| /* |
| * drivers/gpu/ion/ion_cp_heap.c |
| * |
| * Copyright (C) 2011 Google, Inc. |
| * Copyright (c) 2011-2013, The Linux Foundation. All rights reserved. |
| * |
| * This software is licensed under the terms of the GNU General Public |
| * License version 2, as published by the Free Software Foundation, and |
| * may be copied, distributed, and modified under those terms. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/genalloc.h> |
| #include <linux/io.h> |
| #include <linux/msm_ion.h> |
| #include <linux/mm.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/memory_alloc.h> |
| #include <linux/seq_file.h> |
| #include <linux/fmem.h> |
| #include <linux/iommu.h> |
| #include <linux/dma-mapping.h> |
| #include <trace/events/kmem.h> |
| |
| #include <asm/mach/map.h> |
| |
| #include <mach/msm_memtypes.h> |
| #include <mach/scm.h> |
| #include <mach/iommu_domains.h> |
| |
| #include "ion_priv.h" |
| |
| #include <asm/mach/map.h> |
| #include <asm/cacheflush.h> |
| |
| #include "msm/ion_cp_common.h" |
| /** |
| * struct ion_cp_heap - container for the heap and shared heap data |
| |
| * @heap: the heap information structure |
| * @pool: memory pool to allocate from. |
| * @base: the base address of the memory pool. |
| * @permission_type: Identifier for the memory used by SCM for protecting |
| * and unprotecting memory. |
| * @secure_base: Base address used when securing a heap that is shared. |
| * @secure_size: Size used when securing a heap that is shared. |
| * @lock: mutex to protect shared access. |
| * @heap_protected: Indicates whether heap has been protected or not. |
| * @allocated_bytes: the total number of allocated bytes from the pool. |
| * @total_size: the total size of the memory pool. |
| * @request_region: function pointer to call when first mapping of memory |
| * occurs. |
| * @release_region: function pointer to call when last mapping of memory |
| * unmapped. |
| * @bus_id: token used with request/release region. |
| * @kmap_cached_count: the total number of times this heap has been mapped in |
| * kernel space (cached). |
| * @kmap_uncached_count:the total number of times this heap has been mapped in |
| * kernel space (un-cached). |
| * @umap_count: the total number of times this heap has been mapped in |
| * user space. |
| * @iommu_iova: saved iova when mapping full heap at once. |
| * @iommu_partition: partition used to map full heap. |
| * @reusable: indicates if the memory should be reused via fmem. |
| * @reserved_vrange: reserved virtual address range for use with fmem |
| * @iommu_map_all: Indicates whether we should map whole heap into IOMMU. |
| * @iommu_2x_map_domain: Indicates the domain to use for overmapping. |
| * @has_outer_cache: set to 1 if outer cache is used, 0 otherwise. |
| */ |
| struct ion_cp_heap { |
| struct ion_heap heap; |
| struct gen_pool *pool; |
| ion_phys_addr_t base; |
| unsigned int permission_type; |
| ion_phys_addr_t secure_base; |
| size_t secure_size; |
| struct mutex lock; |
| unsigned int heap_protected; |
| unsigned long allocated_bytes; |
| unsigned long total_size; |
| int (*heap_request_region)(void *); |
| int (*heap_release_region)(void *); |
| void *bus_id; |
| unsigned long kmap_cached_count; |
| unsigned long kmap_uncached_count; |
| unsigned long umap_count; |
| unsigned long iommu_iova[MAX_DOMAINS]; |
| unsigned long iommu_partition[MAX_DOMAINS]; |
| int reusable; |
| void *reserved_vrange; |
| int iommu_map_all; |
| int iommu_2x_map_domain; |
| unsigned int has_outer_cache; |
| atomic_t protect_cnt; |
| void *cpu_addr; |
| size_t heap_size; |
| dma_addr_t handle; |
| int cma; |
| int allow_non_secure_allocation; |
| }; |
| |
| enum { |
| HEAP_NOT_PROTECTED = 0, |
| HEAP_PROTECTED = 1, |
| }; |
| |
| #define DMA_ALLOC_TRIES 5 |
| |
| static int allocate_heap_memory(struct ion_heap *heap) |
| { |
| struct device *dev = heap->priv; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| int ret; |
| int tries = 0; |
| DEFINE_DMA_ATTRS(attrs); |
| dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &attrs); |
| |
| |
| if (cp_heap->cpu_addr) |
| return 0; |
| |
| while (!cp_heap->cpu_addr && (++tries < DMA_ALLOC_TRIES)) { |
| cp_heap->cpu_addr = dma_alloc_attrs(dev, |
| cp_heap->heap_size, |
| &(cp_heap->handle), |
| 0, |
| &attrs); |
| if (!cp_heap->cpu_addr) { |
| trace_ion_cp_alloc_retry(tries); |
| msleep(20); |
| } |
| } |
| |
| if (!cp_heap->cpu_addr) |
| goto out; |
| |
| cp_heap->base = cp_heap->handle; |
| |
| cp_heap->pool = gen_pool_create(12, -1); |
| if (!cp_heap->pool) |
| goto out_free; |
| |
| ret = gen_pool_add(cp_heap->pool, cp_heap->base, |
| cp_heap->heap_size, -1); |
| if (ret < 0) |
| goto out_pool; |
| |
| return 0; |
| |
| out_pool: |
| gen_pool_destroy(cp_heap->pool); |
| out_free: |
| dma_free_coherent(dev, cp_heap->heap_size, cp_heap->cpu_addr, |
| cp_heap->handle); |
| out: |
| return ION_CP_ALLOCATE_FAIL; |
| } |
| |
| static void free_heap_memory(struct ion_heap *heap) |
| { |
| struct device *dev = heap->priv; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| /* release memory */ |
| dma_free_coherent(dev, cp_heap->heap_size, cp_heap->cpu_addr, |
| cp_heap->handle); |
| gen_pool_destroy(cp_heap->pool); |
| cp_heap->pool = NULL; |
| cp_heap->cpu_addr = 0; |
| } |
| |
| |
| |
| /** |
| * Get the total number of kernel mappings. |
| * Must be called with heap->lock locked. |
| */ |
| static unsigned long ion_cp_get_total_kmap_count( |
| const struct ion_cp_heap *cp_heap) |
| { |
| return cp_heap->kmap_cached_count + cp_heap->kmap_uncached_count; |
| } |
| |
| static int ion_on_first_alloc(struct ion_heap *heap) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| int ret_value; |
| |
| if (cp_heap->reusable) { |
| ret_value = fmem_set_state(FMEM_C_STATE); |
| if (ret_value) |
| return 1; |
| } |
| |
| if (cp_heap->cma) { |
| ret_value = allocate_heap_memory(heap); |
| if (ret_value) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void ion_on_last_free(struct ion_heap *heap) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| if (cp_heap->reusable) |
| if (fmem_set_state(FMEM_T_STATE) != 0) |
| pr_err("%s: unable to transition heap to T-state\n", |
| __func__); |
| |
| if (cp_heap->cma) |
| free_heap_memory(heap); |
| } |
| |
| /** |
| * Protects memory if heap is unsecured heap. Also ensures that we are in |
| * the correct FMEM state if this heap is a reusable heap. |
| * Must be called with heap->lock locked. |
| */ |
| static int ion_cp_protect(struct ion_heap *heap, int version, void *data) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| int ret_value = 0; |
| |
| if (atomic_inc_return(&cp_heap->protect_cnt) == 1) { |
| /* Make sure we are in C state when the heap is protected. */ |
| if (!cp_heap->allocated_bytes) |
| if (ion_on_first_alloc(heap)) |
| goto out; |
| |
| ret_value = ion_cp_protect_mem(cp_heap->secure_base, |
| cp_heap->secure_size, cp_heap->permission_type, |
| version, data); |
| if (ret_value) { |
| pr_err("Failed to protect memory for heap %s - " |
| "error code: %d\n", heap->name, ret_value); |
| |
| if (!cp_heap->allocated_bytes) |
| ion_on_last_free(heap); |
| |
| atomic_dec(&cp_heap->protect_cnt); |
| } else { |
| cp_heap->heap_protected = HEAP_PROTECTED; |
| pr_debug("Protected heap %s @ 0x%pa\n", |
| heap->name, &cp_heap->base); |
| } |
| } |
| out: |
| pr_debug("%s: protect count is %d\n", __func__, |
| atomic_read(&cp_heap->protect_cnt)); |
| BUG_ON(atomic_read(&cp_heap->protect_cnt) < 0); |
| return ret_value; |
| } |
| |
| /** |
| * Unprotects memory if heap is secure heap. Also ensures that we are in |
| * the correct FMEM state if this heap is a reusable heap. |
| * Must be called with heap->lock locked. |
| */ |
| static void ion_cp_unprotect(struct ion_heap *heap, int version, void *data) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| if (atomic_dec_and_test(&cp_heap->protect_cnt)) { |
| int error_code = ion_cp_unprotect_mem( |
| cp_heap->secure_base, cp_heap->secure_size, |
| cp_heap->permission_type, version, data); |
| if (error_code) { |
| pr_err("Failed to un-protect memory for heap %s - " |
| "error code: %d\n", heap->name, error_code); |
| } else { |
| cp_heap->heap_protected = HEAP_NOT_PROTECTED; |
| pr_debug("Un-protected heap %s @ 0x%x\n", heap->name, |
| (unsigned int) cp_heap->base); |
| |
| if (!cp_heap->allocated_bytes) |
| ion_on_last_free(heap); |
| } |
| } |
| pr_debug("%s: protect count is %d\n", __func__, |
| atomic_read(&cp_heap->protect_cnt)); |
| BUG_ON(atomic_read(&cp_heap->protect_cnt) < 0); |
| } |
| |
| ion_phys_addr_t ion_cp_allocate(struct ion_heap *heap, |
| unsigned long size, |
| unsigned long align, |
| unsigned long flags) |
| { |
| unsigned long offset; |
| unsigned long secure_allocation = flags & ION_SECURE; |
| unsigned long force_contig = flags & ION_FORCE_CONTIGUOUS; |
| |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| mutex_lock(&cp_heap->lock); |
| if (!secure_allocation && cp_heap->heap_protected == HEAP_PROTECTED) { |
| mutex_unlock(&cp_heap->lock); |
| pr_err("ION cannot allocate un-secure memory from protected" |
| " heap %s\n", heap->name); |
| return ION_CP_ALLOCATE_FAIL; |
| } |
| |
| if (!force_contig && !secure_allocation && |
| !cp_heap->allow_non_secure_allocation) { |
| mutex_unlock(&cp_heap->lock); |
| pr_debug("%s: non-secure allocation disallowed from this heap\n", |
| __func__); |
| return ION_CP_ALLOCATE_FAIL; |
| } |
| |
| /* |
| * The check above already checked for non-secure allocations when the |
| * heap is protected. HEAP_PROTECTED implies that this must be a secure |
| * allocation. If the heap is protected and there are userspace or |
| * cached kernel mappings, something has gone wrong in the security |
| * model. |
| */ |
| if (cp_heap->heap_protected == HEAP_PROTECTED) { |
| BUG_ON(cp_heap->umap_count != 0); |
| BUG_ON(cp_heap->kmap_cached_count != 0); |
| } |
| |
| /* |
| * if this is the first reusable allocation, transition |
| * the heap |
| */ |
| if (!cp_heap->allocated_bytes) |
| if (ion_on_first_alloc(heap)) { |
| mutex_unlock(&cp_heap->lock); |
| return ION_RESERVED_ALLOCATE_FAIL; |
| } |
| |
| cp_heap->allocated_bytes += size; |
| mutex_unlock(&cp_heap->lock); |
| |
| offset = gen_pool_alloc_aligned(cp_heap->pool, |
| size, ilog2(align)); |
| |
| if (!offset) { |
| mutex_lock(&cp_heap->lock); |
| cp_heap->allocated_bytes -= size; |
| if ((cp_heap->total_size - |
| cp_heap->allocated_bytes) >= size) |
| pr_debug("%s: heap %s has enough memory (%lx) but" |
| " the allocation of size %lx still failed." |
| " Memory is probably fragmented.\n", |
| __func__, heap->name, |
| cp_heap->total_size - |
| cp_heap->allocated_bytes, size); |
| if (!cp_heap->allocated_bytes && |
| cp_heap->heap_protected == HEAP_NOT_PROTECTED) |
| ion_on_last_free(heap); |
| mutex_unlock(&cp_heap->lock); |
| |
| return ION_CP_ALLOCATE_FAIL; |
| } |
| |
| return offset; |
| } |
| |
| static void iommu_unmap_all(unsigned long domain_num, |
| struct ion_cp_heap *cp_heap) |
| { |
| unsigned long left_to_unmap = cp_heap->total_size; |
| unsigned long page_size = SZ_64K; |
| |
| struct iommu_domain *domain = msm_get_iommu_domain(domain_num); |
| if (domain) { |
| unsigned long temp_iova = cp_heap->iommu_iova[domain_num]; |
| |
| while (left_to_unmap) { |
| iommu_unmap(domain, temp_iova, page_size); |
| temp_iova += page_size; |
| left_to_unmap -= page_size; |
| } |
| if (domain_num == cp_heap->iommu_2x_map_domain) |
| msm_iommu_unmap_extra(domain, temp_iova, |
| cp_heap->total_size, SZ_64K); |
| } else { |
| pr_err("Unable to get IOMMU domain %lu\n", domain_num); |
| } |
| } |
| |
| void ion_cp_free(struct ion_heap *heap, ion_phys_addr_t addr, |
| unsigned long size) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| if (addr == ION_CP_ALLOCATE_FAIL) |
| return; |
| gen_pool_free(cp_heap->pool, addr, size); |
| |
| mutex_lock(&cp_heap->lock); |
| cp_heap->allocated_bytes -= size; |
| |
| if (!cp_heap->allocated_bytes && |
| cp_heap->heap_protected == HEAP_NOT_PROTECTED) |
| ion_on_last_free(heap); |
| |
| /* Unmap everything if we previously mapped the whole heap at once. */ |
| if (!cp_heap->allocated_bytes) { |
| unsigned int i; |
| for (i = 0; i < MAX_DOMAINS; ++i) { |
| if (cp_heap->iommu_iova[i]) { |
| unsigned long vaddr_len = cp_heap->total_size; |
| |
| if (i == cp_heap->iommu_2x_map_domain) |
| vaddr_len <<= 1; |
| iommu_unmap_all(i, cp_heap); |
| |
| msm_free_iova_address(cp_heap->iommu_iova[i], i, |
| cp_heap->iommu_partition[i], |
| vaddr_len); |
| } |
| cp_heap->iommu_iova[i] = 0; |
| cp_heap->iommu_partition[i] = 0; |
| } |
| } |
| mutex_unlock(&cp_heap->lock); |
| } |
| |
| static int ion_cp_heap_phys(struct ion_heap *heap, |
| struct ion_buffer *buffer, |
| ion_phys_addr_t *addr, size_t *len) |
| { |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| *addr = buf->buffer; |
| *len = buffer->size; |
| return 0; |
| } |
| |
| static int ion_cp_heap_allocate(struct ion_heap *heap, |
| struct ion_buffer *buffer, |
| unsigned long size, unsigned long align, |
| unsigned long flags) |
| { |
| struct ion_cp_buffer *buf; |
| phys_addr_t addr; |
| |
| buf = kzalloc(sizeof(*buf), GFP_KERNEL); |
| if (!buf) |
| return ION_CP_ALLOCATE_FAIL; |
| |
| addr = ion_cp_allocate(heap, size, align, flags); |
| if (addr == ION_CP_ALLOCATE_FAIL) |
| return -ENOMEM; |
| |
| buf->buffer = addr; |
| buf->want_delayed_unsecure = 0; |
| atomic_set(&buf->secure_cnt, 0); |
| mutex_init(&buf->lock); |
| buf->is_secure = flags & ION_SECURE ? 1 : 0; |
| buffer->priv_virt = buf; |
| |
| return 0; |
| } |
| |
| static void ion_cp_heap_free(struct ion_buffer *buffer) |
| { |
| struct ion_heap *heap = buffer->heap; |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| ion_cp_free(heap, buf->buffer, buffer->size); |
| WARN_ON(atomic_read(&buf->secure_cnt)); |
| WARN_ON(atomic_read(&buf->map_cnt)); |
| kfree(buf); |
| |
| buffer->priv_virt = NULL; |
| } |
| |
| struct sg_table *ion_cp_heap_create_sg_table(struct ion_buffer *buffer) |
| { |
| size_t chunk_size = buffer->size; |
| struct sg_table *table; |
| int ret, i, n_chunks; |
| struct scatterlist *sg; |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| if (ION_IS_CACHED(buffer->flags)) |
| chunk_size = PAGE_SIZE; |
| else if (buf->is_secure && IS_ALIGNED(buffer->size, SZ_1M)) |
| chunk_size = SZ_1M; |
| |
| table = kzalloc(sizeof(struct sg_table), GFP_KERNEL); |
| if (!table) |
| return ERR_PTR(-ENOMEM); |
| |
| n_chunks = DIV_ROUND_UP(buffer->size, chunk_size); |
| |
| ret = sg_alloc_table(table, n_chunks, GFP_KERNEL); |
| if (ret) |
| goto err0; |
| |
| for_each_sg(table->sgl, sg, table->nents, i) { |
| sg_dma_address(sg) = buf->buffer + i * chunk_size; |
| sg->length = chunk_size; |
| sg->offset = 0; |
| } |
| |
| return table; |
| err0: |
| kfree(table); |
| return ERR_PTR(ret); |
| } |
| |
| struct sg_table *ion_cp_heap_map_dma(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| return ion_cp_heap_create_sg_table(buffer); |
| } |
| |
| void ion_cp_heap_unmap_dma(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| if (buffer->sg_table) |
| sg_free_table(buffer->sg_table); |
| kfree(buffer->sg_table); |
| buffer->sg_table = 0; |
| } |
| |
| /** |
| * Call request region for SMI memory of this is the first mapping. |
| */ |
| static int ion_cp_request_region(struct ion_cp_heap *cp_heap) |
| { |
| int ret_value = 0; |
| if ((cp_heap->umap_count + ion_cp_get_total_kmap_count(cp_heap)) == 0) |
| if (cp_heap->heap_request_region) |
| ret_value = cp_heap->heap_request_region( |
| cp_heap->bus_id); |
| return ret_value; |
| } |
| |
| /** |
| * Call release region for SMI memory of this is the last un-mapping. |
| */ |
| static int ion_cp_release_region(struct ion_cp_heap *cp_heap) |
| { |
| int ret_value = 0; |
| if ((cp_heap->umap_count + ion_cp_get_total_kmap_count(cp_heap)) == 0) |
| if (cp_heap->heap_release_region) |
| ret_value = cp_heap->heap_release_region( |
| cp_heap->bus_id); |
| return ret_value; |
| } |
| |
| void *ion_map_fmem_buffer(struct ion_buffer *buffer, unsigned long phys_base, |
| void *virt_base, unsigned long flags) |
| { |
| int ret; |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| unsigned int offset = buf->buffer - phys_base; |
| unsigned long start = ((unsigned long)virt_base) + offset; |
| const struct mem_type *type = ION_IS_CACHED(flags) ? |
| get_mem_type(MT_DEVICE_CACHED) : |
| get_mem_type(MT_DEVICE); |
| |
| if (phys_base > buf->buffer) |
| return NULL; |
| |
| |
| ret = ioremap_pages(start, buf->buffer, buffer->size, type); |
| |
| if (!ret) |
| return (void *)start; |
| else |
| return NULL; |
| } |
| |
| void *ion_cp_heap_map_kernel(struct ion_heap *heap, struct ion_buffer *buffer) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| void *ret_value = NULL; |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| mutex_lock(&cp_heap->lock); |
| if ((cp_heap->heap_protected == HEAP_NOT_PROTECTED) || |
| ((cp_heap->heap_protected == HEAP_PROTECTED) && |
| !ION_IS_CACHED(buffer->flags))) { |
| |
| if (ion_cp_request_region(cp_heap)) { |
| mutex_unlock(&cp_heap->lock); |
| return NULL; |
| } |
| |
| if (cp_heap->reusable) { |
| ret_value = ion_map_fmem_buffer(buffer, cp_heap->base, |
| cp_heap->reserved_vrange, buffer->flags); |
| } else if (cp_heap->cma) { |
| int npages = PAGE_ALIGN(buffer->size) / PAGE_SIZE; |
| struct page **pages = vmalloc( |
| sizeof(struct page *) * npages); |
| int i; |
| pgprot_t pgprot; |
| |
| if (!pages) { |
| mutex_unlock(&cp_heap->lock); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (ION_IS_CACHED(buffer->flags)) |
| pgprot = PAGE_KERNEL; |
| else |
| pgprot = pgprot_writecombine(PAGE_KERNEL); |
| |
| for (i = 0; i < npages; i++) { |
| pages[i] = phys_to_page(buf->buffer + |
| i * PAGE_SIZE); |
| } |
| ret_value = vmap(pages, npages, VM_IOREMAP, pgprot); |
| vfree(pages); |
| } else { |
| if (ION_IS_CACHED(buffer->flags)) |
| ret_value = ioremap_cached(buf->buffer, |
| buffer->size); |
| else |
| ret_value = ioremap(buf->buffer, |
| buffer->size); |
| } |
| |
| if (!ret_value) { |
| ion_cp_release_region(cp_heap); |
| } else { |
| if (ION_IS_CACHED(buffer->flags)) |
| ++cp_heap->kmap_cached_count; |
| else |
| ++cp_heap->kmap_uncached_count; |
| atomic_inc(&buf->map_cnt); |
| } |
| } |
| mutex_unlock(&cp_heap->lock); |
| return ret_value; |
| } |
| |
| void ion_cp_heap_unmap_kernel(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| if (cp_heap->reusable) |
| unmap_kernel_range((unsigned long)buffer->vaddr, buffer->size); |
| else if (cp_heap->cma) |
| vunmap(buffer->vaddr); |
| else |
| __arm_iounmap(buffer->vaddr); |
| |
| buffer->vaddr = NULL; |
| |
| mutex_lock(&cp_heap->lock); |
| if (ION_IS_CACHED(buffer->flags)) |
| --cp_heap->kmap_cached_count; |
| else |
| --cp_heap->kmap_uncached_count; |
| |
| atomic_dec(&buf->map_cnt); |
| ion_cp_release_region(cp_heap); |
| mutex_unlock(&cp_heap->lock); |
| |
| return; |
| } |
| |
| int ion_cp_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer, |
| struct vm_area_struct *vma) |
| { |
| int ret_value = -EAGAIN; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| mutex_lock(&cp_heap->lock); |
| if (cp_heap->heap_protected == HEAP_NOT_PROTECTED && !buf->is_secure) { |
| if (ion_cp_request_region(cp_heap)) { |
| mutex_unlock(&cp_heap->lock); |
| return -EINVAL; |
| } |
| |
| if (!ION_IS_CACHED(buffer->flags)) |
| vma->vm_page_prot = pgprot_writecombine( |
| vma->vm_page_prot); |
| |
| ret_value = remap_pfn_range(vma, vma->vm_start, |
| __phys_to_pfn(buf->buffer) + vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| |
| if (ret_value) { |
| ion_cp_release_region(cp_heap); |
| } else { |
| atomic_inc(&buf->map_cnt); |
| ++cp_heap->umap_count; |
| } |
| |
| } |
| mutex_unlock(&cp_heap->lock); |
| return ret_value; |
| } |
| |
| void ion_cp_heap_unmap_user(struct ion_heap *heap, |
| struct ion_buffer *buffer) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| |
| mutex_lock(&cp_heap->lock); |
| --cp_heap->umap_count; |
| atomic_dec(&buf->map_cnt); |
| ion_cp_release_region(cp_heap); |
| mutex_unlock(&cp_heap->lock); |
| } |
| |
| int ion_cp_cache_ops(struct ion_heap *heap, struct ion_buffer *buffer, |
| void *vaddr, unsigned int offset, unsigned int length, |
| unsigned int cmd) |
| { |
| void (*outer_cache_op)(phys_addr_t, phys_addr_t) = NULL; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| unsigned int size_to_vmap, total_size; |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| int i, j; |
| void *ptr = NULL; |
| ion_phys_addr_t buff_phys = buffer->priv_phys; |
| |
| if (!vaddr) { |
| /* |
| * Split the vmalloc space into smaller regions in |
| * order to clean and/or invalidate the cache. |
| */ |
| size_to_vmap = (VMALLOC_END - VMALLOC_START)/8; |
| total_size = buffer->size; |
| for (i = 0; i < total_size; i += size_to_vmap) { |
| size_to_vmap = min(size_to_vmap, total_size - i); |
| for (j = 0; j < 10 && size_to_vmap; ++j) { |
| ptr = ioremap(buff_phys, size_to_vmap); |
| if (ptr) { |
| switch (cmd) { |
| case ION_IOC_CLEAN_CACHES: |
| dmac_clean_range(ptr, |
| ptr + size_to_vmap); |
| outer_cache_op = |
| outer_clean_range; |
| break; |
| case ION_IOC_INV_CACHES: |
| dmac_inv_range(ptr, |
| ptr + size_to_vmap); |
| outer_cache_op = |
| outer_inv_range; |
| break; |
| case ION_IOC_CLEAN_INV_CACHES: |
| dmac_flush_range(ptr, |
| ptr + size_to_vmap); |
| outer_cache_op = |
| outer_flush_range; |
| break; |
| default: |
| return -EINVAL; |
| } |
| buff_phys += size_to_vmap; |
| break; |
| } else { |
| size_to_vmap >>= 1; |
| } |
| } |
| if (!ptr) { |
| pr_err("Couldn't io-remap the memory\n"); |
| return -EINVAL; |
| } |
| iounmap(ptr); |
| } |
| } else { |
| switch (cmd) { |
| case ION_IOC_CLEAN_CACHES: |
| dmac_clean_range(vaddr, vaddr + length); |
| outer_cache_op = outer_clean_range; |
| break; |
| case ION_IOC_INV_CACHES: |
| dmac_inv_range(vaddr, vaddr + length); |
| outer_cache_op = outer_inv_range; |
| break; |
| case ION_IOC_CLEAN_INV_CACHES: |
| dmac_flush_range(vaddr, vaddr + length); |
| outer_cache_op = outer_flush_range; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| if (cp_heap->has_outer_cache) { |
| unsigned long pstart = buf->buffer + offset; |
| outer_cache_op(pstart, pstart + length); |
| } |
| return 0; |
| } |
| |
| static int ion_cp_print_debug(struct ion_heap *heap, struct seq_file *s, |
| const struct rb_root *mem_map) |
| { |
| unsigned long total_alloc; |
| unsigned long total_size; |
| unsigned long umap_count; |
| unsigned long kmap_count; |
| unsigned long heap_protected; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| mutex_lock(&cp_heap->lock); |
| total_alloc = cp_heap->allocated_bytes; |
| total_size = cp_heap->total_size; |
| umap_count = cp_heap->umap_count; |
| kmap_count = ion_cp_get_total_kmap_count(cp_heap); |
| heap_protected = cp_heap->heap_protected == HEAP_PROTECTED; |
| mutex_unlock(&cp_heap->lock); |
| |
| seq_printf(s, "total bytes currently allocated: %lx\n", total_alloc); |
| seq_printf(s, "total heap size: %lx\n", total_size); |
| seq_printf(s, "umapping count: %lx\n", umap_count); |
| seq_printf(s, "kmapping count: %lx\n", kmap_count); |
| seq_printf(s, "heap protected: %s\n", heap_protected ? "Yes" : "No"); |
| seq_printf(s, "reusable: %s\n", cp_heap->reusable ? "Yes" : "No"); |
| |
| if (mem_map) { |
| unsigned long base = cp_heap->base; |
| unsigned long size = cp_heap->total_size; |
| unsigned long end = base+size; |
| unsigned long last_end = base; |
| struct rb_node *n; |
| |
| seq_printf(s, "\nMemory Map\n"); |
| seq_printf(s, "%16.s %14.s %14.s %14.s\n", |
| "client", "start address", "end address", |
| "size (hex)"); |
| |
| for (n = rb_first(mem_map); n; n = rb_next(n)) { |
| struct mem_map_data *data = |
| rb_entry(n, struct mem_map_data, node); |
| const char *client_name = "(null)"; |
| |
| if (last_end < data->addr) { |
| phys_addr_t da; |
| |
| da = data->addr-1; |
| seq_printf(s, "%16.s %14pa %14pa %14lu (%lx)\n", |
| "FREE", &last_end, &da, |
| data->addr-last_end, |
| data->addr-last_end); |
| } |
| |
| if (data->client_name) |
| client_name = data->client_name; |
| |
| seq_printf(s, "%16.s %14pa %14pa %14lu (%lx)\n", |
| client_name, &data->addr, |
| &data->addr_end, |
| data->size, data->size); |
| last_end = data->addr_end+1; |
| } |
| if (last_end < end) { |
| seq_printf(s, "%16.s %14lx %14lx %14lu (%lx)\n", "FREE", |
| last_end, end-1, end-last_end, end-last_end); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int ion_cp_secure_heap(struct ion_heap *heap, int version, void *data) |
| { |
| int ret_value; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| mutex_lock(&cp_heap->lock); |
| if (cp_heap->umap_count == 0 && cp_heap->kmap_cached_count == 0) { |
| ret_value = ion_cp_protect(heap, version, data); |
| } else { |
| pr_err("ION cannot secure heap with outstanding mappings: " |
| "User space: %lu, kernel space (cached): %lu\n", |
| cp_heap->umap_count, cp_heap->kmap_cached_count); |
| ret_value = -EINVAL; |
| } |
| |
| mutex_unlock(&cp_heap->lock); |
| return ret_value; |
| } |
| |
| int ion_cp_unsecure_heap(struct ion_heap *heap, int version, void *data) |
| { |
| int ret_value = 0; |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| mutex_lock(&cp_heap->lock); |
| ion_cp_unprotect(heap, version, data); |
| mutex_unlock(&cp_heap->lock); |
| return ret_value; |
| } |
| |
| static int iommu_map_all(unsigned long domain_num, struct ion_cp_heap *cp_heap, |
| int partition, unsigned long prot) |
| { |
| unsigned long left_to_map = cp_heap->total_size; |
| unsigned long page_size = SZ_64K; |
| int ret_value = 0; |
| unsigned long virt_addr_len = cp_heap->total_size; |
| struct iommu_domain *domain = msm_get_iommu_domain(domain_num); |
| |
| /* If we are mapping into the video domain we need to map twice the |
| * size of the heap to account for prefetch issue in video core. |
| */ |
| if (domain_num == cp_heap->iommu_2x_map_domain) |
| virt_addr_len <<= 1; |
| |
| if (cp_heap->total_size & (SZ_64K-1)) { |
| pr_err("Heap size is not aligned to 64K, cannot map into IOMMU\n"); |
| ret_value = -EINVAL; |
| } |
| if (cp_heap->base & (SZ_64K-1)) { |
| pr_err("Heap physical address is not aligned to 64K, cannot map into IOMMU\n"); |
| ret_value = -EINVAL; |
| } |
| if (!ret_value && domain) { |
| unsigned long temp_phys = cp_heap->base; |
| unsigned long temp_iova; |
| |
| ret_value = msm_allocate_iova_address(domain_num, partition, |
| virt_addr_len, SZ_64K, |
| &temp_iova); |
| |
| if (ret_value) { |
| pr_err("%s: could not allocate iova from domain %lu, partition %d\n", |
| __func__, domain_num, partition); |
| goto out; |
| } |
| cp_heap->iommu_iova[domain_num] = temp_iova; |
| |
| while (left_to_map) { |
| int ret = iommu_map(domain, temp_iova, temp_phys, |
| page_size, prot); |
| if (ret) { |
| pr_err("%s: could not map %lx in domain %p, error: %d\n", |
| __func__, temp_iova, domain, ret); |
| ret_value = -EAGAIN; |
| goto free_iova; |
| } |
| temp_iova += page_size; |
| temp_phys += page_size; |
| left_to_map -= page_size; |
| } |
| if (domain_num == cp_heap->iommu_2x_map_domain) |
| ret_value = msm_iommu_map_extra(domain, temp_iova, |
| cp_heap->base, |
| cp_heap->total_size, |
| SZ_64K, prot); |
| if (ret_value) |
| goto free_iova; |
| } else { |
| pr_err("Unable to get IOMMU domain %lu\n", domain_num); |
| ret_value = -ENOMEM; |
| } |
| goto out; |
| |
| free_iova: |
| msm_free_iova_address(cp_heap->iommu_iova[domain_num], domain_num, |
| partition, virt_addr_len); |
| out: |
| return ret_value; |
| } |
| |
| static int ion_cp_heap_map_iommu(struct ion_buffer *buffer, |
| struct ion_iommu_map *data, |
| unsigned int domain_num, |
| unsigned int partition_num, |
| unsigned long align, |
| unsigned long iova_length, |
| unsigned long flags) |
| { |
| struct iommu_domain *domain; |
| int ret = 0; |
| unsigned long extra; |
| struct ion_cp_heap *cp_heap = |
| container_of(buffer->heap, struct ion_cp_heap, heap); |
| int prot = IOMMU_WRITE | IOMMU_READ; |
| struct ion_cp_buffer *buf = buffer->priv_virt; |
| prot |= ION_IS_CACHED(flags) ? IOMMU_CACHE : 0; |
| |
| data->mapped_size = iova_length; |
| |
| if (!msm_use_iommu()) { |
| data->iova_addr = buf->buffer; |
| return 0; |
| } |
| |
| if (cp_heap->iommu_iova[domain_num]) { |
| /* Already mapped. */ |
| unsigned long offset = buf->buffer - cp_heap->base; |
| data->iova_addr = cp_heap->iommu_iova[domain_num] + offset; |
| return 0; |
| } else if (cp_heap->iommu_map_all) { |
| ret = iommu_map_all(domain_num, cp_heap, partition_num, prot); |
| if (!ret) { |
| unsigned long offset = |
| buf->buffer - cp_heap->base; |
| data->iova_addr = |
| cp_heap->iommu_iova[domain_num] + offset; |
| cp_heap->iommu_partition[domain_num] = partition_num; |
| /* |
| clear delayed map flag so that we don't interfere |
| with this feature (we are already delaying). |
| */ |
| data->flags &= ~ION_IOMMU_UNMAP_DELAYED; |
| return 0; |
| } else { |
| cp_heap->iommu_iova[domain_num] = 0; |
| cp_heap->iommu_partition[domain_num] = 0; |
| return ret; |
| } |
| } |
| |
| extra = iova_length - buffer->size; |
| |
| ret = msm_allocate_iova_address(domain_num, partition_num, |
| data->mapped_size, align, |
| &data->iova_addr); |
| |
| if (ret) |
| goto out; |
| |
| domain = msm_get_iommu_domain(domain_num); |
| |
| if (!domain) { |
| ret = -ENOMEM; |
| goto out1; |
| } |
| |
| ret = iommu_map_range(domain, data->iova_addr, buffer->sg_table->sgl, |
| buffer->size, prot); |
| if (ret) { |
| pr_err("%s: could not map %lx in domain %p\n", |
| __func__, data->iova_addr, domain); |
| goto out1; |
| } |
| |
| if (extra) { |
| unsigned long extra_iova_addr = data->iova_addr + buffer->size; |
| unsigned long phys_addr = sg_phys(buffer->sg_table->sgl); |
| ret = msm_iommu_map_extra(domain, extra_iova_addr, phys_addr, |
| extra, SZ_4K, prot); |
| if (ret) |
| goto out2; |
| } |
| return ret; |
| |
| out2: |
| iommu_unmap_range(domain, data->iova_addr, buffer->size); |
| out1: |
| msm_free_iova_address(data->iova_addr, domain_num, partition_num, |
| data->mapped_size); |
| out: |
| return ret; |
| } |
| |
| static void ion_cp_heap_unmap_iommu(struct ion_iommu_map *data) |
| { |
| unsigned int domain_num; |
| unsigned int partition_num; |
| struct iommu_domain *domain; |
| struct ion_cp_heap *cp_heap = |
| container_of(data->buffer->heap, struct ion_cp_heap, heap); |
| |
| if (!msm_use_iommu()) |
| return; |
| |
| |
| domain_num = iommu_map_domain(data); |
| |
| /* If we are mapping everything we'll wait to unmap until everything |
| is freed. */ |
| if (cp_heap->iommu_iova[domain_num]) |
| return; |
| |
| partition_num = iommu_map_partition(data); |
| |
| domain = msm_get_iommu_domain(domain_num); |
| |
| if (!domain) { |
| WARN(1, "Could not get domain %d. Corruption?\n", domain_num); |
| return; |
| } |
| |
| iommu_unmap_range(domain, data->iova_addr, data->mapped_size); |
| msm_free_iova_address(data->iova_addr, domain_num, partition_num, |
| data->mapped_size); |
| |
| return; |
| } |
| |
| static struct ion_heap_ops cp_heap_ops = { |
| .allocate = ion_cp_heap_allocate, |
| .free = ion_cp_heap_free, |
| .phys = ion_cp_heap_phys, |
| .map_user = ion_cp_heap_map_user, |
| .unmap_user = ion_cp_heap_unmap_user, |
| .map_kernel = ion_cp_heap_map_kernel, |
| .unmap_kernel = ion_cp_heap_unmap_kernel, |
| .map_dma = ion_cp_heap_map_dma, |
| .unmap_dma = ion_cp_heap_unmap_dma, |
| .cache_op = ion_cp_cache_ops, |
| .print_debug = ion_cp_print_debug, |
| .secure_heap = ion_cp_secure_heap, |
| .unsecure_heap = ion_cp_unsecure_heap, |
| .map_iommu = ion_cp_heap_map_iommu, |
| .unmap_iommu = ion_cp_heap_unmap_iommu, |
| .secure_buffer = ion_cp_secure_buffer, |
| .unsecure_buffer = ion_cp_unsecure_buffer, |
| }; |
| |
| struct ion_heap *ion_cp_heap_create(struct ion_platform_heap *heap_data) |
| { |
| struct ion_cp_heap *cp_heap; |
| int ret; |
| |
| cp_heap = kzalloc(sizeof(*cp_heap), GFP_KERNEL); |
| if (!cp_heap) |
| return ERR_PTR(-ENOMEM); |
| |
| mutex_init(&cp_heap->lock); |
| |
| |
| cp_heap->allocated_bytes = 0; |
| cp_heap->umap_count = 0; |
| cp_heap->kmap_cached_count = 0; |
| cp_heap->kmap_uncached_count = 0; |
| cp_heap->total_size = heap_data->size; |
| cp_heap->heap.ops = &cp_heap_ops; |
| cp_heap->heap.type = (enum ion_heap_type) ION_HEAP_TYPE_CP; |
| cp_heap->heap_protected = HEAP_NOT_PROTECTED; |
| cp_heap->secure_base = heap_data->base; |
| cp_heap->secure_size = heap_data->size; |
| cp_heap->has_outer_cache = heap_data->has_outer_cache; |
| cp_heap->heap_size = heap_data->size; |
| |
| atomic_set(&cp_heap->protect_cnt, 0); |
| if (heap_data->extra_data) { |
| struct ion_cp_heap_pdata *extra_data = |
| heap_data->extra_data; |
| cp_heap->reusable = extra_data->reusable; |
| cp_heap->reserved_vrange = extra_data->virt_addr; |
| cp_heap->permission_type = extra_data->permission_type; |
| if (extra_data->secure_size) { |
| cp_heap->secure_base = extra_data->secure_base; |
| cp_heap->secure_size = extra_data->secure_size; |
| } |
| if (extra_data->setup_region) |
| cp_heap->bus_id = extra_data->setup_region(); |
| if (extra_data->request_region) |
| cp_heap->heap_request_region = |
| extra_data->request_region; |
| if (extra_data->release_region) |
| cp_heap->heap_release_region = |
| extra_data->release_region; |
| cp_heap->iommu_map_all = |
| extra_data->iommu_map_all; |
| cp_heap->iommu_2x_map_domain = |
| extra_data->iommu_2x_map_domain; |
| cp_heap->cma = extra_data->is_cma; |
| cp_heap->allow_non_secure_allocation = |
| extra_data->allow_nonsecure_alloc; |
| |
| } |
| |
| if (cp_heap->cma) { |
| cp_heap->pool = NULL; |
| cp_heap->cpu_addr = 0; |
| cp_heap->heap.priv = heap_data->priv; |
| } else { |
| cp_heap->pool = gen_pool_create(12, -1); |
| if (!cp_heap->pool) |
| goto free_heap; |
| |
| cp_heap->base = heap_data->base; |
| ret = gen_pool_add(cp_heap->pool, cp_heap->base, |
| heap_data->size, -1); |
| if (ret < 0) |
| goto destroy_pool; |
| |
| } |
| return &cp_heap->heap; |
| |
| destroy_pool: |
| gen_pool_destroy(cp_heap->pool); |
| |
| free_heap: |
| kfree(cp_heap); |
| |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| void ion_cp_heap_destroy(struct ion_heap *heap) |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| |
| gen_pool_destroy(cp_heap->pool); |
| kfree(cp_heap); |
| cp_heap = NULL; |
| } |
| |
| void ion_cp_heap_get_base(struct ion_heap *heap, unsigned long *base, |
| unsigned long *size) \ |
| { |
| struct ion_cp_heap *cp_heap = |
| container_of(heap, struct ion_cp_heap, heap); |
| *base = cp_heap->base; |
| *size = cp_heap->total_size; |
| } |
| |
| |