_read_u32(of_node, "qcom,lpg-lut-enable-pause-hi",
(u32 *)&lut_config->enable_pause_hi);
of_property_read_u32(of_node, "qcom,lpg-lut-enable-pause-lo",
(u32 *)&lut_config->enable_pause_lo);
return 0;
}
static int __devinit qpnp_pwm_probe(struct spmi_device *spmi)
{
struct qpnp_lpg_chip *chip;
int rc, id;
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (chip == NULL) {
pr_err("kzalloc() failed.\n");
return -ENOMEM;
}
mutex_init(&chip->lpg_mutex);
chip->spmi_dev = spmi;
chip->pwm_dev.chip = chip;
dev_set_drvdata(&spmi->dev, chip);
rc = qpnp_lpg_get_dt_config(spmi, chip);
if (rc)
goto failed_config;
id = chip->pwm_dev.pwm_config.channel_id;
rc = radix_tree_insert(&lpg_dev_tree, id, chip);
if (rc) {
dev_err(&spmi->dev, "%s: Failed to register LPG Channel %d\n",
__func__, id);
goto failed_insert;
}
return 0;
failed_insert:
kfree(chip->lpg_config.lut_config.duty_pct_list);
failed_config:
dev_set_drvdata(&spmi->dev, NULL);
mutex_destroy(&chip->lpg_mutex);
kfree(chip);
return rc;
}
static int __devexit qpnp_pwm_remove(struct spmi_device *spmi)
{
struct qpnp_lpg_chip *chip;
struct qpnp_lpg_config *lpg_config;
chip = dev_get_drvdata(&spmi->dev);
dev_set_drvdata(&spmi->dev, NULL);
if (chip) {
lpg_config = &chip->lpg_config;
kfree(lpg_config->lut_config.duty_pct_list);
kfree(lpg_config->lut_config.def_config.duty_pct_list);
mutex_destroy(&chip->lpg_mutex);
kfree(chip);
}
return 0;
}
static struct of_device_id spmi_match_table[] = {
{ .compatible = QPNP_LPG_DRIVER_NAME, },
{}
};
static const struct spmi_device_id qpnp_lpg_id[] = {
{ QPNP_LPG_DRIVER_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(spmi, qpnp_lpg_id);
static struct spmi_driver qpnp_lpg_driver = {
.driver = {
.name = QPNP_LPG_DRIVER_NAME,
.of_match_table = spmi_match_table,
.owner = THIS_MODULE,
},
.probe = qpnp_pwm_probe,
.remove = __devexit_p(qpnp_pwm_remove),
.id_table = qpnp_lpg_id,
};
/**
* qpnp_lpg_init() - register spmi driver for qpnp-lpg
*/
int __init qpnp_lpg_init(void)
{
return spmi_driver_register(&qpnp_lpg_driver);
}
static void __exit qpnp_lpg_exit(void)
{
spmi_driver_unregister(&qpnp_lpg_driver);
}
MODULE_DESCRIPTION("QPNP PMIC LPG driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" QPNP_LPG_DRIVER_NAME);
subsys_initcall(qpnp_lpg_init);
module_exit(qpnp_lpg_exit);