| /******************************************************************************* |
| |
| Intel(R) Gigabit Ethernet Linux driver |
| Copyright(c) 2007 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/if_ether.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| |
| #include "e1000_mac.h" |
| |
| #include "igb.h" |
| |
| static s32 igb_set_default_fc(struct e1000_hw *hw); |
| static s32 igb_set_fc_watermarks(struct e1000_hw *hw); |
| |
| /** |
| * igb_remove_device - Free device specific structure |
| * @hw: pointer to the HW structure |
| * |
| * If a device specific structure was allocated, this function will |
| * free it. |
| **/ |
| void igb_remove_device(struct e1000_hw *hw) |
| { |
| /* Freeing the dev_spec member of e1000_hw structure */ |
| kfree(hw->dev_spec); |
| } |
| |
| static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) |
| { |
| struct igb_adapter *adapter = hw->back; |
| |
| pci_read_config_word(adapter->pdev, reg, value); |
| } |
| |
| static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
| { |
| struct igb_adapter *adapter = hw->back; |
| u16 cap_offset; |
| |
| cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
| if (!cap_offset) |
| return -E1000_ERR_CONFIG; |
| |
| pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_get_bus_info_pcie - Get PCIe bus information |
| * @hw: pointer to the HW structure |
| * |
| * Determines and stores the system bus information for a particular |
| * network interface. The following bus information is determined and stored: |
| * bus speed, bus width, type (PCIe), and PCIe function. |
| **/ |
| s32 igb_get_bus_info_pcie(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| s32 ret_val; |
| u32 status; |
| u16 pcie_link_status, pci_header_type; |
| |
| bus->type = e1000_bus_type_pci_express; |
| bus->speed = e1000_bus_speed_2500; |
| |
| ret_val = igb_read_pcie_cap_reg(hw, |
| PCIE_LINK_STATUS, |
| &pcie_link_status); |
| if (ret_val) |
| bus->width = e1000_bus_width_unknown; |
| else |
| bus->width = (enum e1000_bus_width)((pcie_link_status & |
| PCIE_LINK_WIDTH_MASK) >> |
| PCIE_LINK_WIDTH_SHIFT); |
| |
| igb_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); |
| if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { |
| status = rd32(E1000_STATUS); |
| bus->func = (status & E1000_STATUS_FUNC_MASK) |
| >> E1000_STATUS_FUNC_SHIFT; |
| } else { |
| bus->func = 0; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_clear_vfta - Clear VLAN filter table |
| * @hw: pointer to the HW structure |
| * |
| * Clears the register array which contains the VLAN filter table by |
| * setting all the values to 0. |
| **/ |
| void igb_clear_vfta(struct e1000_hw *hw) |
| { |
| u32 offset; |
| |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
| array_wr32(E1000_VFTA, offset, 0); |
| wrfl(); |
| } |
| } |
| |
| /** |
| * igb_write_vfta - Write value to VLAN filter table |
| * @hw: pointer to the HW structure |
| * @offset: register offset in VLAN filter table |
| * @value: register value written to VLAN filter table |
| * |
| * Writes value at the given offset in the register array which stores |
| * the VLAN filter table. |
| **/ |
| void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
| { |
| array_wr32(E1000_VFTA, offset, value); |
| wrfl(); |
| } |
| |
| /** |
| * igb_check_alt_mac_addr - Check for alternate MAC addr |
| * @hw: pointer to the HW structure |
| * |
| * Checks the nvm for an alternate MAC address. An alternate MAC address |
| * can be setup by pre-boot software and must be treated like a permanent |
| * address and must override the actual permanent MAC address. If an |
| * alternate MAC address is fopund it is saved in the hw struct and |
| * prgrammed into RAR0 and the cuntion returns success, otherwise the |
| * fucntion returns an error. |
| **/ |
| s32 igb_check_alt_mac_addr(struct e1000_hw *hw) |
| { |
| u32 i; |
| s32 ret_val = 0; |
| u16 offset, nvm_alt_mac_addr_offset, nvm_data; |
| u8 alt_mac_addr[ETH_ALEN]; |
| |
| ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, |
| &nvm_alt_mac_addr_offset); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (nvm_alt_mac_addr_offset == 0xFFFF) { |
| ret_val = -(E1000_NOT_IMPLEMENTED); |
| goto out; |
| } |
| |
| if (hw->bus.func == E1000_FUNC_1) |
| nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16); |
| |
| for (i = 0; i < ETH_ALEN; i += 2) { |
| offset = nvm_alt_mac_addr_offset + (i >> 1); |
| ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| alt_mac_addr[i] = (u8)(nvm_data & 0xFF); |
| alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); |
| } |
| |
| /* if multicast bit is set, the alternate address will not be used */ |
| if (alt_mac_addr[0] & 0x01) { |
| ret_val = -(E1000_NOT_IMPLEMENTED); |
| goto out; |
| } |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i]; |
| |
| hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_rar_set - Set receive address register |
| * @hw: pointer to the HW structure |
| * @addr: pointer to the receive address |
| * @index: receive address array register |
| * |
| * Sets the receive address array register at index to the address passed |
| * in by addr. |
| **/ |
| void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
| { |
| u32 rar_low, rar_high; |
| |
| /* |
| * HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((u32) addr[0] | |
| ((u32) addr[1] << 8) | |
| ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
| |
| rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
| |
| if (!hw->mac.disable_av) |
| rar_high |= E1000_RAH_AV; |
| |
| array_wr32(E1000_RA, (index << 1), rar_low); |
| array_wr32(E1000_RA, ((index << 1) + 1), rar_high); |
| } |
| |
| /** |
| * igb_mta_set - Set multicast filter table address |
| * @hw: pointer to the HW structure |
| * @hash_value: determines the MTA register and bit to set |
| * |
| * The multicast table address is a register array of 32-bit registers. |
| * The hash_value is used to determine what register the bit is in, the |
| * current value is read, the new bit is OR'd in and the new value is |
| * written back into the register. |
| **/ |
| void igb_mta_set(struct e1000_hw *hw, u32 hash_value) |
| { |
| u32 hash_bit, hash_reg, mta; |
| |
| /* |
| * The MTA is a register array of 32-bit registers. It is |
| * treated like an array of (32*mta_reg_count) bits. We want to |
| * set bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The (hw->mac.mta_reg_count - 1) serves as a |
| * mask to bits 31:5 of the hash value which gives us the |
| * register we're modifying. The hash bit within that register |
| * is determined by the lower 5 bits of the hash value. |
| */ |
| hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); |
| hash_bit = hash_value & 0x1F; |
| |
| mta = array_rd32(E1000_MTA, hash_reg); |
| |
| mta |= (1 << hash_bit); |
| |
| array_wr32(E1000_MTA, hash_reg, mta); |
| wrfl(); |
| } |
| |
| /** |
| * igb_hash_mc_addr - Generate a multicast hash value |
| * @hw: pointer to the HW structure |
| * @mc_addr: pointer to a multicast address |
| * |
| * Generates a multicast address hash value which is used to determine |
| * the multicast filter table array address and new table value. See |
| * igb_mta_set() |
| **/ |
| u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
| { |
| u32 hash_value, hash_mask; |
| u8 bit_shift = 0; |
| |
| /* Register count multiplied by bits per register */ |
| hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
| |
| /* |
| * For a mc_filter_type of 0, bit_shift is the number of left-shifts |
| * where 0xFF would still fall within the hash mask. |
| */ |
| while (hash_mask >> bit_shift != 0xFF) |
| bit_shift++; |
| |
| /* |
| * The portion of the address that is used for the hash table |
| * is determined by the mc_filter_type setting. |
| * The algorithm is such that there is a total of 8 bits of shifting. |
| * The bit_shift for a mc_filter_type of 0 represents the number of |
| * left-shifts where the MSB of mc_addr[5] would still fall within |
| * the hash_mask. Case 0 does this exactly. Since there are a total |
| * of 8 bits of shifting, then mc_addr[4] will shift right the |
| * remaining number of bits. Thus 8 - bit_shift. The rest of the |
| * cases are a variation of this algorithm...essentially raising the |
| * number of bits to shift mc_addr[5] left, while still keeping the |
| * 8-bit shifting total. |
| * |
| * For example, given the following Destination MAC Address and an |
| * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), |
| * we can see that the bit_shift for case 0 is 4. These are the hash |
| * values resulting from each mc_filter_type... |
| * [0] [1] [2] [3] [4] [5] |
| * 01 AA 00 12 34 56 |
| * LSB MSB |
| * |
| * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 |
| * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 |
| * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 |
| * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 |
| */ |
| switch (hw->mac.mc_filter_type) { |
| default: |
| case 0: |
| break; |
| case 1: |
| bit_shift += 1; |
| break; |
| case 2: |
| bit_shift += 2; |
| break; |
| case 3: |
| bit_shift += 4; |
| break; |
| } |
| |
| hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
| (((u16) mc_addr[5]) << bit_shift))); |
| |
| return hash_value; |
| } |
| |
| /** |
| * igb_clear_hw_cntrs_base - Clear base hardware counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears the base hardware counters by reading the counter registers. |
| **/ |
| void igb_clear_hw_cntrs_base(struct e1000_hw *hw) |
| { |
| u32 temp; |
| |
| temp = rd32(E1000_CRCERRS); |
| temp = rd32(E1000_SYMERRS); |
| temp = rd32(E1000_MPC); |
| temp = rd32(E1000_SCC); |
| temp = rd32(E1000_ECOL); |
| temp = rd32(E1000_MCC); |
| temp = rd32(E1000_LATECOL); |
| temp = rd32(E1000_COLC); |
| temp = rd32(E1000_DC); |
| temp = rd32(E1000_SEC); |
| temp = rd32(E1000_RLEC); |
| temp = rd32(E1000_XONRXC); |
| temp = rd32(E1000_XONTXC); |
| temp = rd32(E1000_XOFFRXC); |
| temp = rd32(E1000_XOFFTXC); |
| temp = rd32(E1000_FCRUC); |
| temp = rd32(E1000_GPRC); |
| temp = rd32(E1000_BPRC); |
| temp = rd32(E1000_MPRC); |
| temp = rd32(E1000_GPTC); |
| temp = rd32(E1000_GORCL); |
| temp = rd32(E1000_GORCH); |
| temp = rd32(E1000_GOTCL); |
| temp = rd32(E1000_GOTCH); |
| temp = rd32(E1000_RNBC); |
| temp = rd32(E1000_RUC); |
| temp = rd32(E1000_RFC); |
| temp = rd32(E1000_ROC); |
| temp = rd32(E1000_RJC); |
| temp = rd32(E1000_TORL); |
| temp = rd32(E1000_TORH); |
| temp = rd32(E1000_TOTL); |
| temp = rd32(E1000_TOTH); |
| temp = rd32(E1000_TPR); |
| temp = rd32(E1000_TPT); |
| temp = rd32(E1000_MPTC); |
| temp = rd32(E1000_BPTC); |
| } |
| |
| /** |
| * igb_check_for_copper_link - Check for link (Copper) |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see of the link status of the hardware has changed. If a |
| * change in link status has been detected, then we read the PHY registers |
| * to get the current speed/duplex if link exists. |
| **/ |
| s32 igb_check_for_copper_link(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| bool link; |
| |
| /* |
| * We only want to go out to the PHY registers to see if Auto-Neg |
| * has completed and/or if our link status has changed. The |
| * get_link_status flag is set upon receiving a Link Status |
| * Change or Rx Sequence Error interrupt. |
| */ |
| if (!mac->get_link_status) { |
| ret_val = 0; |
| goto out; |
| } |
| |
| /* |
| * First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = igb_phy_has_link(hw, 1, 0, &link); |
| if (ret_val) |
| goto out; |
| |
| if (!link) |
| goto out; /* No link detected */ |
| |
| mac->get_link_status = false; |
| |
| /* |
| * Check if there was DownShift, must be checked |
| * immediately after link-up |
| */ |
| igb_check_downshift(hw); |
| |
| /* |
| * If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!mac->autoneg) { |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| /* |
| * Auto-Neg is enabled. Auto Speed Detection takes care |
| * of MAC speed/duplex configuration. So we only need to |
| * configure Collision Distance in the MAC. |
| */ |
| igb_config_collision_dist(hw); |
| |
| /* |
| * Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = igb_config_fc_after_link_up(hw); |
| if (ret_val) |
| hw_dbg("Error configuring flow control\n"); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_setup_link - Setup flow control and link settings |
| * @hw: pointer to the HW structure |
| * |
| * Determines which flow control settings to use, then configures flow |
| * control. Calls the appropriate media-specific link configuration |
| * function. Assuming the adapter has a valid link partner, a valid link |
| * should be established. Assumes the hardware has previously been reset |
| * and the transmitter and receiver are not enabled. |
| **/ |
| s32 igb_setup_link(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| /* |
| * In the case of the phy reset being blocked, we already have a link. |
| * We do not need to set it up again. |
| */ |
| if (igb_check_reset_block(hw)) |
| goto out; |
| |
| ret_val = igb_set_default_fc(hw); |
| if (ret_val) |
| goto out; |
| |
| /* |
| * We want to save off the original Flow Control configuration just |
| * in case we get disconnected and then reconnected into a different |
| * hub or switch with different Flow Control capabilities. |
| */ |
| hw->fc.original_type = hw->fc.type; |
| |
| hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type); |
| |
| /* Call the necessary media_type subroutine to configure the link. */ |
| ret_val = hw->mac.ops.setup_physical_interface(hw); |
| if (ret_val) |
| goto out; |
| |
| /* |
| * Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| hw_dbg("Initializing the Flow Control address, type and timer regs\n"); |
| wr32(E1000_FCT, FLOW_CONTROL_TYPE); |
| wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| |
| wr32(E1000_FCTTV, hw->fc.pause_time); |
| |
| ret_val = igb_set_fc_watermarks(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_config_collision_dist - Configure collision distance |
| * @hw: pointer to the HW structure |
| * |
| * Configures the collision distance to the default value and is used |
| * during link setup. Currently no func pointer exists and all |
| * implementations are handled in the generic version of this function. |
| **/ |
| void igb_config_collision_dist(struct e1000_hw *hw) |
| { |
| u32 tctl; |
| |
| tctl = rd32(E1000_TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| |
| wr32(E1000_TCTL, tctl); |
| wrfl(); |
| } |
| |
| /** |
| * igb_set_fc_watermarks - Set flow control high/low watermarks |
| * @hw: pointer to the HW structure |
| * |
| * Sets the flow control high/low threshold (watermark) registers. If |
| * flow control XON frame transmission is enabled, then set XON frame |
| * tansmission as well. |
| **/ |
| static s32 igb_set_fc_watermarks(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 fcrtl = 0, fcrth = 0; |
| |
| /* |
| * Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames is not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (hw->fc.type & e1000_fc_tx_pause) { |
| /* |
| * We need to set up the Receive Threshold high and low water |
| * marks as well as (optionally) enabling the transmission of |
| * XON frames. |
| */ |
| fcrtl = hw->fc.low_water; |
| if (hw->fc.send_xon) |
| fcrtl |= E1000_FCRTL_XONE; |
| |
| fcrth = hw->fc.high_water; |
| } |
| wr32(E1000_FCRTL, fcrtl); |
| wr32(E1000_FCRTH, fcrth); |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_set_default_fc - Set flow control default values |
| * @hw: pointer to the HW structure |
| * |
| * Read the EEPROM for the default values for flow control and store the |
| * values. |
| **/ |
| static s32 igb_set_default_fc(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 nvm_data; |
| |
| /* |
| * Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, |
| &nvm_data); |
| |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) |
| hw->fc.type = e1000_fc_none; |
| else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == |
| NVM_WORD0F_ASM_DIR) |
| hw->fc.type = e1000_fc_tx_pause; |
| else |
| hw->fc.type = e1000_fc_full; |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_force_mac_fc - Force the MAC's flow control settings |
| * @hw: pointer to the HW structure |
| * |
| * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the |
| * device control register to reflect the adapter settings. TFCE and RFCE |
| * need to be explicitly set by software when a copper PHY is used because |
| * autonegotiation is managed by the PHY rather than the MAC. Software must |
| * also configure these bits when link is forced on a fiber connection. |
| **/ |
| s32 igb_force_mac_fc(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val = 0; |
| |
| ctrl = rd32(E1000_CTRL); |
| |
| /* |
| * Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "hw->fc.type" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and TX flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| hw_dbg("hw->fc.type = %u\n", hw->fc.type); |
| |
| switch (hw->fc.type) { |
| case e1000_fc_none: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case e1000_fc_rx_pause: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case e1000_fc_tx_pause: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case e1000_fc_full: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| hw_dbg("Flow control param set incorrectly\n"); |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| wr32(E1000_CTRL, ctrl); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_config_fc_after_link_up - Configures flow control after link |
| * @hw: pointer to the HW structure |
| * |
| * Checks the status of auto-negotiation after link up to ensure that the |
| * speed and duplex were not forced. If the link needed to be forced, then |
| * flow control needs to be forced also. If auto-negotiation is enabled |
| * and did not fail, then we configure flow control based on our link |
| * partner. |
| **/ |
| s32 igb_config_fc_after_link_up(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val = 0; |
| u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; |
| u16 speed, duplex; |
| |
| /* |
| * Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if (mac->autoneg_failed) { |
| if (hw->phy.media_type == e1000_media_type_fiber || |
| hw->phy.media_type == e1000_media_type_internal_serdes) |
| ret_val = igb_force_mac_fc(hw); |
| } else { |
| if (hw->phy.media_type == e1000_media_type_copper) |
| ret_val = igb_force_mac_fc(hw); |
| } |
| |
| if (ret_val) { |
| hw_dbg("Error forcing flow control settings\n"); |
| goto out; |
| } |
| |
| /* |
| * Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { |
| /* |
| * Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, |
| &mii_status_reg); |
| if (ret_val) |
| goto out; |
| ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, |
| &mii_status_reg); |
| if (ret_val) |
| goto out; |
| |
| if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { |
| hw_dbg("Copper PHY and Auto Neg " |
| "has not completed.\n"); |
| goto out; |
| } |
| |
| /* |
| * The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement |
| * Register (Address 4) and the Auto_Negotiation Base |
| * Page Ability Register (Address 5) to determine how |
| * flow control was negotiated. |
| */ |
| ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, |
| &mii_nway_adv_reg); |
| if (ret_val) |
| goto out; |
| ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY, |
| &mii_nway_lp_ability_reg); |
| if (ret_val) |
| goto out; |
| |
| /* |
| * Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | e1000_fc_none |
| * 0 | 1 | 0 | DC | e1000_fc_none |
| * 0 | 1 | 1 | 0 | e1000_fc_none |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * 1 | 0 | 0 | DC | e1000_fc_none |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * 1 | 1 | 0 | 0 | e1000_fc_none |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| * Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | E1000_fc_full |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* |
| * Now we need to check if the user selected RX ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->fc.original_type == e1000_fc_full) { |
| hw->fc.type = e1000_fc_full; |
| hw_dbg("Flow Control = FULL.\r\n"); |
| } else { |
| hw->fc.type = e1000_fc_rx_pause; |
| hw_dbg("Flow Control = " |
| "RX PAUSE frames only.\r\n"); |
| } |
| } |
| /* |
| * For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| hw->fc.type = e1000_fc_tx_pause; |
| hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); |
| } |
| /* |
| * For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
| hw->fc.type = e1000_fc_rx_pause; |
| hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| /* |
| * Per the IEEE spec, at this point flow control should be |
| * disabled. However, we want to consider that we could |
| * be connected to a legacy switch that doesn't advertise |
| * desired flow control, but can be forced on the link |
| * partner. So if we advertised no flow control, that is |
| * what we will resolve to. If we advertised some kind of |
| * receive capability (Rx Pause Only or Full Flow Control) |
| * and the link partner advertised none, we will configure |
| * ourselves to enable Rx Flow Control only. We can do |
| * this safely for two reasons: If the link partner really |
| * didn't want flow control enabled, and we enable Rx, no |
| * harm done since we won't be receiving any PAUSE frames |
| * anyway. If the intent on the link partner was to have |
| * flow control enabled, then by us enabling RX only, we |
| * can at least receive pause frames and process them. |
| * This is a good idea because in most cases, since we are |
| * predominantly a server NIC, more times than not we will |
| * be asked to delay transmission of packets than asking |
| * our link partner to pause transmission of frames. |
| */ |
| else if ((hw->fc.original_type == e1000_fc_none || |
| hw->fc.original_type == e1000_fc_tx_pause) || |
| hw->fc.strict_ieee) { |
| hw->fc.type = e1000_fc_none; |
| hw_dbg("Flow Control = NONE.\r\n"); |
| } else { |
| hw->fc.type = e1000_fc_rx_pause; |
| hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| |
| /* |
| * Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); |
| if (ret_val) { |
| hw_dbg("Error getting link speed and duplex\n"); |
| goto out; |
| } |
| |
| if (duplex == HALF_DUPLEX) |
| hw->fc.type = e1000_fc_none; |
| |
| /* |
| * Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = igb_force_mac_fc(hw); |
| if (ret_val) { |
| hw_dbg("Error forcing flow control settings\n"); |
| goto out; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_get_speed_and_duplex_copper - Retreive current speed/duplex |
| * @hw: pointer to the HW structure |
| * @speed: stores the current speed |
| * @duplex: stores the current duplex |
| * |
| * Read the status register for the current speed/duplex and store the current |
| * speed and duplex for copper connections. |
| **/ |
| s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| u32 status; |
| |
| status = rd32(E1000_STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| hw_dbg("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| hw_dbg("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| hw_dbg("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| hw_dbg("Full Duplex\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| hw_dbg("Half Duplex\n"); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_get_hw_semaphore - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| **/ |
| s32 igb_get_hw_semaphore(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| s32 ret_val = 0; |
| s32 timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| |
| /* Get the SW semaphore */ |
| while (i < timeout) { |
| swsm = rd32(E1000_SWSM); |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| |
| udelay(50); |
| i++; |
| } |
| |
| if (i == timeout) { |
| hw_dbg("Driver can't access device - SMBI bit is set.\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < timeout; i++) { |
| swsm = rd32(E1000_SWSM); |
| wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| } |
| |
| if (i == timeout) { |
| /* Release semaphores */ |
| igb_put_hw_semaphore(hw); |
| hw_dbg("Driver can't access the NVM\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_put_hw_semaphore - Release hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Release hardware semaphore used to access the PHY or NVM |
| **/ |
| void igb_put_hw_semaphore(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| |
| swsm = rd32(E1000_SWSM); |
| |
| swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
| |
| wr32(E1000_SWSM, swsm); |
| } |
| |
| /** |
| * igb_get_auto_rd_done - Check for auto read completion |
| * @hw: pointer to the HW structure |
| * |
| * Check EEPROM for Auto Read done bit. |
| **/ |
| s32 igb_get_auto_rd_done(struct e1000_hw *hw) |
| { |
| s32 i = 0; |
| s32 ret_val = 0; |
| |
| |
| while (i < AUTO_READ_DONE_TIMEOUT) { |
| if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) |
| break; |
| msleep(1); |
| i++; |
| } |
| |
| if (i == AUTO_READ_DONE_TIMEOUT) { |
| hw_dbg("Auto read by HW from NVM has not completed.\n"); |
| ret_val = -E1000_ERR_RESET; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_valid_led_default - Verify a valid default LED config |
| * @hw: pointer to the HW structure |
| * @data: pointer to the NVM (EEPROM) |
| * |
| * Read the EEPROM for the current default LED configuration. If the |
| * LED configuration is not valid, set to a valid LED configuration. |
| **/ |
| static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) |
| *data = ID_LED_DEFAULT; |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_id_led_init - |
| * @hw: pointer to the HW structure |
| * |
| **/ |
| s32 igb_id_led_init(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| const u32 ledctl_mask = 0x000000FF; |
| const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
| const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
| u16 data, i, temp; |
| const u16 led_mask = 0x0F; |
| |
| ret_val = igb_valid_led_default(hw, &data); |
| if (ret_val) |
| goto out; |
| |
| mac->ledctl_default = rd32(E1000_LEDCTL); |
| mac->ledctl_mode1 = mac->ledctl_default; |
| mac->ledctl_mode2 = mac->ledctl_default; |
| |
| for (i = 0; i < 4; i++) { |
| temp = (data >> (i << 2)) & led_mask; |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode1 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode1 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode2 |= ledctl_on << (i << 3); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
| mac->ledctl_mode2 |= ledctl_off << (i << 3); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_cleanup_led - Set LED config to default operation |
| * @hw: pointer to the HW structure |
| * |
| * Remove the current LED configuration and set the LED configuration |
| * to the default value, saved from the EEPROM. |
| **/ |
| s32 igb_cleanup_led(struct e1000_hw *hw) |
| { |
| wr32(E1000_LEDCTL, hw->mac.ledctl_default); |
| return 0; |
| } |
| |
| /** |
| * igb_blink_led - Blink LED |
| * @hw: pointer to the HW structure |
| * |
| * Blink the led's which are set to be on. |
| **/ |
| s32 igb_blink_led(struct e1000_hw *hw) |
| { |
| u32 ledctl_blink = 0; |
| u32 i; |
| |
| if (hw->phy.media_type == e1000_media_type_fiber) { |
| /* always blink LED0 for PCI-E fiber */ |
| ledctl_blink = E1000_LEDCTL_LED0_BLINK | |
| (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); |
| } else { |
| /* |
| * set the blink bit for each LED that's "on" (0x0E) |
| * in ledctl_mode2 |
| */ |
| ledctl_blink = hw->mac.ledctl_mode2; |
| for (i = 0; i < 4; i++) |
| if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == |
| E1000_LEDCTL_MODE_LED_ON) |
| ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << |
| (i * 8)); |
| } |
| |
| wr32(E1000_LEDCTL, ledctl_blink); |
| |
| return 0; |
| } |
| |
| /** |
| * igb_led_off - Turn LED off |
| * @hw: pointer to the HW structure |
| * |
| * Turn LED off. |
| **/ |
| s32 igb_led_off(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| |
| switch (hw->phy.media_type) { |
| case e1000_media_type_fiber: |
| ctrl = rd32(E1000_CTRL); |
| ctrl |= E1000_CTRL_SWDPIN0; |
| ctrl |= E1000_CTRL_SWDPIO0; |
| wr32(E1000_CTRL, ctrl); |
| break; |
| case e1000_media_type_copper: |
| wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_disable_pcie_master - Disables PCI-express master access |
| * @hw: pointer to the HW structure |
| * |
| * Returns 0 (0) if successful, else returns -10 |
| * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued |
| * the master requests to be disabled. |
| * |
| * Disables PCI-Express master access and verifies there are no pending |
| * requests. |
| **/ |
| s32 igb_disable_pcie_master(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 timeout = MASTER_DISABLE_TIMEOUT; |
| s32 ret_val = 0; |
| |
| if (hw->bus.type != e1000_bus_type_pci_express) |
| goto out; |
| |
| ctrl = rd32(E1000_CTRL); |
| ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
| wr32(E1000_CTRL, ctrl); |
| |
| while (timeout) { |
| if (!(rd32(E1000_STATUS) & |
| E1000_STATUS_GIO_MASTER_ENABLE)) |
| break; |
| udelay(100); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg("Master requests are pending.\n"); |
| ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_reset_adaptive - Reset Adaptive Interframe Spacing |
| * @hw: pointer to the HW structure |
| * |
| * Reset the Adaptive Interframe Spacing throttle to default values. |
| **/ |
| void igb_reset_adaptive(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| if (!mac->adaptive_ifs) { |
| hw_dbg("Not in Adaptive IFS mode!\n"); |
| goto out; |
| } |
| |
| if (!mac->ifs_params_forced) { |
| mac->current_ifs_val = 0; |
| mac->ifs_min_val = IFS_MIN; |
| mac->ifs_max_val = IFS_MAX; |
| mac->ifs_step_size = IFS_STEP; |
| mac->ifs_ratio = IFS_RATIO; |
| } |
| |
| mac->in_ifs_mode = false; |
| wr32(E1000_AIT, 0); |
| out: |
| return; |
| } |
| |
| /** |
| * igb_update_adaptive - Update Adaptive Interframe Spacing |
| * @hw: pointer to the HW structure |
| * |
| * Update the Adaptive Interframe Spacing Throttle value based on the |
| * time between transmitted packets and time between collisions. |
| **/ |
| void igb_update_adaptive(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| if (!mac->adaptive_ifs) { |
| hw_dbg("Not in Adaptive IFS mode!\n"); |
| goto out; |
| } |
| |
| if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { |
| if (mac->tx_packet_delta > MIN_NUM_XMITS) { |
| mac->in_ifs_mode = true; |
| if (mac->current_ifs_val < mac->ifs_max_val) { |
| if (!mac->current_ifs_val) |
| mac->current_ifs_val = mac->ifs_min_val; |
| else |
| mac->current_ifs_val += |
| mac->ifs_step_size; |
| wr32(E1000_AIT, |
| mac->current_ifs_val); |
| } |
| } |
| } else { |
| if (mac->in_ifs_mode && |
| (mac->tx_packet_delta <= MIN_NUM_XMITS)) { |
| mac->current_ifs_val = 0; |
| mac->in_ifs_mode = false; |
| wr32(E1000_AIT, 0); |
| } |
| } |
| out: |
| return; |
| } |
| |
| /** |
| * igb_validate_mdi_setting - Verify MDI/MDIx settings |
| * @hw: pointer to the HW structure |
| * |
| * Verify that when not using auto-negotitation that MDI/MDIx is correctly |
| * set, which is forced to MDI mode only. |
| **/ |
| s32 igb_validate_mdi_setting(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { |
| hw_dbg("Invalid MDI setting detected\n"); |
| hw->phy.mdix = 1; |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register |
| * @hw: pointer to the HW structure |
| * @reg: 32bit register offset such as E1000_SCTL |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Writes an address/data control type register. There are several of these |
| * and they all have the format address << 8 | data and bit 31 is polled for |
| * completion. |
| **/ |
| s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, |
| u32 offset, u8 data) |
| { |
| u32 i, regvalue = 0; |
| s32 ret_val = 0; |
| |
| /* Set up the address and data */ |
| regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); |
| wr32(reg, regvalue); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { |
| udelay(5); |
| regvalue = rd32(reg); |
| if (regvalue & E1000_GEN_CTL_READY) |
| break; |
| } |
| if (!(regvalue & E1000_GEN_CTL_READY)) { |
| hw_dbg("Reg %08x did not indicate ready\n", reg); |
| ret_val = -E1000_ERR_PHY; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_enable_mng_pass_thru - Enable processing of ARP's |
| * @hw: pointer to the HW structure |
| * |
| * Verifies the hardware needs to allow ARPs to be processed by the host. |
| **/ |
| bool igb_enable_mng_pass_thru(struct e1000_hw *hw) |
| { |
| u32 manc; |
| u32 fwsm, factps; |
| bool ret_val = false; |
| |
| if (!hw->mac.asf_firmware_present) |
| goto out; |
| |
| manc = rd32(E1000_MANC); |
| |
| if (!(manc & E1000_MANC_RCV_TCO_EN) || |
| !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
| goto out; |
| |
| if (hw->mac.arc_subsystem_valid) { |
| fwsm = rd32(E1000_FWSM); |
| factps = rd32(E1000_FACTPS); |
| |
| if (!(factps & E1000_FACTPS_MNGCG) && |
| ((fwsm & E1000_FWSM_MODE_MASK) == |
| (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { |
| ret_val = true; |
| goto out; |
| } |
| } else { |
| if ((manc & E1000_MANC_SMBUS_EN) && |
| !(manc & E1000_MANC_ASF_EN)) { |
| ret_val = true; |
| goto out; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |