| /* Copyright (c) 2011, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpu.h> |
| #include <linux/regulator/consumer.h> |
| |
| #include <asm/mach-types.h> |
| #include <asm/cpu.h> |
| |
| #include <mach/board.h> |
| #include <mach/msm_iomap.h> |
| #include <mach/rpm-regulator.h> |
| #include <mach/msm_bus.h> |
| #include <mach/msm_bus_board.h> |
| #include <mach/socinfo.h> |
| |
| #include "acpuclock.h" |
| |
| /* |
| * Source IDs. |
| * These must be negative to not overlap with the source IDs |
| * used by the 8x60 local clock driver. |
| */ |
| #define PLL_8 0 |
| #define HFPLL -1 |
| #define QSB -2 |
| |
| /* Mux source selects. */ |
| #define PRI_SRC_SEL_SEC_SRC 0 |
| #define PRI_SRC_SEL_HFPLL 1 |
| #define PRI_SRC_SEL_HFPLL_DIV2 2 |
| #define SEC_SRC_SEL_QSB 0 |
| |
| /* HFPLL registers offsets. */ |
| #define HFPLL_MODE 0x00 |
| #define HFPLL_CONFIG_CTL 0x04 |
| #define HFPLL_L_VAL 0x08 |
| #define HFPLL_M_VAL 0x0C |
| #define HFPLL_N_VAL 0x10 |
| #define HFPLL_DROOP_CTL 0x14 |
| |
| /* CP15 L2 indirect addresses. */ |
| #define L2CPMR_IADDR 0x500 |
| #define L2CPUCPMR_IADDR 0x501 |
| |
| #define STBY_KHZ 1 |
| |
| #define HFPLL_NOMINAL_VDD 1050000 |
| #define HFPLL_LOW_VDD 1050000 |
| #define HFPLL_LOW_VDD_PLL_L_MAX 0x28 |
| |
| #define SECCLKAGD BIT(4) |
| |
| enum scalables { |
| CPU0 = 0, |
| CPU1, |
| CPU2, |
| CPU3, |
| L2, |
| NUM_SCALABLES |
| }; |
| |
| enum vregs { |
| VREG_CORE, |
| VREG_MEM, |
| VREG_DIG, |
| NUM_VREG |
| }; |
| |
| struct vreg { |
| const char name[15]; |
| const unsigned int max_vdd; |
| const int rpm_vreg_voter; |
| const int rpm_vreg_id; |
| struct regulator *reg; |
| unsigned int cur_vdd; |
| }; |
| |
| struct core_speed { |
| unsigned int khz; |
| int src; |
| unsigned int pri_src_sel; |
| unsigned int sec_src_sel; |
| unsigned int pll_l_val; |
| }; |
| |
| struct l2_level { |
| struct core_speed speed; |
| unsigned int vdd_dig; |
| unsigned int vdd_mem; |
| unsigned int bw_level; |
| }; |
| |
| struct acpu_level { |
| unsigned int use_for_scaling; |
| struct core_speed speed; |
| struct l2_level *l2_level; |
| unsigned int vdd_core; |
| }; |
| |
| struct scalable { |
| void * __iomem const hfpll_base; |
| void * __iomem const aux_clk_sel; |
| const uint32_t l2cpmr_iaddr; |
| struct core_speed *current_speed; |
| struct l2_level *l2_vote; |
| struct vreg vreg[NUM_VREG]; |
| bool first_set_call; |
| }; |
| |
| static struct scalable scalable_8960[] = { |
| [CPU0] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x200, |
| .aux_clk_sel = MSM_ACC0_BASE + 0x014, |
| .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| .vreg[VREG_CORE] = { "krait0", 1150000 }, |
| .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| RPM_VREG_VOTER1, |
| RPM_VREG_ID_PM8921_L24 }, |
| .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| RPM_VREG_VOTER1, |
| RPM_VREG_ID_PM8921_S3 }, |
| }, |
| [CPU1] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x300, |
| .aux_clk_sel = MSM_ACC1_BASE + 0x014, |
| .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| .vreg[VREG_CORE] = { "krait1", 1150000 }, |
| .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| RPM_VREG_VOTER2, |
| RPM_VREG_ID_PM8921_L24 }, |
| .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| RPM_VREG_VOTER2, |
| RPM_VREG_ID_PM8921_S3 }, |
| }, |
| [L2] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x400, |
| .aux_clk_sel = MSM_APCS_GCC_BASE + 0x028, |
| .l2cpmr_iaddr = L2CPMR_IADDR, |
| }, |
| }; |
| |
| static DEFINE_MUTEX(driver_lock); |
| static DEFINE_SPINLOCK(l2_lock); |
| |
| static struct scalable scalable_8064[] = { |
| [CPU0] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x200, |
| .aux_clk_sel = MSM_ACC0_BASE + 0x014, |
| .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| .vreg[VREG_CORE] = { "krait0", 1150000 }, |
| .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| RPM_VREG_VOTER1, |
| RPM_VREG_ID_PM8921_L24 }, |
| .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| RPM_VREG_VOTER1, |
| RPM_VREG_ID_PM8921_S3 }, |
| }, |
| [CPU1] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x240, |
| .aux_clk_sel = MSM_ACC1_BASE + 0x014, |
| .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| .vreg[VREG_CORE] = { "krait1", 1150000 }, |
| .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| RPM_VREG_VOTER2, |
| RPM_VREG_ID_PM8921_L24 }, |
| .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| RPM_VREG_VOTER2, |
| RPM_VREG_ID_PM8921_S3 }, |
| }, |
| [CPU2] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x280, |
| .aux_clk_sel = MSM_ACC2_BASE + 0x014, |
| .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| .vreg[VREG_CORE] = { "krait2", 1150000 }, |
| .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| RPM_VREG_VOTER4, |
| RPM_VREG_ID_PM8921_L24 }, |
| .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| RPM_VREG_VOTER4, |
| RPM_VREG_ID_PM8921_S3 }, |
| }, |
| [CPU3] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x2C0, |
| .aux_clk_sel = MSM_ACC3_BASE + 0x014, |
| .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| .vreg[VREG_CORE] = { "krait3", 1150000 }, |
| .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| RPM_VREG_VOTER5, |
| RPM_VREG_ID_PM8921_L24 }, |
| .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| RPM_VREG_VOTER5, |
| RPM_VREG_ID_PM8921_S3 }, |
| }, |
| [L2] = { |
| .hfpll_base = MSM_HFPLL_BASE + 0x300, |
| .aux_clk_sel = MSM_APCS_GCC_BASE + 0x028, |
| .l2cpmr_iaddr = L2CPMR_IADDR, |
| }, |
| }; |
| |
| static struct scalable *scalable; |
| static struct l2_level *l2_freq_tbl; |
| static struct acpu_level *acpu_freq_tbl; |
| static int l2_freq_tbl_size; |
| static int cpu_boot_idx; |
| static int l2_boot_idx; |
| |
| /* Instantaneous bandwidth requests in MB/s. */ |
| #define BW_MBPS(_bw) \ |
| { \ |
| .vectors = (struct msm_bus_vectors[]){ \ |
| {\ |
| .src = MSM_BUS_MASTER_AMPSS_M0, \ |
| .dst = MSM_BUS_SLAVE_EBI_CH0, \ |
| .ib = (_bw) * 1000000UL, \ |
| .ab = (_bw) * 100000UL, \ |
| }, \ |
| { \ |
| .src = MSM_BUS_MASTER_AMPSS_M1, \ |
| .dst = MSM_BUS_SLAVE_EBI_CH0, \ |
| .ib = (_bw) * 1000000UL, \ |
| .ab = (_bw) * 100000UL, \ |
| }, \ |
| }, \ |
| .num_paths = 2, \ |
| } |
| static struct msm_bus_paths bw_level_tbl[] = { |
| [0] = BW_MBPS(616), /* At least 77 MHz on bus. */ |
| [1] = BW_MBPS(1024), /* At least 128 MHz on bus. */ |
| [2] = BW_MBPS(1536), /* At least 192 MHz on bus. */ |
| [3] = BW_MBPS(2048), /* At least 256 MHz on bus. */ |
| [4] = BW_MBPS(3080), /* At least 385 MHz on bus. */ |
| [5] = BW_MBPS(3968), /* At least 496 MHz on bus. */ |
| }; |
| |
| static struct msm_bus_scale_pdata bus_client_pdata = { |
| .usecase = bw_level_tbl, |
| .num_usecases = ARRAY_SIZE(bw_level_tbl), |
| .active_only = 1, |
| .name = "acpuclock", |
| }; |
| |
| static uint32_t bus_perf_client; |
| |
| /* TODO: Update vdd_dig and vdd_mem when voltage data is available. */ |
| #define L2(x) (&l2_freq_tbl_8960[(x)]) |
| static struct l2_level l2_freq_tbl_8960[] = { |
| [0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 }, |
| [1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 1 }, |
| [2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 }, |
| [3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 }, |
| [4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 1 }, |
| [5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 }, |
| [6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 }, |
| [7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 2 }, |
| [8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 2 }, |
| [9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 }, |
| [10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 3 }, |
| [11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 3 }, |
| [12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 3 }, |
| [13] = { { 1026000, HFPLL, 1, 0, 0x26 }, 1150000, 1150000, 4 }, |
| [14] = { { 1080000, HFPLL, 1, 0, 0x28 }, 1150000, 1150000, 4 }, |
| [15] = { { 1134000, HFPLL, 1, 0, 0x2A }, 1150000, 1150000, 4 }, |
| [16] = { { 1188000, HFPLL, 1, 0, 0x2C }, 1150000, 1150000, 4 }, |
| [17] = { { 1242000, HFPLL, 1, 0, 0x2E }, 1150000, 1150000, 5 }, |
| [18] = { { 1296000, HFPLL, 1, 0, 0x30 }, 1150000, 1150000, 5 }, |
| [19] = { { 1350000, HFPLL, 1, 0, 0x32 }, 1150000, 1150000, 5 }, |
| [20] = { { 1404000, HFPLL, 1, 0, 0x34 }, 1150000, 1150000, 5 }, |
| [21] = { { 1458000, HFPLL, 1, 0, 0x36 }, 1150000, 1150000, 5 }, |
| [22] = { { 1512000, HFPLL, 1, 0, 0x38 }, 1150000, 1150000, 5 }, |
| [23] = { { 1566000, HFPLL, 1, 0, 0x3A }, 1150000, 1150000, 5 }, |
| [24] = { { 1620000, HFPLL, 1, 0, 0x3C }, 1150000, 1150000, 5 }, |
| [25] = { { 1674000, HFPLL, 1, 0, 0x3E }, 1150000, 1150000, 5 }, |
| }; |
| |
| /* TODO: Update core voltages when data is available. */ |
| static struct acpu_level acpu_freq_tbl_8960[] = { |
| { 0, {STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 1050000 }, |
| { 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 1050000 }, |
| { 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 1050000 }, |
| { 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 1050000 }, |
| { 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 1050000 }, |
| { 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 1050000 }, |
| { 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 1050000 }, |
| { 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 1050000 }, |
| { 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(13), 1150000 }, |
| { 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(13), 1150000 }, |
| { 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(13), 1150000 }, |
| { 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(13), 1150000 }, |
| { 0, { 0 } } |
| }; |
| |
| /* TODO: Update vdd_dig and vdd_mem when voltage data is available. */ |
| #undef L2 |
| #define L2(x) (&l2_freq_tbl_8064[(x)]) |
| static struct l2_level l2_freq_tbl_8064[] = { |
| [0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 }, |
| [1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 0 }, |
| [2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 }, |
| [3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 }, |
| [4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 1 }, |
| [5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 }, |
| [6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 }, |
| [7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 2 }, |
| [8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 3 }, |
| [9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 }, |
| [10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 3 }, |
| [11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 3 }, |
| [12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 3 }, |
| [13] = { { 1026000, HFPLL, 1, 0, 0x26 }, 1150000, 1150000, 3 }, |
| [14] = { { 1080000, HFPLL, 1, 0, 0x28 }, 1150000, 1150000, 4 }, |
| [15] = { { 1134000, HFPLL, 1, 0, 0x2A }, 1150000, 1150000, 4 }, |
| [16] = { { 1188000, HFPLL, 1, 0, 0x2C }, 1150000, 1150000, 4 }, |
| [17] = { { 1242000, HFPLL, 1, 0, 0x2E }, 1150000, 1150000, 4 }, |
| [18] = { { 1296000, HFPLL, 1, 0, 0x30 }, 1150000, 1150000, 4 }, |
| [19] = { { 1350000, HFPLL, 1, 0, 0x32 }, 1150000, 1150000, 4 }, |
| [20] = { { 1404000, HFPLL, 1, 0, 0x34 }, 1150000, 1150000, 4 }, |
| [21] = { { 1458000, HFPLL, 1, 0, 0x36 }, 1150000, 1150000, 5 }, |
| [22] = { { 1512000, HFPLL, 1, 0, 0x38 }, 1150000, 1150000, 5 }, |
| [23] = { { 1566000, HFPLL, 1, 0, 0x3A }, 1150000, 1150000, 5 }, |
| [24] = { { 1620000, HFPLL, 1, 0, 0x3C }, 1150000, 1150000, 5 }, |
| [25] = { { 1674000, HFPLL, 1, 0, 0x3E }, 1150000, 1150000, 5 }, |
| }; |
| |
| /* TODO: Update core voltages when data is available. */ |
| static struct acpu_level acpu_freq_tbl_8064[] = { |
| { 0, {STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 1050000 }, |
| { 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 1050000 }, |
| { 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(2), 1050000 }, |
| { 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(3), 1050000 }, |
| { 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(4), 1050000 }, |
| { 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(5), 1050000 }, |
| { 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 1050000 }, |
| { 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(7), 1050000 }, |
| { 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(8), 1150000 }, |
| { 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(9), 1150000 }, |
| { 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(10), 1150000 }, |
| { 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(11), 1150000 }, |
| { 0, { 0 } } |
| }; |
| |
| unsigned long acpuclk_get_rate(int cpu) |
| { |
| return scalable[cpu].current_speed->khz; |
| } |
| |
| uint32_t acpuclk_get_switch_time(void) |
| { |
| return 0; |
| } |
| |
| unsigned long acpuclk_power_collapse(void) |
| { |
| int ret = acpuclk_get_rate(smp_processor_id()); |
| acpuclk_set_rate(smp_processor_id(), STBY_KHZ, SETRATE_PC); |
| return ret; |
| } |
| |
| unsigned long acpuclk_wait_for_irq(void) |
| { |
| int ret = acpuclk_get_rate(smp_processor_id()); |
| acpuclk_set_rate(smp_processor_id(), STBY_KHZ, SETRATE_SWFI); |
| return ret; |
| } |
| |
| /* Read an 'indirectly' addressed L2 CP15 register. */ |
| static uint32_t readl_cp15_l2ind(uint32_t addr) |
| { |
| uint32_t regval; |
| |
| /* |
| * TODO: CP15 registers are not emulated on RUMI3. |
| * Remove this check if/when they are. |
| */ |
| if (machine_is_msm8960_rumi3()) |
| return 0; |
| |
| asm volatile ("mcr p15, 3, %[l2cpsler], c15, c0, 6\n\t" |
| "mrc p15, 3, %[l2cpdr], c15, c0, 7\n\t" |
| : [l2cpdr]"=r" (regval) |
| : [l2cpsler]"r" (addr) |
| : "cc" |
| ); |
| return regval; |
| } |
| |
| /* Write an 'indirectly' addressed L2 CP15 register. */ |
| static void writel_cp15_l2ind(uint32_t regval, uint32_t addr) |
| { |
| /* |
| * TODO: CP15 registers are not emulated on RUMI3. |
| * Remove this check if/when they are. |
| */ |
| if (machine_is_msm8960_rumi3()) |
| return; |
| |
| mb(); |
| asm volatile ("mcr p15, 3, %[l2cpsler], c15, c0, 6\n\t" |
| "mcr p15, 3, %[l2cpdr], c15, c0, 7\n\t" |
| : |
| : [l2cpsler]"r" (addr), [l2cpdr]"r" (regval) |
| : "cc" |
| ); |
| isb(); |
| } |
| |
| /* Get the selected source on primary MUX. */ |
| static int get_pri_clk_src(struct scalable *sc) |
| { |
| uint32_t regval; |
| |
| regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| return regval & 0x3; |
| } |
| |
| /* Set the selected source on primary MUX. */ |
| static void set_pri_clk_src(struct scalable *sc, uint32_t pri_src_sel) |
| { |
| uint32_t regval; |
| |
| regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| regval &= ~0x3; |
| regval |= (pri_src_sel & 0x3); |
| writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| /* Wait for switch to complete. */ |
| mb(); |
| udelay(1); |
| } |
| |
| /* Get the selected source on secondary MUX. */ |
| static int get_sec_clk_src(struct scalable *sc) |
| { |
| uint32_t regval; |
| |
| regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| return (regval >> 2) & 0x3; |
| } |
| |
| /* Set the selected source on secondary MUX. */ |
| static void set_sec_clk_src(struct scalable *sc, uint32_t sec_src_sel) |
| { |
| uint32_t regval; |
| |
| /* Disable secondary source clock gating during switch. */ |
| regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| regval |= SECCLKAGD; |
| writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| |
| /* Program the MUX. */ |
| regval &= ~(0x3 << 2); |
| regval |= ((sec_src_sel & 0x3) << 2); |
| writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| |
| /* Wait for switch to complete. */ |
| mb(); |
| udelay(1); |
| |
| /* Re-enable secondary source clock gating. */ |
| regval &= ~SECCLKAGD; |
| writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| } |
| |
| /* Enable an already-configured HFPLL. */ |
| static void hfpll_enable(struct scalable *sc) |
| { |
| /* Disable PLL bypass mode. */ |
| writel_relaxed(0x2, sc->hfpll_base + HFPLL_MODE); |
| |
| /* |
| * H/W requires a 5us delay between disabling the bypass and |
| * de-asserting the reset. Delay 10us just to be safe. |
| */ |
| mb(); |
| udelay(10); |
| |
| /* De-assert active-low PLL reset. */ |
| writel_relaxed(0x6, sc->hfpll_base + HFPLL_MODE); |
| |
| /* Wait for PLL to lock. */ |
| mb(); |
| udelay(60); |
| |
| /* Enable PLL output. */ |
| writel_relaxed(0x7, sc->hfpll_base + HFPLL_MODE); |
| } |
| |
| /* Disable a HFPLL for power-savings or while its being reprogrammed. */ |
| static void hfpll_disable(struct scalable *sc) |
| { |
| /* |
| * Disable the PLL output, disable test mode, enable |
| * the bypass mode, and assert the reset. |
| */ |
| writel_relaxed(0, sc->hfpll_base + HFPLL_MODE); |
| } |
| |
| /* Program the HFPLL rate. Assumes HFPLL is already disabled. */ |
| static void hfpll_set_rate(struct scalable *sc, struct core_speed *tgt_s) |
| { |
| writel_relaxed(tgt_s->pll_l_val, sc->hfpll_base + HFPLL_L_VAL); |
| } |
| |
| /* Return the L2 speed that should be applied. */ |
| static struct l2_level *compute_l2_level(struct scalable *sc, |
| struct l2_level *vote_l) |
| { |
| struct l2_level *new_l; |
| int cpu; |
| |
| /* Bounds check. */ |
| BUG_ON(vote_l >= (l2_freq_tbl + l2_freq_tbl_size)); |
| |
| /* Find max L2 speed vote. */ |
| sc->l2_vote = vote_l; |
| new_l = l2_freq_tbl; |
| for_each_present_cpu(cpu) |
| new_l = max(new_l, scalable[cpu].l2_vote); |
| |
| return new_l; |
| } |
| |
| /* Update the bus bandwidth request. */ |
| static void set_bus_bw(unsigned int bw) |
| { |
| int ret; |
| |
| /* Bounds check. */ |
| if (bw >= ARRAY_SIZE(bw_level_tbl)) { |
| pr_err("invalid bandwidth request (%d)\n", bw); |
| return; |
| } |
| |
| /* Update bandwidth if request has changed. This may sleep. */ |
| ret = msm_bus_scale_client_update_request(bus_perf_client, bw); |
| if (ret) |
| pr_err("bandwidth request failed (%d)\n", ret); |
| } |
| |
| /* Set the CPU or L2 clock speed. */ |
| static void set_speed(struct scalable *sc, struct core_speed *tgt_s, |
| enum setrate_reason reason) |
| { |
| struct core_speed *strt_s = sc->current_speed; |
| |
| if (tgt_s == strt_s) |
| return; |
| |
| if (strt_s->src == HFPLL && tgt_s->src == HFPLL) { |
| /* Move CPU to QSB source. */ |
| /* |
| * TODO: If using QSB here requires elevating voltages, |
| * consider using PLL8 instead. |
| */ |
| set_sec_clk_src(sc, SEC_SRC_SEL_QSB); |
| set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| |
| /* Program CPU HFPLL. */ |
| hfpll_disable(sc); |
| hfpll_set_rate(sc, tgt_s); |
| hfpll_enable(sc); |
| |
| /* Move CPU to HFPLL source. */ |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| } else if (strt_s->src == HFPLL && tgt_s->src != HFPLL) { |
| /* TODO: Enable source. */ |
| /* |
| * If responding to CPU_DEAD we must be running on another |
| * CPU. Therefore, we can't access the downed CPU's CP15 |
| * clock MUX registers from here and can't change clock sources. |
| * Just turn off the PLL- since the CPU is down already, halting |
| * its clock should be safe. |
| */ |
| if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) { |
| set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| } |
| hfpll_disable(sc); |
| } else if (strt_s->src != HFPLL && tgt_s->src == HFPLL) { |
| hfpll_set_rate(sc, tgt_s); |
| hfpll_enable(sc); |
| /* |
| * If responding to CPU_UP_PREPARE, we can't change CP15 |
| * registers for the CPU that's coming up since we're not |
| * running on that CPU. That's okay though, since the MUX |
| * source was not changed on the way down, either. |
| */ |
| if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| /* TODO: Disable source. */ |
| } else { |
| /* TODO: Enable source. */ |
| if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) |
| set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| /* TODO: Disable source. */ |
| } |
| |
| sc->current_speed = tgt_s; |
| } |
| |
| /* Apply any per-cpu voltage increases. */ |
| static int increase_vdd(int cpu, unsigned int vdd_core, unsigned int vdd_mem, |
| unsigned int vdd_dig, enum setrate_reason reason) |
| { |
| struct scalable *sc = &scalable[cpu]; |
| int rc; |
| |
| /* |
| * Increase vdd_mem active-set before vdd_dig and vdd_core. |
| * vdd_mem should be >= both vdd_core and vdd_dig. |
| */ |
| if (vdd_mem > sc->vreg[VREG_MEM].cur_vdd) { |
| rc = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| sc->vreg[VREG_MEM].max_vdd, 0); |
| if (rc) { |
| pr_err("%s: vdd_mem (cpu%d) increase failed (%d)\n", |
| __func__, cpu, rc); |
| return rc; |
| } |
| sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| } |
| |
| /* Increase vdd_dig active-set vote. */ |
| if (vdd_dig > sc->vreg[VREG_DIG].cur_vdd) { |
| rc = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| sc->vreg[VREG_DIG].max_vdd, 0); |
| if (rc) { |
| pr_err("%s: vdd_dig (cpu%d) increase failed (%d)\n", |
| __func__, cpu, rc); |
| return rc; |
| } |
| sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| } |
| |
| /* |
| * Update per-CPU core voltage. Don't do this for the hotplug path for |
| * which it should already be correct. Attempting to set it is bad |
| * because we don't know what CPU we are running on at this point, but |
| * the CPU regulator API requires we call it from the affected CPU. |
| */ |
| if (vdd_core > sc->vreg[VREG_CORE].cur_vdd |
| && reason != SETRATE_HOTPLUG) { |
| rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| sc->vreg[VREG_CORE].max_vdd); |
| if (rc) { |
| pr_err("%s: vdd_core (cpu%d) increase failed (%d)\n", |
| __func__, cpu, rc); |
| return rc; |
| } |
| sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| } |
| |
| return rc; |
| } |
| |
| /* Apply any per-cpu voltage decreases. */ |
| static void decrease_vdd(int cpu, unsigned int vdd_core, unsigned int vdd_mem, |
| unsigned int vdd_dig, enum setrate_reason reason) |
| { |
| struct scalable *sc = &scalable[cpu]; |
| int ret; |
| |
| /* |
| * Update per-CPU core voltage. This must be called on the CPU |
| * that's being affected. Don't do this in the hotplug remove path, |
| * where the rail is off and we're executing on the other CPU. |
| */ |
| if (vdd_core < sc->vreg[VREG_CORE].cur_vdd |
| && reason != SETRATE_HOTPLUG) { |
| ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| sc->vreg[VREG_CORE].max_vdd); |
| if (ret) { |
| pr_err("%s: vdd_core (cpu%d) decrease failed (%d)\n", |
| __func__, cpu, ret); |
| return; |
| } |
| sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| } |
| |
| /* Decrease vdd_dig active-set vote. */ |
| if (vdd_dig < sc->vreg[VREG_DIG].cur_vdd) { |
| ret = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| sc->vreg[VREG_DIG].max_vdd, 0); |
| if (ret) { |
| pr_err("%s: vdd_dig (cpu%d) decrease failed (%d)\n", |
| __func__, cpu, ret); |
| return; |
| } |
| sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| } |
| |
| /* |
| * Decrease vdd_mem active-set after vdd_dig and vdd_core. |
| * vdd_mem should be >= both vdd_core and vdd_dig. |
| */ |
| if (vdd_mem < sc->vreg[VREG_MEM].cur_vdd) { |
| ret = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| sc->vreg[VREG_MEM].max_vdd, 0); |
| if (ret) { |
| pr_err("%s: vdd_mem (cpu%d) decrease failed (%d)\n", |
| __func__, cpu, ret); |
| return; |
| } |
| sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| } |
| } |
| |
| static unsigned int calculate_vdd_mem(struct acpu_level *tgt) |
| { |
| return max(tgt->vdd_core, tgt->l2_level->vdd_mem); |
| } |
| |
| static unsigned int calculate_vdd_dig(struct acpu_level *tgt) |
| { |
| unsigned int pll_vdd_dig; |
| |
| if (tgt->l2_level->speed.pll_l_val > HFPLL_LOW_VDD_PLL_L_MAX) |
| pll_vdd_dig = HFPLL_NOMINAL_VDD; |
| else |
| pll_vdd_dig = HFPLL_LOW_VDD; |
| |
| return max(tgt->l2_level->vdd_dig, pll_vdd_dig); |
| } |
| |
| static unsigned int calculate_vdd_core(struct acpu_level *tgt) |
| { |
| unsigned int pll_vdd_core; |
| |
| if (tgt->speed.pll_l_val > HFPLL_LOW_VDD_PLL_L_MAX) |
| pll_vdd_core = HFPLL_NOMINAL_VDD; |
| else |
| pll_vdd_core = HFPLL_LOW_VDD; |
| |
| return max(tgt->vdd_core, pll_vdd_core); |
| } |
| |
| /* Set the CPU's clock rate and adjust the L2 rate, if appropriate. */ |
| int acpuclk_set_rate(int cpu, unsigned long rate, enum setrate_reason reason) |
| { |
| struct core_speed *strt_acpu_s, *tgt_acpu_s; |
| struct l2_level *tgt_l2_l; |
| struct acpu_level *tgt; |
| unsigned int vdd_mem, vdd_dig, vdd_core; |
| unsigned long flags; |
| int rc = 0; |
| |
| if (cpu > num_possible_cpus()) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| mutex_lock(&driver_lock); |
| |
| strt_acpu_s = scalable[cpu].current_speed; |
| |
| /* Return early if rate didn't change. */ |
| if (rate == strt_acpu_s->khz && scalable[cpu].first_set_call == false) |
| goto out; |
| |
| /* Find target frequency. */ |
| for (tgt = acpu_freq_tbl; tgt->speed.khz != 0; tgt++) { |
| if (tgt->speed.khz == rate) { |
| tgt_acpu_s = &tgt->speed; |
| break; |
| } |
| } |
| if (tgt->speed.khz == 0) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| /* Calculate voltage requirements for the current CPU. */ |
| vdd_mem = calculate_vdd_mem(tgt); |
| vdd_dig = calculate_vdd_dig(tgt); |
| vdd_core = calculate_vdd_core(tgt); |
| |
| /* Increase VDD levels if needed. */ |
| if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) { |
| rc = increase_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason); |
| if (rc) |
| goto out; |
| } |
| |
| pr_debug("Switching from ACPU%d rate %u KHz -> %u KHz\n", |
| cpu, strt_acpu_s->khz, tgt_acpu_s->khz); |
| |
| /* Set the CPU speed. */ |
| set_speed(&scalable[cpu], tgt_acpu_s, reason); |
| |
| /* |
| * Update the L2 vote and apply the rate change. A spinlock is |
| * necessary to ensure L2 rate is calulated and set atomically, |
| * even if acpuclk_set_rate() is called from an atomic context |
| * and the driver_lock mutex is not acquired. |
| */ |
| spin_lock_irqsave(&l2_lock, flags); |
| tgt_l2_l = compute_l2_level(&scalable[cpu], tgt->l2_level); |
| set_speed(&scalable[L2], &tgt_l2_l->speed, reason); |
| spin_unlock_irqrestore(&l2_lock, flags); |
| |
| /* Nothing else to do for power collapse or SWFI. */ |
| if (reason == SETRATE_PC || reason == SETRATE_SWFI) |
| goto out; |
| |
| /* Update bus bandwith request. */ |
| set_bus_bw(tgt_l2_l->bw_level); |
| |
| /* Drop VDD levels if we can. */ |
| decrease_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason); |
| |
| scalable[cpu].first_set_call = false; |
| pr_debug("ACPU%d speed change complete\n", cpu); |
| |
| out: |
| if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| mutex_unlock(&driver_lock); |
| return rc; |
| } |
| |
| /* Initialize a HFPLL at a given rate and enable it. */ |
| static void __init hfpll_init(struct scalable *sc, struct core_speed *tgt_s) |
| { |
| pr_debug("Initializing HFPLL%d\n", sc - scalable); |
| |
| /* Disable the PLL for re-programming. */ |
| hfpll_disable(sc); |
| |
| /* Configure PLL parameters for integer mode. */ |
| writel_relaxed(0x7845C665, sc->hfpll_base + HFPLL_CONFIG_CTL); |
| writel_relaxed(0, sc->hfpll_base + HFPLL_M_VAL); |
| writel_relaxed(1, sc->hfpll_base + HFPLL_N_VAL); |
| |
| /* Program droop controller. */ |
| writel_relaxed(0x0108C000, sc->hfpll_base + HFPLL_DROOP_CTL); |
| |
| /* Set an initial rate and enable the PLL. */ |
| hfpll_set_rate(sc, tgt_s); |
| hfpll_enable(sc); |
| } |
| |
| /* Voltage regulator initialization. */ |
| static void __init regulator_init(void) |
| { |
| int cpu, ret; |
| struct scalable *sc; |
| |
| for_each_possible_cpu(cpu) { |
| sc = &scalable[cpu]; |
| sc->vreg[VREG_CORE].reg = regulator_get(NULL, |
| sc->vreg[VREG_CORE].name); |
| if (IS_ERR(sc->vreg[VREG_CORE].reg)) { |
| pr_err("regulator_get(%s) failed (%ld)\n", |
| sc->vreg[VREG_CORE].name, |
| PTR_ERR(sc->vreg[VREG_CORE].reg)); |
| BUG(); |
| } |
| |
| ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, |
| sc->vreg[VREG_CORE].max_vdd, |
| sc->vreg[VREG_CORE].max_vdd); |
| if (ret) |
| pr_err("regulator_set_voltage(%s) failed" |
| " (%d)\n", sc->vreg[VREG_CORE].name, ret); |
| |
| ret = regulator_enable(sc->vreg[VREG_CORE].reg); |
| if (ret) |
| pr_err("regulator_enable(%s) failed (%d)\n", |
| sc->vreg[VREG_CORE].name, ret); |
| } |
| } |
| |
| #define INIT_QSB_ID 0 |
| #define INIT_HFPLL_ID 1 |
| /* Set initial rate for a given core. */ |
| static void __init init_clock_sources(struct scalable *sc, |
| struct core_speed *tgt_s) |
| { |
| uint32_t pri_src, regval; |
| |
| /* |
| * If the HFPLL is in use, program AUX source for QSB, switch to it, |
| * re-initialize the HFPLL, and switch back to the HFPLL. Otherwise, |
| * the HFPLL is not in use, so we can switch directly to it. |
| */ |
| pri_src = get_pri_clk_src(scalable); |
| if (pri_src == PRI_SRC_SEL_HFPLL || pri_src == PRI_SRC_SEL_HFPLL_DIV2) { |
| set_sec_clk_src(sc, SEC_SRC_SEL_QSB); |
| set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| } |
| hfpll_init(sc, tgt_s); |
| |
| /* Set PRI_SRC_SEL_HFPLL_DIV2 divider to div-2. */ |
| regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| regval &= ~(0x3 << 6); |
| writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| |
| /* Select PLL8 as AUX source input to the secondary MUX. */ |
| writel_relaxed(0x3, sc->aux_clk_sel); |
| |
| set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| sc->current_speed = tgt_s; |
| |
| /* |
| * Set this flag so that the first call to acpuclk_set_rate() can drop |
| * voltages and set initial bus bandwidth requests. |
| */ |
| sc->first_set_call = true; |
| } |
| |
| static void __init per_cpu_init(void *data) |
| { |
| int cpu = smp_processor_id(); |
| init_clock_sources(&scalable[cpu], &acpu_freq_tbl[cpu_boot_idx].speed); |
| scalable[cpu].l2_vote = &l2_freq_tbl[l2_boot_idx]; |
| } |
| |
| /* Register with bus driver. */ |
| static void __init bus_init(void) |
| { |
| int ret; |
| |
| bus_perf_client = msm_bus_scale_register_client(&bus_client_pdata); |
| if (!bus_perf_client) { |
| pr_err("unable to register bus client\n"); |
| BUG(); |
| } |
| |
| ret = msm_bus_scale_client_update_request(bus_perf_client, |
| (ARRAY_SIZE(bw_level_tbl)-1)); |
| if (ret) |
| pr_err("initial bandwidth request failed (%d)\n", ret); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ_MSM |
| static struct cpufreq_frequency_table freq_table[NR_CPUS][30]; |
| |
| static void __init cpufreq_table_init(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| int i, freq_cnt = 0; |
| /* Construct the freq_table tables from acpu_freq_tbl. */ |
| for (i = 0; acpu_freq_tbl[i].speed.khz != 0 |
| && freq_cnt < ARRAY_SIZE(*freq_table); i++) { |
| if (acpu_freq_tbl[i].use_for_scaling) { |
| freq_table[cpu][freq_cnt].index = freq_cnt; |
| freq_table[cpu][freq_cnt].frequency |
| = acpu_freq_tbl[i].speed.khz; |
| freq_cnt++; |
| } |
| } |
| /* freq_table not big enough to store all usable freqs. */ |
| BUG_ON(acpu_freq_tbl[i].speed.khz != 0); |
| |
| freq_table[cpu][freq_cnt].index = freq_cnt; |
| freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END; |
| |
| pr_info("CPU%d: %d scaling frequencies supported.\n", |
| cpu, freq_cnt); |
| |
| /* Register table with CPUFreq. */ |
| cpufreq_frequency_table_get_attr(freq_table[cpu], cpu); |
| } |
| } |
| #else |
| static void __init cpufreq_table_init(void) {} |
| #endif |
| |
| #define HOT_UNPLUG_KHZ STBY_KHZ |
| static int __cpuinit acpuclock_cpu_callback(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| static int prev_khz[NR_CPUS]; |
| static int prev_pri_src[NR_CPUS]; |
| static int prev_sec_src[NR_CPUS]; |
| int cpu = (int)hcpu; |
| |
| switch (action) { |
| case CPU_DYING: |
| case CPU_DYING_FROZEN: |
| /* |
| * On Krait v1, the primary and secondary muxes must be set |
| * to QSB before L2 power collapse and restored after. |
| */ |
| if (cpu_is_krait_v1()) { |
| prev_sec_src[cpu] = get_sec_clk_src(&scalable[cpu]); |
| prev_pri_src[cpu] = get_pri_clk_src(&scalable[cpu]); |
| set_sec_clk_src(&scalable[cpu], SEC_SRC_SEL_QSB); |
| set_pri_clk_src(&scalable[cpu], PRI_SRC_SEL_SEC_SRC); |
| } |
| break; |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| prev_khz[cpu] = acpuclk_get_rate(cpu); |
| /* Fall through. */ |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| acpuclk_set_rate(cpu, HOT_UNPLUG_KHZ, SETRATE_HOTPLUG); |
| break; |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| if (WARN_ON(!prev_khz[cpu])) |
| prev_khz[cpu] = acpu_freq_tbl->speed.khz; |
| acpuclk_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG); |
| break; |
| case CPU_STARTING: |
| case CPU_STARTING_FROZEN: |
| if (cpu_is_krait_v1()) { |
| set_sec_clk_src(&scalable[cpu], prev_sec_src[cpu]); |
| set_pri_clk_src(&scalable[cpu], prev_pri_src[cpu]); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block __cpuinitdata acpuclock_cpu_notifier = { |
| .notifier_call = acpuclock_cpu_callback, |
| }; |
| |
| void __init msm_acpu_clock_init(struct msm_acpu_clock_platform_data *clkdata) |
| { |
| if (cpu_is_msm8960()) { |
| scalable = scalable_8960; |
| acpu_freq_tbl = acpu_freq_tbl_8960; |
| l2_freq_tbl = l2_freq_tbl_8960; |
| l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8960); |
| l2_boot_idx = 11; |
| cpu_boot_idx = 11; |
| } else if (cpu_is_apq8064()) { |
| scalable = scalable_8064; |
| acpu_freq_tbl = acpu_freq_tbl_8064; |
| l2_freq_tbl = l2_freq_tbl_8064; |
| l2_freq_tbl_size = ARRAY_SIZE(l2_freq_tbl_8064); |
| l2_boot_idx = 11; |
| cpu_boot_idx = 11; |
| } |
| |
| init_clock_sources(&scalable[L2], &l2_freq_tbl[l2_boot_idx].speed); |
| on_each_cpu(per_cpu_init, NULL, true); |
| |
| regulator_init(); |
| bus_init(); |
| cpufreq_table_init(); |
| register_hotcpu_notifier(&acpuclock_cpu_notifier); |
| } |