blob: 64e04839196031591d73f9c81a337d6e9fdfe756 [file] [log] [blame]
/*
* Copyright (c) 2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <mach/rpm.h>
#include <mach/rpm-regulator.h>
#include <mach/socinfo.h>
#include "rpm_resources.h"
/* Debug Definitions */
enum {
MSM_RPM_VREG_DEBUG_REQUEST = BIT(0),
MSM_RPM_VREG_DEBUG_VOTE = BIT(1),
MSM_RPM_VREG_DEBUG_DUPLICATE = BIT(2),
MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG = BIT(3),
};
static int msm_rpm_vreg_debug_mask;
module_param_named(
debug_mask, msm_rpm_vreg_debug_mask, int, S_IRUSR | S_IWUSR
);
#define REGULATOR_TYPE_LDO 0
#define REGULATOR_TYPE_SMPS 1
#define REGULATOR_TYPE_VS 2
#define REGULATOR_TYPE_NCP 3
#define MICRO_TO_MILLI(uV) ((uV) / 1000)
#define MILLI_TO_MICRO(mV) ((mV) * 1000)
#define SET_PART(_vreg, _part, _val) \
_vreg->req[_vreg->part->_part.word].value \
= (_vreg->req[_vreg->part->_part.word].value \
& ~vreg->part->_part.mask) \
| (((_val) << vreg->part->_part.shift) & vreg->part->_part.mask)
#define GET_PART(_vreg, _part) \
((_vreg->req[_vreg->part->_part.word].value & vreg->part->_part.mask) \
>> vreg->part->_part.shift)
struct request_member {
int word;
unsigned int mask;
int shift;
};
struct rpm_vreg_parts {
struct request_member mV; /* voltage: used if voltage is in mV */
struct request_member uV; /* voltage: used if voltage is in uV */
struct request_member ip; /* peak current in mA */
struct request_member pd; /* pull down enable */
struct request_member ia; /* average current in mA */
struct request_member fm; /* force mode */
struct request_member pm; /* power mode */
struct request_member pc; /* pin control */
struct request_member pf; /* pin function */
struct request_member enable_state; /* NCP and switch */
struct request_member comp_mode; /* NCP */
struct request_member freq; /* frequency: NCP and SMPS */
struct request_member freq_clk_src; /* clock source: SMPS */
struct request_member hpm; /* switch: control OCP ans SS */
int request_len;
};
#define REQUEST_MEMBER(_word, _mask, _shift) \
{ \
.word = _word, \
.mask = _mask, \
.shift = _shift, \
}
struct rpm_vreg_parts ldo_parts = {
.request_len = 2,
.uV = REQUEST_MEMBER(0, 0x007FFFFF, 0),
.pd = REQUEST_MEMBER(0, 0x00800000, 23),
.pc = REQUEST_MEMBER(0, 0x0F000000, 24),
.pf = REQUEST_MEMBER(0, 0xF0000000, 28),
.ip = REQUEST_MEMBER(1, 0x000003FF, 0),
.ia = REQUEST_MEMBER(1, 0x000FFC00, 10),
.fm = REQUEST_MEMBER(1, 0x00700000, 20),
};
struct rpm_vreg_parts smps_parts = {
.request_len = 2,
.uV = REQUEST_MEMBER(0, 0x007FFFFF, 0),
.pd = REQUEST_MEMBER(0, 0x00800000, 23),
.pc = REQUEST_MEMBER(0, 0x0F000000, 24),
.pf = REQUEST_MEMBER(0, 0xF0000000, 28),
.ip = REQUEST_MEMBER(1, 0x000003FF, 0),
.ia = REQUEST_MEMBER(1, 0x000FFC00, 10),
.fm = REQUEST_MEMBER(1, 0x00700000, 20),
.pm = REQUEST_MEMBER(1, 0x00800000, 23),
.freq = REQUEST_MEMBER(1, 0x1F000000, 24),
.freq_clk_src = REQUEST_MEMBER(1, 0x60000000, 29),
};
struct rpm_vreg_parts switch_parts = {
.request_len = 1,
.enable_state = REQUEST_MEMBER(0, 0x00000001, 0),
.pd = REQUEST_MEMBER(0, 0x00000002, 1),
.pc = REQUEST_MEMBER(0, 0x0000003C, 2),
.pf = REQUEST_MEMBER(0, 0x000003C0, 6),
.hpm = REQUEST_MEMBER(0, 0x00000C00, 10),
};
struct rpm_vreg_parts ncp_parts = {
.request_len = 1,
.uV = REQUEST_MEMBER(0, 0x007FFFFF, 0),
.enable_state = REQUEST_MEMBER(0, 0x00800000, 23),
.comp_mode = REQUEST_MEMBER(0, 0x01000000, 24),
.freq = REQUEST_MEMBER(0, 0x3E000000, 25),
};
struct vreg_range {
int min_uV;
int max_uV;
int step_uV;
unsigned n_voltages;
};
struct vreg_set_points {
struct vreg_range *range;
int count;
unsigned n_voltages;
};
#define VOLTAGE_RANGE(_min_uV, _max_uV, _step_uV) \
{ \
.min_uV = _min_uV, \
.max_uV = _max_uV, \
.step_uV = _step_uV, \
}
static struct vreg_range pldo_ranges[] = {
VOLTAGE_RANGE( 750000, 1487500, 12500),
VOLTAGE_RANGE(1500000, 3075000, 25000),
VOLTAGE_RANGE(3100000, 4900000, 50000),
};
static struct vreg_range nldo_ranges[] = {
VOLTAGE_RANGE( 750000, 1537500, 12500),
};
static struct vreg_range nldo1200_ranges[] = {
VOLTAGE_RANGE( 375000, 743750, 6250),
VOLTAGE_RANGE( 750000, 1537500, 12500),
};
static struct vreg_range smps_ranges[] = {
VOLTAGE_RANGE( 375000, 737500, 12500),
VOLTAGE_RANGE( 750000, 1487500, 12500),
VOLTAGE_RANGE(1500000, 3075000, 25000),
};
static struct vreg_range ftsmps_ranges[] = {
VOLTAGE_RANGE( 350000, 650000, 50000),
VOLTAGE_RANGE( 700000, 1400000, 12500),
VOLTAGE_RANGE(1500000, 3300000, 50000),
};
static struct vreg_range ncp_ranges[] = {
VOLTAGE_RANGE(1500000, 3050000, 50000),
};
#define SET_POINTS(_ranges) \
{ \
.range = _ranges, \
.count = ARRAY_SIZE(_ranges), \
};
static struct vreg_set_points pldo_set_points = SET_POINTS(pldo_ranges);
static struct vreg_set_points nldo_set_points = SET_POINTS(nldo_ranges);
static struct vreg_set_points nldo1200_set_points = SET_POINTS(nldo1200_ranges);
static struct vreg_set_points smps_set_points = SET_POINTS(smps_ranges);
static struct vreg_set_points ftsmps_set_points = SET_POINTS(ftsmps_ranges);
static struct vreg_set_points ncp_set_points = SET_POINTS(ncp_ranges);
/*
* This is used when voting for LPM or HPM by subtracting or adding to the
* hpm_min_load of a regulator. It has units of uA.
*/
#define LOAD_THRESHOLD_STEP 1000
/* This is the maximum uA load that can be passed to the RPM. */
#define MAX_POSSIBLE_LOAD (MILLI_TO_MICRO(0xFFF))
struct vreg {
struct msm_rpm_iv_pair req[2];
struct msm_rpm_iv_pair prev_active_req[2];
struct msm_rpm_iv_pair prev_sleep_req[2];
struct rpm_regulator_init_data pdata;
struct regulator_dev *rdev;
struct regulator_dev *rdev_pc;
const char *name;
struct vreg_set_points *set_points;
struct rpm_vreg_parts *part;
int type;
enum rpm_vreg_id id;
struct mutex pc_lock;
int save_uV;
int mode;
bool is_enabled;
bool is_enabled_pc;
const int hpm_min_load;
int active_min_uV_vote[RPM_VREG_VOTER_COUNT];
int sleep_min_uV_vote[RPM_VREG_VOTER_COUNT];
};
#define LDO(_id, _ranges, _hpm_min_load) \
[RPM_VREG_ID_PM8921_##_id] = { \
.req = { \
[0] = { .id = MSM_RPM_ID_PM8921_##_id##_0, }, \
[1] = { .id = MSM_RPM_ID_PM8921_##_id##_1, }, \
}, \
.hpm_min_load = RPM_VREG_##_hpm_min_load##_HPM_MIN_LOAD, \
.type = REGULATOR_TYPE_LDO, \
.set_points = &_ranges##_set_points, \
.part = &ldo_parts, \
.id = RPM_VREG_ID_PM8921_##_id, \
}
#define SMPS(_id, _ranges, _hpm_min_load) \
[RPM_VREG_ID_PM8921_##_id] = { \
.req = { \
[0] = { .id = MSM_RPM_ID_PM8921_##_id##_0, }, \
[1] = { .id = MSM_RPM_ID_PM8921_##_id##_1, }, \
}, \
.hpm_min_load = RPM_VREG_##_hpm_min_load##_HPM_MIN_LOAD, \
.type = REGULATOR_TYPE_SMPS, \
.set_points = &_ranges##_set_points, \
.part = &smps_parts, \
.id = RPM_VREG_ID_PM8921_##_id, \
}
#define LVS(_id) \
[RPM_VREG_ID_PM8921_##_id] = { \
.req = { \
[0] = { .id = MSM_RPM_ID_PM8921_##_id, }, \
[1] = { .id = -1, }, \
}, \
.type = REGULATOR_TYPE_VS, \
.part = &switch_parts, \
.id = RPM_VREG_ID_PM8921_##_id, \
}
#define MVS(_vreg_id, _rpm_id) \
[RPM_VREG_ID_PM8921_##_vreg_id] = { \
.req = { \
[0] = { .id = MSM_RPM_ID_##_rpm_id, }, \
[1] = { .id = -1, }, \
}, \
.type = REGULATOR_TYPE_VS, \
.part = &switch_parts, \
.id = RPM_VREG_ID_PM8921_##_vreg_id, \
}
#define NCP(_id) \
[RPM_VREG_ID_PM8921_##_id] = { \
.req = { \
[0] = { .id = MSM_RPM_ID_##_id##_0, }, \
[1] = { .id = MSM_RPM_ID_##_id##_1, }, \
}, \
.type = REGULATOR_TYPE_NCP, \
.set_points = &ncp_set_points, \
.part = &ncp_parts, \
.id = RPM_VREG_ID_PM8921_##_id, \
}
static struct vreg vregs[] = {
LDO(L1, nldo, LDO_150),
LDO(L2, nldo, LDO_150),
LDO(L3 , pldo, LDO_150),
LDO(L4, pldo, LDO_50),
LDO(L5, pldo, LDO_300),
LDO(L6, pldo, LDO_600),
LDO(L7, pldo, LDO_150),
LDO(L8, pldo, LDO_300),
LDO(L9, pldo, LDO_300),
LDO(L10, pldo, LDO_600),
LDO(L11, pldo, LDO_150),
LDO(L12, nldo, LDO_150),
LDO(L14, pldo, LDO_50),
LDO(L15, pldo, LDO_150),
LDO(L16, pldo, LDO_300),
LDO(L17, pldo, LDO_150),
LDO(L18, nldo, LDO_150),
LDO(L21, pldo, LDO_150),
LDO(L22, pldo, LDO_150),
LDO(L23, pldo, LDO_150),
LDO(L24, nldo1200, LDO_1200),
LDO(L25, nldo1200, LDO_1200),
LDO(L26, nldo1200, LDO_1200),
LDO(L27, nldo1200, LDO_1200),
LDO(L28, nldo1200, LDO_1200),
LDO(L29, pldo, LDO_150),
SMPS(S1, smps, SMPS_1500),
SMPS(S2, smps, SMPS_1500),
SMPS(S3, smps, SMPS_1500),
SMPS(S4, smps, SMPS_1500),
SMPS(S5, ftsmps, SMPS_2000),
SMPS(S6, ftsmps, SMPS_2000),
SMPS(S7, smps, SMPS_1500),
SMPS(S8, smps, SMPS_1500),
LVS(LVS1),
LVS(LVS2),
LVS(LVS3),
LVS(LVS4),
LVS(LVS5),
LVS(LVS6),
LVS(LVS7),
MVS(USB_OTG, USB_OTG_SWITCH),
MVS(HDMI_MVS, HDMI_SWITCH),
NCP(NCP),
};
#define vreg_err(vreg, fmt, ...) \
pr_err("%s: " fmt, vreg->name, ##__VA_ARGS__)
#define VREG_ID_IS_VDD_MEM_OR_DIG(id) \
((id == RPM_VREG_ID_PM8921_L24) || (id == RPM_VREG_ID_PM8921_S3))
const char *pin_func_label[] = {
[RPM_VREG_PIN_FN_DONT_CARE] = "don't care",
[RPM_VREG_PIN_FN_ENABLE] = "on/off",
[RPM_VREG_PIN_FN_MODE] = "HPM/LPM",
[RPM_VREG_PIN_FN_SLEEP_B] = "sleep_b",
[RPM_VREG_PIN_FN_NONE] = "none",
};
const char *force_mode_label[] = {
[RPM_VREG_FORCE_MODE_NONE] = "none",
[RPM_VREG_FORCE_MODE_LPM] = "LPM",
[RPM_VREG_FORCE_MODE_AUTO] = "auto",
[RPM_VREG_FORCE_MODE_HPM] = "HPM",
[RPM_VREG_FORCE_MODE_BYPASS] = "BYP",
};
const char *power_mode_label[] = {
[RPM_VREG_POWER_MODE_HYSTERETIC] = "HYS",
[RPM_VREG_POWER_MODE_PWM] = "PWM",
};
static void rpm_regulator_req(struct vreg *vreg, int set)
{
int uV, ip, fm, pm, pc, pf, pd, ia, freq, clk, state, hpm, comp_mode;
const char *pf_label = "", *fm_label = "", *pc_total = "";
const char *pc_en0 = "", *pc_en1 = "", *pc_en2 = "", *pc_en3 = "";
const char *pm_label = "";
/* Suppress VDD_MEM and VDD_DIG printing. */
if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
&& VREG_ID_IS_VDD_MEM_OR_DIG(vreg->id))
return;
if (vreg->part->uV.mask)
uV = GET_PART(vreg, uV);
else
uV = MILLI_TO_MICRO(GET_PART(vreg, mV));
ip = GET_PART(vreg, ip);
fm = GET_PART(vreg, fm);
pm = GET_PART(vreg, pm);
pc = GET_PART(vreg, pc);
pf = GET_PART(vreg, pf);
pd = GET_PART(vreg, pd);
ia = GET_PART(vreg, ia);
freq = GET_PART(vreg, freq);
clk = GET_PART(vreg, freq_clk_src);
state = GET_PART(vreg, enable_state);
hpm = GET_PART(vreg, hpm);
comp_mode = GET_PART(vreg, comp_mode);
if (pf >= 0 && pf < ARRAY_SIZE(pin_func_label))
pf_label = pin_func_label[pf];
if (fm >= 0 && fm < ARRAY_SIZE(force_mode_label))
fm_label = force_mode_label[fm];
if (pm >= 0 && pm < ARRAY_SIZE(power_mode_label))
pm_label = power_mode_label[pm];
if (pc & RPM_VREG_PIN_CTRL_EN0)
pc_en0 = " D1";
if (pc & RPM_VREG_PIN_CTRL_EN1)
pc_en1 = " A0";
if (pc & RPM_VREG_PIN_CTRL_EN2)
pc_en2 = " A1";
if (pc & RPM_VREG_PIN_CTRL_EN3)
pc_en3 = " A2";
if (pc == RPM_VREG_PIN_CTRL_NONE)
pc_total = " none";
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
pr_info("%s %-9s: s=%c, v=%7d uV, ip=%4d mA, fm=%s (%d), "
"pc=%s%s%s%s%s (%d), pf=%s (%d), pd=%s (%d), "
"ia=%4d mA; req[0]={%d, 0x%08X}, req[1]={%d, 0x%08X}\n",
(set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
vreg->name,
(set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'), uV, ip,
fm_label, fm, pc_en0, pc_en1, pc_en2, pc_en3, pc_total,
pc, pf_label, pf, (pd == 1 ? "Y" : "N"), pd, ia,
vreg->req[0].id, vreg->req[0].value,
vreg->req[1].id, vreg->req[1].value);
break;
case REGULATOR_TYPE_SMPS:
pr_info("%s %-9s: s=%c, v=%7d uV, ip=%4d mA, fm=%s (%d), "
"pc=%s%s%s%s%s (%d), pf=%s (%d), pd=%s (%d), "
"ia=%4d mA, freq=%2d, pm=%s (%d), clk_src=%d; "
"req[0]={%d, 0x%08X}, req[1]={%d, 0x%08X}\n",
(set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
vreg->name,
(set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'), uV, ip,
fm_label, fm, pc_en0, pc_en1, pc_en2, pc_en3, pc_total,
pc, pf_label, pf, (pd == 1 ? "Y" : "N"), pd, ia, freq,
pm_label, pm, clk, vreg->req[0].id, vreg->req[0].value,
vreg->req[1].id, vreg->req[1].value);
break;
case REGULATOR_TYPE_VS:
pr_info("%s %-9s: s=%c, state=%s (%d), pd=%s (%d), "
"pc =%s%s%s%s%s (%d), pf=%s (%d), hpm=%d; "
"req[0]={%d, 0x%08X}\n",
(set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
vreg->name, (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'),
(state == 1 ? "on" : "off"), state,
(pd == 1 ? "Y" : "N"), pd, pc_en0, pc_en1, pc_en2,
pc_en3, pc_total, pc, pf_label, pf, hpm,
vreg->req[0].id, vreg->req[0].value);
break;
case REGULATOR_TYPE_NCP:
pr_info("%s %-9s: s=%c, v=-%7d uV, state=%s (%d), freq=%2d, "
"comp=%d; req[0]={%d, 0x%08X}\n",
(set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
vreg->name, (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'),
uV, (state == 1 ? "on" : "off"), state, freq, comp_mode,
vreg->req[0].id, vreg->req[0].value);
break;
}
}
static void rpm_regulator_vote(struct vreg *vreg, enum rpm_vreg_voter voter,
int set, int voter_uV, int aggregate_uV)
{
/* Suppress VDD_MEM and VDD_DIG printing. */
if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
&& VREG_ID_IS_VDD_MEM_OR_DIG(vreg->id))
return;
pr_info("vote received %-9s: voter=%d, set=%c, v_voter=%7d uV, "
"v_aggregate=%7d uV\n", vreg->name, voter,
(set == 0 ? 'A' : 'S'), voter_uV, aggregate_uV);
}
static void rpm_regulator_duplicate(struct vreg *vreg, int set, int cnt)
{
/* Suppress VDD_MEM and VDD_DIG printing. */
if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
&& VREG_ID_IS_VDD_MEM_OR_DIG(vreg->id))
return;
if (cnt == 2)
pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}, "
"req[1]={%d, 0x%08X}\n", vreg->name,
(set == 0 ? 'A' : 'S'),
vreg->req[0].id, vreg->req[0].value,
vreg->req[1].id, vreg->req[1].value);
else if (cnt == 1)
pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}\n",
vreg->name, (set == 0 ? 'A' : 'S'),
vreg->req[0].id, vreg->req[0].value);
}
/* Spin lock needed for sleep-selectable regulators. */
static DEFINE_SPINLOCK(pm8921_noirq_lock);
static int voltage_from_req(struct vreg *vreg)
{
int uV = 0;
if (vreg->part->uV.mask)
uV = GET_PART(vreg, uV);
else
uV = MILLI_TO_MICRO(GET_PART(vreg, mV));
return uV;
}
static void voltage_to_req(int uV, struct vreg *vreg)
{
if (vreg->part->uV.mask)
SET_PART(vreg, uV, uV);
else
SET_PART(vreg, mV, MICRO_TO_MILLI(uV));
}
static int vreg_send_request(struct vreg *vreg, enum rpm_vreg_voter voter,
int set, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1, unsigned cnt,
int update_voltage)
{
struct msm_rpm_iv_pair *prev_req;
int rc = 0, max_uV_vote = 0;
unsigned prev0, prev1;
int *min_uV_vote;
int i;
if (set == MSM_RPM_CTX_SET_0) {
min_uV_vote = vreg->active_min_uV_vote;
prev_req = vreg->prev_active_req;
} else {
min_uV_vote = vreg->sleep_min_uV_vote;
prev_req = vreg->prev_sleep_req;
}
prev0 = vreg->req[0].value;
vreg->req[0].value &= ~mask0;
vreg->req[0].value |= val0 & mask0;
prev1 = vreg->req[1].value;
vreg->req[1].value &= ~mask1;
vreg->req[1].value |= val1 & mask1;
if (update_voltage)
min_uV_vote[voter] = voltage_from_req(vreg);
/* Find the highest voltage voted for and use it. */
for (i = 0; i < RPM_VREG_VOTER_COUNT; i++)
max_uV_vote = max(max_uV_vote, min_uV_vote[i]);
voltage_to_req(max_uV_vote, vreg);
if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_VOTE)
rpm_regulator_vote(vreg, voter, set, min_uV_vote[voter],
max_uV_vote);
/* Ignore duplicate requests */
if (vreg->req[0].value != prev_req[0].value ||
vreg->req[1].value != prev_req[1].value) {
rc = msm_rpmrs_set_noirq(set, vreg->req, cnt);
if (rc) {
vreg->req[0].value = prev0;
vreg->req[1].value = prev1;
vreg_err(vreg, "msm_rpmrs_set_noirq failed - "
"set=%s, id=%d, rc=%d\n",
(set == MSM_RPM_CTX_SET_0 ? "active" : "sleep"),
vreg->req[0].id, rc);
} else {
/* Only save if nonzero and active set. */
if (max_uV_vote && (set == MSM_RPM_CTX_SET_0))
vreg->save_uV = max_uV_vote;
if (msm_rpm_vreg_debug_mask
& MSM_RPM_VREG_DEBUG_REQUEST)
rpm_regulator_req(vreg, set);
prev_req[0].value = vreg->req[0].value;
prev_req[1].value = vreg->req[1].value;
}
} else if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) {
rpm_regulator_duplicate(vreg, set, cnt);
}
return rc;
}
static int vreg_set_noirq(struct vreg *vreg, enum rpm_vreg_voter voter,
int sleep, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1, unsigned cnt,
int update_voltage)
{
unsigned int s_mask[2] = {mask0, mask1}, s_val[2] = {val0, val1};
unsigned long flags;
int rc;
if (voter < 0 || voter >= RPM_VREG_VOTER_COUNT)
return -EINVAL;
spin_lock_irqsave(&pm8921_noirq_lock, flags);
/*
* Send sleep set request first so that subsequent set_mode, etc calls
* use the voltage from the active set.
*/
if (sleep)
rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP,
mask0, val0, mask1, val1, cnt, update_voltage);
else {
/*
* Vote for 0 V in the sleep set when active set-only is
* specified. This ensures that a disable vote will be issued
* at some point for the sleep set of the regulator.
*/
if (vreg->part->uV.mask) {
s_val[vreg->part->uV.word] = 0 << vreg->part->uV.shift;
s_mask[vreg->part->uV.word] = vreg->part->uV.mask;
} else {
s_val[vreg->part->mV.word] = 0 << vreg->part->mV.shift;
s_mask[vreg->part->mV.word] = vreg->part->mV.mask;
}
rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP,
s_mask[0], s_val[0], s_mask[1], s_val[1],
cnt, update_voltage);
}
rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_0, mask0, val0,
mask1, val1, cnt, update_voltage);
spin_unlock_irqrestore(&pm8921_noirq_lock, flags);
return rc;
}
/**
* rpm_vreg_set_voltage - vote for a min_uV value of specified regualtor
* @vreg: ID for regulator
* @voter: ID for the voter
* @min_uV: minimum acceptable voltage (in uV) that is voted for
* @max_uV: maximum acceptable voltage (in uV) that is voted for
* @sleep_also: 0 for active set only, non-0 for active set and sleep set
*
* Returns 0 on success or errno.
*
* This function is used to vote for the voltage of a regulator without
* using the regulator framework. It is needed by consumers which hold spin
* locks or have interrupts disabled because the regulator framework can sleep.
* It is also needed by consumers which wish to only vote for active set
* regulator voltage.
*
* If sleep_also == 0, then a sleep-set value of 0V will be voted for.
*
* This function may only be called for regulators which have the sleep flag
* specified in their private data.
*/
int rpm_vreg_set_voltage(enum rpm_vreg_id vreg_id, enum rpm_vreg_voter voter,
int min_uV, int max_uV, int sleep_also)
{
unsigned int mask[2] = {0}, val[2] = {0};
struct vreg_range *range;
struct vreg *vreg;
int uV = min_uV;
int lim_min_uV, lim_max_uV, i, rc;
if (vreg_id < 0 || vreg_id > RPM_VREG_ID_PM8921_MAX_REAL) {
pr_err("invalid regulator id=%d\n", vreg_id);
return -EINVAL;
}
/*
* TODO: make this function a no-op for 8064 so that it can be called by
* consumers on 8064 before RPM capabilities are present. (needed for
* acpuclock driver)
*/
if (cpu_is_apq8064())
return 0;
vreg = &vregs[vreg_id];
range = &vreg->set_points->range[0];
if (!vreg->pdata.sleep_selectable) {
vreg_err(vreg, "regulator is not marked sleep selectable\n");
return -EINVAL;
}
/*
* Check if request voltage is outside of allowed range. The regulator
* core has already checked that constraint range is inside of the
* physically allowed range.
*/
lim_min_uV = vreg->pdata.init_data.constraints.min_uV;
lim_max_uV = vreg->pdata.init_data.constraints.max_uV;
if (uV < lim_min_uV && max_uV >= lim_min_uV)
uV = lim_min_uV;
if (uV < lim_min_uV || uV > lim_max_uV) {
vreg_err(vreg,
"request v=[%d, %d] is outside allowed v=[%d, %d]\n",
min_uV, max_uV, lim_min_uV, lim_max_uV);
return -EINVAL;
}
/* Find the range which uV is inside of. */
for (i = vreg->set_points->count - 1; i > 0; i++) {
if (uV > vreg->set_points->range[i - 1].max_uV) {
range = &vreg->set_points->range[i];
break;
}
}
/*
* Force uV to be an allowed set point and apply a ceiling function
* to non-set point values.
*/
uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV;
uV = uV * range->step_uV + range->min_uV;
if (vreg->part->uV.mask) {
val[vreg->part->uV.word] = uV << vreg->part->uV.shift;
mask[vreg->part->uV.word] = vreg->part->uV.mask;
} else {
val[vreg->part->mV.word]
= MICRO_TO_MILLI(uV) << vreg->part->mV.shift;
mask[vreg->part->mV.word] = vreg->part->mV.mask;
}
rc = vreg_set_noirq(vreg, voter, sleep_also, mask[0], val[0], mask[1],
val[1], vreg->part->request_len, 1);
if (rc)
vreg_err(vreg, "vreg_set_noirq failed, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(rpm_vreg_set_voltage);
/**
* rpm_vreg_set_frequency - sets the frequency of a switching regulator
* @vreg: ID for regulator
* @freq: enum corresponding to desired frequency
*
* Returns 0 on success or errno.
*/
int rpm_vreg_set_frequency(enum rpm_vreg_id vreg_id, enum rpm_vreg_freq freq)
{
unsigned int mask[2] = {0}, val[2] = {0};
struct vreg *vreg;
int rc;
if (vreg_id < 0 || vreg_id > RPM_VREG_ID_PM8921_MAX_REAL) {
pr_err("invalid regulator id=%d\n", vreg_id);
return -EINVAL;
}
/*
* TODO: make this function a no-op for 8064 so that it can be called by
* consumers on 8064 before RPM capabilities are present.
*/
if (cpu_is_apq8064())
return 0;
vreg = &vregs[vreg_id];
if (freq < 0 || freq > RPM_VREG_FREQ_1p20) {
vreg_err(vreg, "invalid frequency=%d\n", freq);
return -EINVAL;
}
if (!vreg->pdata.sleep_selectable) {
vreg_err(vreg, "regulator is not marked sleep selectable\n");
return -EINVAL;
}
if (!vreg->part->freq.mask) {
vreg_err(vreg, "frequency not supported\n");
return -EINVAL;
}
val[vreg->part->freq.word] = freq << vreg->part->freq.shift;
mask[vreg->part->freq.word] = vreg->part->freq.mask;
rc = vreg_set_noirq(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, mask[0],
val[0], mask[1], val[1], vreg->part->request_len, 0);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(rpm_vreg_set_frequency);
static inline int vreg_hpm_min_uA(struct vreg *vreg)
{
return vreg->hpm_min_load;
}
static inline int vreg_lpm_max_uA(struct vreg *vreg)
{
return vreg->hpm_min_load - LOAD_THRESHOLD_STEP;
}
static inline unsigned saturate_peak_load(struct vreg *vreg, unsigned load_uA)
{
unsigned load_max
= MILLI_TO_MICRO(vreg->part->ip.mask >> vreg->part->ip.shift);
return (load_uA > load_max ? load_max : load_uA);
}
static inline unsigned saturate_avg_load(struct vreg *vreg, unsigned load_uA)
{
unsigned load_max
= MILLI_TO_MICRO(vreg->part->ia.mask >> vreg->part->ia.shift);
return (load_uA > load_max ? load_max : load_uA);
}
/* Change vreg->req, but do not send it to the RPM. */
static int vreg_store(struct vreg *vreg, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1)
{
unsigned long flags = 0;
if (vreg->pdata.sleep_selectable)
spin_lock_irqsave(&pm8921_noirq_lock, flags);
vreg->req[0].value &= ~mask0;
vreg->req[0].value |= val0 & mask0;
vreg->req[1].value &= ~mask1;
vreg->req[1].value |= val1 & mask1;
if (vreg->pdata.sleep_selectable)
spin_unlock_irqrestore(&pm8921_noirq_lock, flags);
return 0;
}
static int vreg_set(struct vreg *vreg, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1, unsigned cnt)
{
unsigned prev0 = 0, prev1 = 0;
int rc;
/*
* Bypass the normal route for regulators that can be called to change
* just the active set values.
*/
if (vreg->pdata.sleep_selectable)
return vreg_set_noirq(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1,
mask0, val0, mask1, val1, cnt, 1);
prev0 = vreg->req[0].value;
vreg->req[0].value &= ~mask0;
vreg->req[0].value |= val0 & mask0;
prev1 = vreg->req[1].value;
vreg->req[1].value &= ~mask1;
vreg->req[1].value |= val1 & mask1;
/* Ignore duplicate requests */
if (vreg->req[0].value == vreg->prev_active_req[0].value &&
vreg->req[1].value == vreg->prev_active_req[1].value) {
if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE)
rpm_regulator_duplicate(vreg, MSM_RPM_CTX_SET_0, cnt);
return 0;
}
rc = msm_rpm_set(MSM_RPM_CTX_SET_0, vreg->req, cnt);
if (rc) {
vreg->req[0].value = prev0;
vreg->req[1].value = prev1;
vreg_err(vreg, "msm_rpm_set failed, set=active, id=%d, rc=%d\n",
vreg->req[0].id, rc);
} else {
if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_REQUEST)
rpm_regulator_req(vreg, MSM_RPM_CTX_SET_0);
vreg->prev_active_req[0].value = vreg->req[0].value;
vreg->prev_active_req[1].value = vreg->req[1].value;
}
return rc;
}
static int vreg_is_enabled(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
int enabled;
mutex_lock(&vreg->pc_lock);
enabled = vreg->is_enabled;
mutex_unlock(&vreg->pc_lock);
return enabled;
}
static void set_enable(struct vreg *vreg, unsigned int *mask, unsigned int *val)
{
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
case REGULATOR_TYPE_SMPS:
/* Enable by setting a voltage. */
if (vreg->part->uV.mask) {
val[vreg->part->uV.word]
|= vreg->save_uV << vreg->part->uV.shift;
mask[vreg->part->uV.word] |= vreg->part->uV.mask;
} else {
val[vreg->part->mV.word]
|= MICRO_TO_MILLI(vreg->save_uV)
<< vreg->part->mV.shift;
mask[vreg->part->mV.word] |= vreg->part->mV.mask;
}
break;
case REGULATOR_TYPE_VS:
case REGULATOR_TYPE_NCP:
/* Enable by setting enable_state. */
val[vreg->part->enable_state.word]
|= RPM_VREG_STATE_ON << vreg->part->enable_state.shift;
mask[vreg->part->enable_state.word]
|= vreg->part->enable_state.mask;
}
}
static int vreg_enable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0;
set_enable(vreg, mask, val);
mutex_lock(&vreg->pc_lock);
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static void set_disable(struct vreg *vreg, unsigned int *mask,
unsigned int *val)
{
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
case REGULATOR_TYPE_SMPS:
/* Disable by setting a voltage of 0 uV. */
if (vreg->part->uV.mask) {
val[vreg->part->uV.word] |= 0 << vreg->part->uV.shift;
mask[vreg->part->uV.word] |= vreg->part->uV.mask;
} else {
val[vreg->part->mV.word] |= 0 << vreg->part->mV.shift;
mask[vreg->part->mV.word] |= vreg->part->mV.mask;
}
break;
case REGULATOR_TYPE_VS:
case REGULATOR_TYPE_NCP:
/* Disable by setting enable_state. */
val[vreg->part->enable_state.word]
|= RPM_VREG_STATE_OFF << vreg->part->enable_state.shift;
mask[vreg->part->enable_state.word]
|= vreg->part->enable_state.mask;
}
}
static int vreg_disable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0;
set_disable(vreg, mask, val);
mutex_lock(&vreg->pc_lock);
/* Only disable if pin control is not in use. */
if (!vreg->is_enabled_pc)
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static int vreg_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV,
unsigned *selector)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
struct vreg_range *range = &vreg->set_points->range[0];
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0, uV = min_uV;
int lim_min_uV, lim_max_uV, i;
/* Check if request voltage is outside of physically settable range. */
lim_min_uV = vreg->set_points->range[0].min_uV;
lim_max_uV =
vreg->set_points->range[vreg->set_points->count - 1].max_uV;
if (uV < lim_min_uV && max_uV >= lim_min_uV)
uV = lim_min_uV;
if (uV < lim_min_uV || uV > lim_max_uV) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, lim_min_uV, lim_max_uV);
return -EINVAL;
}
/* Find the range which uV is inside of. */
for (i = vreg->set_points->count - 1; i > 0; i++) {
if (uV > vreg->set_points->range[i - 1].max_uV) {
range = &vreg->set_points->range[i];
break;
}
}
/*
* Force uV to be an allowed set point and apply a ceiling function
* to non-set point values.
*/
uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV;
uV = uV * range->step_uV + range->min_uV;
if (vreg->part->uV.mask) {
val[vreg->part->uV.word] = uV << vreg->part->uV.shift;
mask[vreg->part->uV.word] = vreg->part->uV.mask;
} else {
val[vreg->part->mV.word]
= MICRO_TO_MILLI(uV) << vreg->part->mV.shift;
mask[vreg->part->mV.word] = vreg->part->mV.mask;
}
mutex_lock(&vreg->pc_lock);
/*
* Only send a request for a new voltage if the regulator is currently
* enabled. This will ensure that LDO and SMPS regulators are not
* inadvertently turned on because voltage > 0 is equivalent to
* enabling. For NCP, this just removes unnecessary RPM requests.
*/
if (vreg->is_enabled) {
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
} else if (vreg->type == REGULATOR_TYPE_NCP) {
/* Regulator is disabled; store but don't send new request. */
rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]);
}
if (!rc && (!vreg->pdata.sleep_selectable || !vreg->is_enabled))
vreg->save_uV = uV;
mutex_unlock(&vreg->pc_lock);
return rc;
}
static int vreg_get_voltage(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->save_uV;
}
static int vreg_list_voltage(struct regulator_dev *rdev, unsigned selector)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
int uV = 0;
int i;
if (!vreg->set_points) {
vreg_err(vreg, "no voltages available\n");
return -EINVAL;
}
if (selector >= vreg->set_points->n_voltages)
return 0;
for (i = 0; i < vreg->set_points->count; i++) {
if (selector < vreg->set_points->range[i].n_voltages) {
uV = selector * vreg->set_points->range[i].step_uV
+ vreg->set_points->range[i].min_uV;
break;
} else {
selector -= vreg->set_points->range[i].n_voltages;
}
}
return uV;
}
static int vreg_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0;
int peak_uA;
mutex_lock(&vreg->pc_lock);
peak_uA = MILLI_TO_MICRO((vreg->req[vreg->part->ip.word].value
& vreg->part->ip.mask) >> vreg->part->ip.shift);
switch (mode) {
case REGULATOR_MODE_NORMAL:
/* Make sure that request currents are in HPM range. */
if (peak_uA < vreg_hpm_min_uA(vreg)) {
val[vreg->part->ip.word]
= MICRO_TO_MILLI(vreg_hpm_min_uA(vreg))
<< vreg->part->ip.shift;
mask[vreg->part->ip.word] = vreg->part->ip.mask;
}
break;
case REGULATOR_MODE_IDLE:
/* Make sure that request currents are in LPM range. */
if (peak_uA > vreg_lpm_max_uA(vreg)) {
val[vreg->part->ip.word]
= MICRO_TO_MILLI(vreg_lpm_max_uA(vreg))
<< vreg->part->ip.shift;
mask[vreg->part->ip.word] = vreg->part->ip.mask;
}
break;
default:
vreg_err(vreg, "invalid mode: %u\n", mode);
mutex_unlock(&vreg->pc_lock);
return -EINVAL;
}
if (vreg->is_enabled) {
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
} else {
/* Regulator is disabled; store but don't send new request. */
rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]);
}
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
else
vreg->mode = mode;
mutex_unlock(&vreg->pc_lock);
return rc;
}
static unsigned int vreg_get_mode(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->mode;
}
static unsigned int vreg_get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV, int load_uA)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode;
load_uA += vreg->pdata.system_uA;
mutex_lock(&vreg->pc_lock);
SET_PART(vreg, ip, MICRO_TO_MILLI(saturate_peak_load(vreg, load_uA)));
mutex_unlock(&vreg->pc_lock);
if (load_uA >= vreg->hpm_min_load)
mode = REGULATOR_MODE_NORMAL;
else
mode = REGULATOR_MODE_IDLE;
return mode;
}
/*
* Returns the logical pin control enable state because the pin control options
* present in the hardware out of restart could be different from those desired
* by the consumer.
*/
static int vreg_pin_control_is_enabled(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->is_enabled_pc;
}
static int vreg_pin_control_enable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc;
mutex_lock(&vreg->pc_lock);
val[vreg->part->pc.word]
|= vreg->pdata.pin_ctrl << vreg->part->pc.shift;
mask[vreg->part->pc.word] |= vreg->part->pc.mask;
val[vreg->part->pf.word] |= vreg->pdata.pin_fn << vreg->part->pf.shift;
mask[vreg->part->pf.word] |= vreg->part->pf.mask;
if (!vreg->is_enabled)
set_enable(vreg, mask, val);
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled_pc = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static int vreg_pin_control_disable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
enum rpm_vreg_pin_fn pin_fn;
int rc;
mutex_lock(&vreg->pc_lock);
val[vreg->part->pc.word]
|= RPM_VREG_PIN_CTRL_NONE << vreg->part->pc.shift;
mask[vreg->part->pc.word] |= vreg->part->pc.mask;
pin_fn = RPM_VREG_PIN_FN_NONE;
if (vreg->pdata.pin_fn == RPM_VREG_PIN_FN_SLEEP_B)
pin_fn = RPM_VREG_PIN_FN_SLEEP_B;
val[vreg->part->pf.word] |= pin_fn << vreg->part->pf.shift;
mask[vreg->part->pf.word] |= vreg->part->pf.mask;
if (!vreg->is_enabled)
set_disable(vreg, mask, val);
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled_pc = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
/* Real regulator operations. */
static struct regulator_ops ldo_ops = {
.enable = vreg_enable,
.disable = vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
.set_mode = vreg_set_mode,
.get_mode = vreg_get_mode,
.get_optimum_mode = vreg_get_optimum_mode,
};
static struct regulator_ops smps_ops = {
.enable = vreg_enable,
.disable = vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
.set_mode = vreg_set_mode,
.get_mode = vreg_get_mode,
.get_optimum_mode = vreg_get_optimum_mode,
};
static struct regulator_ops switch_ops = {
.enable = vreg_enable,
.disable = vreg_disable,
.is_enabled = vreg_is_enabled,
};
static struct regulator_ops ncp_ops = {
.enable = vreg_enable,
.disable = vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
};
/* Pin control regulator operations. */
static struct regulator_ops pin_control_ops = {
.enable = vreg_pin_control_enable,
.disable = vreg_pin_control_disable,
.is_enabled = vreg_pin_control_is_enabled,
};
#define VREG_DESC(_id, _name, _ops) \
[RPM_VREG_ID_PM8921_##_id] = { \
.id = RPM_VREG_ID_PM8921_##_id, \
.name = _name, \
.ops = _ops, \
.type = REGULATOR_VOLTAGE, \
.owner = THIS_MODULE, \
}
static struct regulator_desc vreg_description[] = {
VREG_DESC(L1, "8921_l1", &ldo_ops),
VREG_DESC(L2, "8921_l2", &ldo_ops),
VREG_DESC(L3, "8921_l3", &ldo_ops),
VREG_DESC(L4, "8921_l4", &ldo_ops),
VREG_DESC(L5, "8921_l5", &ldo_ops),
VREG_DESC(L6, "8921_l6", &ldo_ops),
VREG_DESC(L7, "8921_l7", &ldo_ops),
VREG_DESC(L8, "8921_l8", &ldo_ops),
VREG_DESC(L9, "8921_l9", &ldo_ops),
VREG_DESC(L10, "8921_l10", &ldo_ops),
VREG_DESC(L11, "8921_l11", &ldo_ops),
VREG_DESC(L12, "8921_l12", &ldo_ops),
VREG_DESC(L14, "8921_l14", &ldo_ops),
VREG_DESC(L15, "8921_l15", &ldo_ops),
VREG_DESC(L16, "8921_l16", &ldo_ops),
VREG_DESC(L17, "8921_l17", &ldo_ops),
VREG_DESC(L18, "8921_l18", &ldo_ops),
VREG_DESC(L21, "8921_l21", &ldo_ops),
VREG_DESC(L22, "8921_l22", &ldo_ops),
VREG_DESC(L23, "8921_l23", &ldo_ops),
VREG_DESC(L24, "8921_l24", &ldo_ops),
VREG_DESC(L25, "8921_l25", &ldo_ops),
VREG_DESC(L26, "8921_l26", &ldo_ops),
VREG_DESC(L27, "8921_l27", &ldo_ops),
VREG_DESC(L28, "8921_l28", &ldo_ops),
VREG_DESC(L29, "8921_l29", &ldo_ops),
VREG_DESC(S1, "8921_s1", &smps_ops),
VREG_DESC(S2, "8921_s2", &smps_ops),
VREG_DESC(S3, "8921_s3", &smps_ops),
VREG_DESC(S4, "8921_s4", &smps_ops),
VREG_DESC(S5, "8921_s5", &smps_ops),
VREG_DESC(S6, "8921_s6", &smps_ops),
VREG_DESC(S7, "8921_s7", &smps_ops),
VREG_DESC(S8, "8921_s8", &smps_ops),
VREG_DESC(LVS1, "8921_lvs1", &switch_ops),
VREG_DESC(LVS2, "8921_lvs2", &switch_ops),
VREG_DESC(LVS3, "8921_lvs3", &switch_ops),
VREG_DESC(LVS4, "8921_lvs4", &switch_ops),
VREG_DESC(LVS5, "8921_lvs5", &switch_ops),
VREG_DESC(LVS6, "8921_lvs6", &switch_ops),
VREG_DESC(LVS7, "8921_lvs7", &switch_ops),
VREG_DESC(USB_OTG, "8921_usb_otg", &switch_ops),
VREG_DESC(HDMI_MVS, "8921_hdmi_mvs", &switch_ops),
VREG_DESC(NCP, "8921_ncp", &ncp_ops),
VREG_DESC(L1_PC, "8921_l1_pc", &pin_control_ops),
VREG_DESC(L2_PC, "8921_l2_pc", &pin_control_ops),
VREG_DESC(L3_PC, "8921_l3_pc", &pin_control_ops),
VREG_DESC(L4_PC, "8921_l4_pc", &pin_control_ops),
VREG_DESC(L5_PC, "8921_l5_pc", &pin_control_ops),
VREG_DESC(L6_PC, "8921_l6_pc", &pin_control_ops),
VREG_DESC(L7_PC, "8921_l7_pc", &pin_control_ops),
VREG_DESC(L8_PC, "8921_l8_pc", &pin_control_ops),
VREG_DESC(L9_PC, "8921_l9_pc", &pin_control_ops),
VREG_DESC(L10_PC, "8921_l10_pc", &pin_control_ops),
VREG_DESC(L11_PC, "8921_l11_pc", &pin_control_ops),
VREG_DESC(L12_PC, "8921_l12_pc", &pin_control_ops),
VREG_DESC(L14_PC, "8921_l14_pc", &pin_control_ops),
VREG_DESC(L15_PC, "8921_l15_pc", &pin_control_ops),
VREG_DESC(L16_PC, "8921_l16_pc", &pin_control_ops),
VREG_DESC(L17_PC, "8921_l17_pc", &pin_control_ops),
VREG_DESC(L18_PC, "8921_l18_pc", &pin_control_ops),
VREG_DESC(L21_PC, "8921_l21_pc", &pin_control_ops),
VREG_DESC(L22_PC, "8921_l22_pc", &pin_control_ops),
VREG_DESC(L23_PC, "8921_l23_pc", &pin_control_ops),
VREG_DESC(L29_PC, "8921_l29_pc", &pin_control_ops),
VREG_DESC(S1_PC, "8921_s1_pc", &pin_control_ops),
VREG_DESC(S2_PC, "8921_s2_pc", &pin_control_ops),
VREG_DESC(S3_PC, "8921_s3_pc", &pin_control_ops),
VREG_DESC(S4_PC, "8921_s4_pc", &pin_control_ops),
VREG_DESC(S7_PC, "8921_s7_pc", &pin_control_ops),
VREG_DESC(S8_PC, "8921_s8_pc", &pin_control_ops),
VREG_DESC(LVS1_PC, "8921_lvs1_pc", &pin_control_ops),
VREG_DESC(LVS3_PC, "8921_lvs3_pc", &pin_control_ops),
VREG_DESC(LVS4_PC, "8921_lvs4_pc", &pin_control_ops),
VREG_DESC(LVS5_PC, "8921_lvs5_pc", &pin_control_ops),
VREG_DESC(LVS6_PC, "8921_lvs6_pc", &pin_control_ops),
VREG_DESC(LVS7_PC, "8921_lvs7_pc", &pin_control_ops),
};
static inline int is_real_regulator(int id)
{
return (id >= 0) && (id <= RPM_VREG_ID_PM8921_MAX_REAL);
}
static int pc_id_to_real_id(int id)
{
int real_id;
if (id >= RPM_VREG_ID_PM8921_L1_PC && id <= RPM_VREG_ID_PM8921_L23_PC)
real_id = id - RPM_VREG_ID_PM8921_L1_PC;
else if (id >= RPM_VREG_ID_PM8921_L29_PC
&& id <= RPM_VREG_ID_PM8921_S4_PC)
real_id = id - RPM_VREG_ID_PM8921_L29_PC
+ RPM_VREG_ID_PM8921_L29;
else if (id >= RPM_VREG_ID_PM8921_S7_PC
&& id <= RPM_VREG_ID_PM8921_LVS1_PC)
real_id = id - RPM_VREG_ID_PM8921_S7_PC + RPM_VREG_ID_PM8921_S7;
else
real_id = id - RPM_VREG_ID_PM8921_LVS3_PC
+ RPM_VREG_ID_PM8921_LVS3;
return real_id;
}
static int __devinit
rpm_vreg_init_regulator(const struct rpm_regulator_init_data *pdata,
struct device *dev)
{
enum rpm_vreg_pin_fn pin_fn;
struct regulator_desc *rdesc;
struct regulator_dev *rdev;
struct vreg *vreg;
const char *reg_name = "";
unsigned pin_ctrl;
int rc = 0, id = pdata->id;
if (id < 0 || id > RPM_VREG_ID_PM8921_MAX) {
pr_err("invalid regulator id: %d\n", id);
return -ENODEV;
}
rdesc = &vreg_description[pdata->id];
if (!is_real_regulator(pdata->id))
id = pc_id_to_real_id(pdata->id);
vreg = &vregs[id];
reg_name = vreg_description[pdata->id].name;
if (!pdata) {
pr_err("%s: requires platform data\n", reg_name);
return -EINVAL;
}
if (vreg->set_points)
rdesc->n_voltages = vreg->set_points->n_voltages;
else
rdesc->n_voltages = 0;
mutex_lock(&vreg->pc_lock);
if (is_real_regulator(pdata->id)) {
/* Do not modify pin control and pin function values. */
pin_ctrl = vreg->pdata.pin_ctrl;
pin_fn = vreg->pdata.pin_fn;
memcpy(&(vreg->pdata), pdata,
sizeof(struct rpm_regulator_init_data));
vreg->pdata.pin_ctrl = pin_ctrl;
vreg->pdata.pin_fn = pin_fn;
vreg->name = reg_name;
vreg->save_uV = vreg->pdata.default_uV;
if (vreg->pdata.peak_uA >= vreg->hpm_min_load)
vreg->mode = REGULATOR_MODE_NORMAL;
else
vreg->mode = REGULATOR_MODE_IDLE;
/* Initialize the RPM request. */
SET_PART(vreg, ip,
MICRO_TO_MILLI(saturate_peak_load(vreg, vreg->pdata.peak_uA)));
SET_PART(vreg, fm, vreg->pdata.force_mode);
SET_PART(vreg, pm, vreg->pdata.power_mode);
SET_PART(vreg, pd, vreg->pdata.pull_down_enable);
SET_PART(vreg, ia,
MICRO_TO_MILLI(saturate_avg_load(vreg, vreg->pdata.avg_uA)));
SET_PART(vreg, freq, vreg->pdata.freq);
SET_PART(vreg, freq_clk_src, 0);
SET_PART(vreg, comp_mode, 0);
SET_PART(vreg, hpm, 0);
if (!vreg->is_enabled_pc) {
SET_PART(vreg, pf, RPM_VREG_PIN_FN_NONE);
SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE);
}
} else {
/* Pin control regulator */
if ((pdata->pin_ctrl & RPM_VREG_PIN_CTRL_ALL)
== RPM_VREG_PIN_CTRL_NONE
&& pdata->pin_fn != RPM_VREG_PIN_FN_SLEEP_B) {
pr_err("%s: no pin control input specified\n",
reg_name);
mutex_unlock(&vreg->pc_lock);
return -EINVAL;
}
vreg->pdata.pin_ctrl = pdata->pin_ctrl;
vreg->pdata.pin_fn = pdata->pin_fn;
if (!vreg->name)
vreg->name = reg_name;
/* Initialize the RPM request. */
pin_fn = RPM_VREG_PIN_FN_NONE;
/* Allow pf=sleep_b to be specified by platform data. */
if (vreg->pdata.pin_fn == RPM_VREG_PIN_FN_SLEEP_B)
pin_fn = RPM_VREG_PIN_FN_SLEEP_B;
SET_PART(vreg, pf, pin_fn);
SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE);
}
mutex_unlock(&vreg->pc_lock);
if (rc)
goto bail;
rdev = regulator_register(rdesc, dev, &(pdata->init_data), vreg);
if (IS_ERR(rdev)) {
rc = PTR_ERR(rdev);
pr_err("regulator_register failed: %s, rc=%d\n", reg_name, rc);
return rc;
} else {
if (is_real_regulator(pdata->id))
vreg->rdev = rdev;
else
vreg->rdev_pc = rdev;
}
bail:
if (rc)
pr_err("error for %s, rc=%d\n", reg_name, rc);
return rc;
}
static int __devinit rpm_vreg_probe(struct platform_device *pdev)
{
struct rpm_regulator_platform_data *platform_data;
int rc = 0;
int i;
platform_data = pdev->dev.platform_data;
if (!platform_data) {
pr_err("rpm-regulator requires platform data\n");
return -EINVAL;
}
/* Initialize all of the regulators listed in the platform data. */
for (i = 0; i < platform_data->num_regulators; i++) {
rc = rpm_vreg_init_regulator(&platform_data->init_data[i],
&pdev->dev);
if (rc) {
pr_err("rpm_vreg_init_regulator failed, rc=%d\n", rc);
goto remove_regulators;
}
}
platform_set_drvdata(pdev, platform_data);
return rc;
remove_regulators:
/* Unregister all regulators added before the erroring one. */
for (; i >= 0; i--) {
if (is_real_regulator(platform_data->init_data[i].id))
regulator_unregister(vregs[i].rdev);
else
regulator_unregister(
vregs[pc_id_to_real_id(i)].rdev_pc);
}
return rc;
}
static int __devexit rpm_vreg_remove(struct platform_device *pdev)
{
struct rpm_regulator_platform_data *platform_data;
int i, id;
platform_data = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (platform_data) {
for (i = 0; i < platform_data->num_regulators; i++) {
id = platform_data->init_data[i].id;
if (is_real_regulator(id)) {
regulator_unregister(vregs[id].rdev);
vregs[id].rdev = NULL;
} else {
regulator_unregister(
vregs[pc_id_to_real_id(id)].rdev_pc);
vregs[id].rdev_pc = NULL;
}
}
}
return 0;
}
static struct platform_driver rpm_vreg_driver = {
.probe = rpm_vreg_probe,
.remove = __devexit_p(rpm_vreg_remove),
.driver = {
.name = RPM_REGULATOR_DEV_NAME,
.owner = THIS_MODULE,
},
};
static int __init rpm_vreg_init(void)
{
struct vreg_set_points *set_points[] = {
&pldo_set_points,
&nldo_set_points,
&nldo1200_set_points,
&smps_set_points,
&ftsmps_set_points,
&ncp_set_points,
};
int i, j;
/* Calculate the number of set points available for each regualtor. */
for (i = 0; i < ARRAY_SIZE(set_points); i++) {
for (j = 0; j < set_points[i]->count; j++) {
set_points[i]->range[j].n_voltages
= (set_points[i]->range[j].max_uV
- set_points[i]->range[j].min_uV)
/ set_points[i]->range[j].step_uV + 1;
set_points[i]->n_voltages
+= set_points[i]->range[j].n_voltages;
}
}
/* Initialize pin control mutexes */
for (i = 0; i < ARRAY_SIZE(vregs); i++)
mutex_init(&vregs[i].pc_lock);
return platform_driver_register(&rpm_vreg_driver);
}
static void __exit rpm_vreg_exit(void)
{
int i;
platform_driver_unregister(&rpm_vreg_driver);
for (i = 0; i < ARRAY_SIZE(vregs); i++)
mutex_destroy(&vregs[i].pc_lock);
}
postcore_initcall(rpm_vreg_init);
module_exit(rpm_vreg_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM8960 rpm regulator driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" RPM_REGULATOR_DEV_NAME);