blob: fdbc05ed5513db7792ba04c39991d210843e2ace [file] [log] [blame]
/*
* Copyright 2008-2010 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2009-2010 Amit Kucheria <amit.kucheria@canonical.com>
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <asm/div64.h>
#include <mach/hardware.h>
#include <mach/common.h>
#include <mach/clock.h>
#include "crm_regs.h"
/* External clock values passed-in by the board code */
static unsigned long external_high_reference, external_low_reference;
static unsigned long oscillator_reference, ckih2_reference;
static struct clk osc_clk;
static struct clk pll1_main_clk;
static struct clk pll1_sw_clk;
static struct clk pll2_sw_clk;
static struct clk pll3_sw_clk;
static struct clk mx53_pll4_sw_clk;
static struct clk lp_apm_clk;
static struct clk periph_apm_clk;
static struct clk ahb_clk;
static struct clk ipg_clk;
static struct clk usboh3_clk;
static struct clk emi_fast_clk;
static struct clk ipu_clk;
static struct clk mipi_hsc1_clk;
static struct clk esdhc1_clk;
static struct clk esdhc2_clk;
static struct clk esdhc3_mx53_clk;
#define MAX_DPLL_WAIT_TRIES 1000 /* 1000 * udelay(1) = 1ms */
/* calculate best pre and post dividers to get the required divider */
static void __calc_pre_post_dividers(u32 div, u32 *pre, u32 *post,
u32 max_pre, u32 max_post)
{
if (div >= max_pre * max_post) {
*pre = max_pre;
*post = max_post;
} else if (div >= max_pre) {
u32 min_pre, temp_pre, old_err, err;
min_pre = DIV_ROUND_UP(div, max_post);
old_err = max_pre;
for (temp_pre = max_pre; temp_pre >= min_pre; temp_pre--) {
err = div % temp_pre;
if (err == 0) {
*pre = temp_pre;
break;
}
err = temp_pre - err;
if (err < old_err) {
old_err = err;
*pre = temp_pre;
}
}
*post = DIV_ROUND_UP(div, *pre);
} else {
*pre = div;
*post = 1;
}
}
static void _clk_ccgr_setclk(struct clk *clk, unsigned mode)
{
u32 reg = __raw_readl(clk->enable_reg);
reg &= ~(MXC_CCM_CCGRx_CG_MASK << clk->enable_shift);
reg |= mode << clk->enable_shift;
__raw_writel(reg, clk->enable_reg);
}
static int _clk_ccgr_enable(struct clk *clk)
{
_clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_ON);
return 0;
}
static void _clk_ccgr_disable(struct clk *clk)
{
_clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_OFF);
}
static int _clk_ccgr_enable_inrun(struct clk *clk)
{
_clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_IDLE);
return 0;
}
static void _clk_ccgr_disable_inwait(struct clk *clk)
{
_clk_ccgr_setclk(clk, MXC_CCM_CCGRx_MOD_IDLE);
}
/*
* For the 4-to-1 muxed input clock
*/
static inline u32 _get_mux(struct clk *parent, struct clk *m0,
struct clk *m1, struct clk *m2, struct clk *m3)
{
if (parent == m0)
return 0;
else if (parent == m1)
return 1;
else if (parent == m2)
return 2;
else if (parent == m3)
return 3;
else
BUG();
return -EINVAL;
}
static inline void __iomem *_mx51_get_pll_base(struct clk *pll)
{
if (pll == &pll1_main_clk)
return MX51_DPLL1_BASE;
else if (pll == &pll2_sw_clk)
return MX51_DPLL2_BASE;
else if (pll == &pll3_sw_clk)
return MX51_DPLL3_BASE;
else
BUG();
return NULL;
}
static inline void __iomem *_mx53_get_pll_base(struct clk *pll)
{
if (pll == &pll1_main_clk)
return MX53_DPLL1_BASE;
else if (pll == &pll2_sw_clk)
return MX53_DPLL2_BASE;
else if (pll == &pll3_sw_clk)
return MX53_DPLL3_BASE;
else if (pll == &mx53_pll4_sw_clk)
return MX53_DPLL4_BASE;
else
BUG();
return NULL;
}
static inline void __iomem *_get_pll_base(struct clk *pll)
{
if (cpu_is_mx51())
return _mx51_get_pll_base(pll);
else
return _mx53_get_pll_base(pll);
}
static unsigned long clk_pll_get_rate(struct clk *clk)
{
long mfi, mfn, mfd, pdf, ref_clk, mfn_abs;
unsigned long dp_op, dp_mfd, dp_mfn, dp_ctl, pll_hfsm, dbl;
void __iomem *pllbase;
s64 temp;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
pllbase = _get_pll_base(clk);
dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL);
pll_hfsm = dp_ctl & MXC_PLL_DP_CTL_HFSM;
dbl = dp_ctl & MXC_PLL_DP_CTL_DPDCK0_2_EN;
if (pll_hfsm == 0) {
dp_op = __raw_readl(pllbase + MXC_PLL_DP_OP);
dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_MFD);
dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_MFN);
} else {
dp_op = __raw_readl(pllbase + MXC_PLL_DP_HFS_OP);
dp_mfd = __raw_readl(pllbase + MXC_PLL_DP_HFS_MFD);
dp_mfn = __raw_readl(pllbase + MXC_PLL_DP_HFS_MFN);
}
pdf = dp_op & MXC_PLL_DP_OP_PDF_MASK;
mfi = (dp_op & MXC_PLL_DP_OP_MFI_MASK) >> MXC_PLL_DP_OP_MFI_OFFSET;
mfi = (mfi <= 5) ? 5 : mfi;
mfd = dp_mfd & MXC_PLL_DP_MFD_MASK;
mfn = mfn_abs = dp_mfn & MXC_PLL_DP_MFN_MASK;
/* Sign extend to 32-bits */
if (mfn >= 0x04000000) {
mfn |= 0xFC000000;
mfn_abs = -mfn;
}
ref_clk = 2 * parent_rate;
if (dbl != 0)
ref_clk *= 2;
ref_clk /= (pdf + 1);
temp = (u64) ref_clk * mfn_abs;
do_div(temp, mfd + 1);
if (mfn < 0)
temp = -temp;
temp = (ref_clk * mfi) + temp;
return temp;
}
static int _clk_pll_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg;
void __iomem *pllbase;
long mfi, pdf, mfn, mfd = 999999;
s64 temp64;
unsigned long quad_parent_rate;
unsigned long pll_hfsm, dp_ctl;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
pllbase = _get_pll_base(clk);
quad_parent_rate = 4 * parent_rate;
pdf = mfi = -1;
while (++pdf < 16 && mfi < 5)
mfi = rate * (pdf+1) / quad_parent_rate;
if (mfi > 15)
return -EINVAL;
pdf--;
temp64 = rate * (pdf+1) - quad_parent_rate * mfi;
do_div(temp64, quad_parent_rate/1000000);
mfn = (long)temp64;
dp_ctl = __raw_readl(pllbase + MXC_PLL_DP_CTL);
/* use dpdck0_2 */
__raw_writel(dp_ctl | 0x1000L, pllbase + MXC_PLL_DP_CTL);
pll_hfsm = dp_ctl & MXC_PLL_DP_CTL_HFSM;
if (pll_hfsm == 0) {
reg = mfi << 4 | pdf;
__raw_writel(reg, pllbase + MXC_PLL_DP_OP);
__raw_writel(mfd, pllbase + MXC_PLL_DP_MFD);
__raw_writel(mfn, pllbase + MXC_PLL_DP_MFN);
} else {
reg = mfi << 4 | pdf;
__raw_writel(reg, pllbase + MXC_PLL_DP_HFS_OP);
__raw_writel(mfd, pllbase + MXC_PLL_DP_HFS_MFD);
__raw_writel(mfn, pllbase + MXC_PLL_DP_HFS_MFN);
}
return 0;
}
static int _clk_pll_enable(struct clk *clk)
{
u32 reg;
void __iomem *pllbase;
int i = 0;
pllbase = _get_pll_base(clk);
reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) | MXC_PLL_DP_CTL_UPEN;
__raw_writel(reg, pllbase + MXC_PLL_DP_CTL);
/* Wait for lock */
do {
reg = __raw_readl(pllbase + MXC_PLL_DP_CTL);
if (reg & MXC_PLL_DP_CTL_LRF)
break;
udelay(1);
} while (++i < MAX_DPLL_WAIT_TRIES);
if (i == MAX_DPLL_WAIT_TRIES) {
pr_err("MX5: pll locking failed\n");
return -EINVAL;
}
return 0;
}
static void _clk_pll_disable(struct clk *clk)
{
u32 reg;
void __iomem *pllbase;
pllbase = _get_pll_base(clk);
reg = __raw_readl(pllbase + MXC_PLL_DP_CTL) & ~MXC_PLL_DP_CTL_UPEN;
__raw_writel(reg, pllbase + MXC_PLL_DP_CTL);
}
static int _clk_pll1_sw_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg, step;
reg = __raw_readl(MXC_CCM_CCSR);
/* When switching from pll_main_clk to a bypass clock, first select a
* multiplexed clock in 'step_sel', then shift the glitchless mux
* 'pll1_sw_clk_sel'.
*
* When switching back, do it in reverse order
*/
if (parent == &pll1_main_clk) {
/* Switch to pll1_main_clk */
reg &= ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL;
__raw_writel(reg, MXC_CCM_CCSR);
/* step_clk mux switched to lp_apm, to save power. */
reg = __raw_readl(MXC_CCM_CCSR);
reg &= ~MXC_CCM_CCSR_STEP_SEL_MASK;
reg |= (MXC_CCM_CCSR_STEP_SEL_LP_APM <<
MXC_CCM_CCSR_STEP_SEL_OFFSET);
} else {
if (parent == &lp_apm_clk) {
step = MXC_CCM_CCSR_STEP_SEL_LP_APM;
} else if (parent == &pll2_sw_clk) {
step = MXC_CCM_CCSR_STEP_SEL_PLL2_DIVIDED;
} else if (parent == &pll3_sw_clk) {
step = MXC_CCM_CCSR_STEP_SEL_PLL3_DIVIDED;
} else
return -EINVAL;
reg &= ~MXC_CCM_CCSR_STEP_SEL_MASK;
reg |= (step << MXC_CCM_CCSR_STEP_SEL_OFFSET);
__raw_writel(reg, MXC_CCM_CCSR);
/* Switch to step_clk */
reg = __raw_readl(MXC_CCM_CCSR);
reg |= MXC_CCM_CCSR_PLL1_SW_CLK_SEL;
}
__raw_writel(reg, MXC_CCM_CCSR);
return 0;
}
static unsigned long clk_pll1_sw_get_rate(struct clk *clk)
{
u32 reg, div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
reg = __raw_readl(MXC_CCM_CCSR);
if (clk->parent == &pll2_sw_clk) {
div = ((reg & MXC_CCM_CCSR_PLL2_PODF_MASK) >>
MXC_CCM_CCSR_PLL2_PODF_OFFSET) + 1;
} else if (clk->parent == &pll3_sw_clk) {
div = ((reg & MXC_CCM_CCSR_PLL3_PODF_MASK) >>
MXC_CCM_CCSR_PLL3_PODF_OFFSET) + 1;
} else
div = 1;
return parent_rate / div;
}
static int _clk_pll2_sw_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CCSR);
if (parent == &pll2_sw_clk)
reg &= ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL;
else
reg |= MXC_CCM_CCSR_PLL2_SW_CLK_SEL;
__raw_writel(reg, MXC_CCM_CCSR);
return 0;
}
static int _clk_lp_apm_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
if (parent == &osc_clk)
reg = __raw_readl(MXC_CCM_CCSR) & ~MXC_CCM_CCSR_LP_APM_SEL;
else
return -EINVAL;
__raw_writel(reg, MXC_CCM_CCSR);
return 0;
}
static unsigned long clk_cpu_get_rate(struct clk *clk)
{
u32 cacrr, div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
cacrr = __raw_readl(MXC_CCM_CACRR);
div = (cacrr & MXC_CCM_CACRR_ARM_PODF_MASK) + 1;
return parent_rate / div;
}
static int clk_cpu_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, cpu_podf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
cpu_podf = parent_rate / rate - 1;
/* use post divider to change freq */
reg = __raw_readl(MXC_CCM_CACRR);
reg &= ~MXC_CCM_CACRR_ARM_PODF_MASK;
reg |= cpu_podf << MXC_CCM_CACRR_ARM_PODF_OFFSET;
__raw_writel(reg, MXC_CCM_CACRR);
return 0;
}
static int _clk_periph_apm_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg, mux;
int i = 0;
mux = _get_mux(parent, &pll1_sw_clk, &pll3_sw_clk, &lp_apm_clk, NULL);
reg = __raw_readl(MXC_CCM_CBCMR) & ~MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK;
reg |= mux << MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET;
__raw_writel(reg, MXC_CCM_CBCMR);
/* Wait for lock */
do {
reg = __raw_readl(MXC_CCM_CDHIPR);
if (!(reg & MXC_CCM_CDHIPR_PERIPH_CLK_SEL_BUSY))
break;
udelay(1);
} while (++i < MAX_DPLL_WAIT_TRIES);
if (i == MAX_DPLL_WAIT_TRIES) {
pr_err("MX5: Set parent for periph_apm clock failed\n");
return -EINVAL;
}
return 0;
}
static int _clk_main_bus_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CBCDR);
if (parent == &pll2_sw_clk)
reg &= ~MXC_CCM_CBCDR_PERIPH_CLK_SEL;
else if (parent == &periph_apm_clk)
reg |= MXC_CCM_CBCDR_PERIPH_CLK_SEL;
else
return -EINVAL;
__raw_writel(reg, MXC_CCM_CBCDR);
return 0;
}
static struct clk main_bus_clk = {
.parent = &pll2_sw_clk,
.set_parent = _clk_main_bus_set_parent,
};
static unsigned long clk_ahb_get_rate(struct clk *clk)
{
u32 reg, div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
reg = __raw_readl(MXC_CCM_CBCDR);
div = ((reg & MXC_CCM_CBCDR_AHB_PODF_MASK) >>
MXC_CCM_CBCDR_AHB_PODF_OFFSET) + 1;
return parent_rate / div;
}
static int _clk_ahb_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, div;
unsigned long parent_rate;
int i = 0;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 8 || div < 1 || ((parent_rate / div) != rate))
return -EINVAL;
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~MXC_CCM_CBCDR_AHB_PODF_MASK;
reg |= (div - 1) << MXC_CCM_CBCDR_AHB_PODF_OFFSET;
__raw_writel(reg, MXC_CCM_CBCDR);
/* Wait for lock */
do {
reg = __raw_readl(MXC_CCM_CDHIPR);
if (!(reg & MXC_CCM_CDHIPR_AHB_PODF_BUSY))
break;
udelay(1);
} while (++i < MAX_DPLL_WAIT_TRIES);
if (i == MAX_DPLL_WAIT_TRIES) {
pr_err("MX5: clk_ahb_set_rate failed\n");
return -EINVAL;
}
return 0;
}
static unsigned long _clk_ahb_round_rate(struct clk *clk,
unsigned long rate)
{
u32 div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
div = parent_rate / rate;
if (div > 8)
div = 8;
else if (div == 0)
div++;
return parent_rate / div;
}
static int _clk_max_enable(struct clk *clk)
{
u32 reg;
_clk_ccgr_enable(clk);
/* Handshake with MAX when LPM is entered. */
reg = __raw_readl(MXC_CCM_CLPCR);
if (cpu_is_mx51())
reg &= ~MX51_CCM_CLPCR_BYPASS_MAX_LPM_HS;
else if (cpu_is_mx53())
reg &= ~MX53_CCM_CLPCR_BYPASS_MAX_LPM_HS;
__raw_writel(reg, MXC_CCM_CLPCR);
return 0;
}
static void _clk_max_disable(struct clk *clk)
{
u32 reg;
_clk_ccgr_disable_inwait(clk);
/* No Handshake with MAX when LPM is entered as its disabled. */
reg = __raw_readl(MXC_CCM_CLPCR);
if (cpu_is_mx51())
reg |= MX51_CCM_CLPCR_BYPASS_MAX_LPM_HS;
else if (cpu_is_mx53())
reg &= ~MX53_CCM_CLPCR_BYPASS_MAX_LPM_HS;
__raw_writel(reg, MXC_CCM_CLPCR);
}
static unsigned long clk_ipg_get_rate(struct clk *clk)
{
u32 reg, div;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
reg = __raw_readl(MXC_CCM_CBCDR);
div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1;
return parent_rate / div;
}
static unsigned long clk_ipg_per_get_rate(struct clk *clk)
{
u32 reg, prediv1, prediv2, podf;
unsigned long parent_rate;
parent_rate = clk_get_rate(clk->parent);
if (clk->parent == &main_bus_clk || clk->parent == &lp_apm_clk) {
/* the main_bus_clk is the one before the DVFS engine */
reg = __raw_readl(MXC_CCM_CBCDR);
prediv1 = ((reg & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET) + 1;
prediv2 = ((reg & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET) + 1;
podf = ((reg & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
MXC_CCM_CBCDR_PERCLK_PODF_OFFSET) + 1;
return parent_rate / (prediv1 * prediv2 * podf);
} else if (clk->parent == &ipg_clk)
return parent_rate;
else
BUG();
}
static int _clk_ipg_per_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CBCMR);
reg &= ~MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL;
reg &= ~MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL;
if (parent == &ipg_clk)
reg |= MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL;
else if (parent == &lp_apm_clk)
reg |= MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL;
else if (parent != &main_bus_clk)
return -EINVAL;
__raw_writel(reg, MXC_CCM_CBCMR);
return 0;
}
#define clk_nfc_set_parent NULL
static unsigned long clk_nfc_get_rate(struct clk *clk)
{
unsigned long rate;
u32 reg, div;
reg = __raw_readl(MXC_CCM_CBCDR);
div = ((reg & MXC_CCM_CBCDR_NFC_PODF_MASK) >>
MXC_CCM_CBCDR_NFC_PODF_OFFSET) + 1;
rate = clk_get_rate(clk->parent) / div;
WARN_ON(rate == 0);
return rate;
}
static unsigned long clk_nfc_round_rate(struct clk *clk,
unsigned long rate)
{
u32 div;
unsigned long parent_rate = clk_get_rate(clk->parent);
if (!rate)
return -EINVAL;
div = parent_rate / rate;
if (parent_rate % rate)
div++;
if (div > 8)
return -EINVAL;
return parent_rate / div;
}
static int clk_nfc_set_rate(struct clk *clk, unsigned long rate)
{
u32 reg, div;
div = clk_get_rate(clk->parent) / rate;
if (div == 0)
div++;
if (((clk_get_rate(clk->parent) / div) != rate) || (div > 8))
return -EINVAL;
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
__raw_writel(reg, MXC_CCM_CBCDR);
while (__raw_readl(MXC_CCM_CDHIPR) &
MXC_CCM_CDHIPR_NFC_IPG_INT_MEM_PODF_BUSY){
}
return 0;
}
static unsigned long get_high_reference_clock_rate(struct clk *clk)
{
return external_high_reference;
}
static unsigned long get_low_reference_clock_rate(struct clk *clk)
{
return external_low_reference;
}
static unsigned long get_oscillator_reference_clock_rate(struct clk *clk)
{
return oscillator_reference;
}
static unsigned long get_ckih2_reference_clock_rate(struct clk *clk)
{
return ckih2_reference;
}
static unsigned long clk_emi_slow_get_rate(struct clk *clk)
{
u32 reg, div;
reg = __raw_readl(MXC_CCM_CBCDR);
div = ((reg & MXC_CCM_CBCDR_EMI_PODF_MASK) >>
MXC_CCM_CBCDR_EMI_PODF_OFFSET) + 1;
return clk_get_rate(clk->parent) / div;
}
static unsigned long _clk_ddr_hf_get_rate(struct clk *clk)
{
unsigned long rate;
u32 reg, div;
reg = __raw_readl(MXC_CCM_CBCDR);
div = ((reg & MXC_CCM_CBCDR_DDR_PODF_MASK) >>
MXC_CCM_CBCDR_DDR_PODF_OFFSET) + 1;
rate = clk_get_rate(clk->parent) / div;
return rate;
}
/* External high frequency clock */
static struct clk ckih_clk = {
.get_rate = get_high_reference_clock_rate,
};
static struct clk ckih2_clk = {
.get_rate = get_ckih2_reference_clock_rate,
};
static struct clk osc_clk = {
.get_rate = get_oscillator_reference_clock_rate,
};
/* External low frequency (32kHz) clock */
static struct clk ckil_clk = {
.get_rate = get_low_reference_clock_rate,
};
static struct clk pll1_main_clk = {
.parent = &osc_clk,
.get_rate = clk_pll_get_rate,
.enable = _clk_pll_enable,
.disable = _clk_pll_disable,
};
/* Clock tree block diagram (WIP):
* CCM: Clock Controller Module
*
* PLL output -> |
* | CCM Switcher -> CCM_CLK_ROOT_GEN ->
* PLL bypass -> |
*
*/
/* PLL1 SW supplies to ARM core */
static struct clk pll1_sw_clk = {
.parent = &pll1_main_clk,
.set_parent = _clk_pll1_sw_set_parent,
.get_rate = clk_pll1_sw_get_rate,
};
/* PLL2 SW supplies to AXI/AHB/IP buses */
static struct clk pll2_sw_clk = {
.parent = &osc_clk,
.get_rate = clk_pll_get_rate,
.set_rate = _clk_pll_set_rate,
.set_parent = _clk_pll2_sw_set_parent,
.enable = _clk_pll_enable,
.disable = _clk_pll_disable,
};
/* PLL3 SW supplies to serial clocks like USB, SSI, etc. */
static struct clk pll3_sw_clk = {
.parent = &osc_clk,
.set_rate = _clk_pll_set_rate,
.get_rate = clk_pll_get_rate,
.enable = _clk_pll_enable,
.disable = _clk_pll_disable,
};
/* PLL4 SW supplies to LVDS Display Bridge(LDB) */
static struct clk mx53_pll4_sw_clk = {
.parent = &osc_clk,
.set_rate = _clk_pll_set_rate,
.enable = _clk_pll_enable,
.disable = _clk_pll_disable,
};
/* Low-power Audio Playback Mode clock */
static struct clk lp_apm_clk = {
.parent = &osc_clk,
.set_parent = _clk_lp_apm_set_parent,
};
static struct clk periph_apm_clk = {
.parent = &pll1_sw_clk,
.set_parent = _clk_periph_apm_set_parent,
};
static struct clk cpu_clk = {
.parent = &pll1_sw_clk,
.get_rate = clk_cpu_get_rate,
.set_rate = clk_cpu_set_rate,
};
static struct clk ahb_clk = {
.parent = &main_bus_clk,
.get_rate = clk_ahb_get_rate,
.set_rate = _clk_ahb_set_rate,
.round_rate = _clk_ahb_round_rate,
};
static struct clk iim_clk = {
.parent = &ipg_clk,
.enable_reg = MXC_CCM_CCGR0,
.enable_shift = MXC_CCM_CCGRx_CG15_OFFSET,
};
/* Main IP interface clock for access to registers */
static struct clk ipg_clk = {
.parent = &ahb_clk,
.get_rate = clk_ipg_get_rate,
};
static struct clk ipg_perclk = {
.parent = &lp_apm_clk,
.get_rate = clk_ipg_per_get_rate,
.set_parent = _clk_ipg_per_set_parent,
};
static struct clk ahb_max_clk = {
.parent = &ahb_clk,
.enable_reg = MXC_CCM_CCGR0,
.enable_shift = MXC_CCM_CCGRx_CG14_OFFSET,
.enable = _clk_max_enable,
.disable = _clk_max_disable,
};
static struct clk aips_tz1_clk = {
.parent = &ahb_clk,
.secondary = &ahb_max_clk,
.enable_reg = MXC_CCM_CCGR0,
.enable_shift = MXC_CCM_CCGRx_CG12_OFFSET,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable_inwait,
};
static struct clk aips_tz2_clk = {
.parent = &ahb_clk,
.secondary = &ahb_max_clk,
.enable_reg = MXC_CCM_CCGR0,
.enable_shift = MXC_CCM_CCGRx_CG13_OFFSET,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable_inwait,
};
static struct clk gpc_dvfs_clk = {
.enable_reg = MXC_CCM_CCGR5,
.enable_shift = MXC_CCM_CCGRx_CG12_OFFSET,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable,
};
static struct clk gpt_32k_clk = {
.id = 0,
.parent = &ckil_clk,
};
static struct clk dummy_clk = {
.id = 0,
};
static struct clk emi_slow_clk = {
.parent = &pll2_sw_clk,
.enable_reg = MXC_CCM_CCGR5,
.enable_shift = MXC_CCM_CCGRx_CG8_OFFSET,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable_inwait,
.get_rate = clk_emi_slow_get_rate,
};
static int clk_ipu_enable(struct clk *clk)
{
u32 reg;
_clk_ccgr_enable(clk);
/* Enable handshake with IPU when certain clock rates are changed */
reg = __raw_readl(MXC_CCM_CCDR);
reg &= ~MXC_CCM_CCDR_IPU_HS_MASK;
__raw_writel(reg, MXC_CCM_CCDR);
/* Enable handshake with IPU when LPM is entered */
reg = __raw_readl(MXC_CCM_CLPCR);
reg &= ~MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS;
__raw_writel(reg, MXC_CCM_CLPCR);
return 0;
}
static void clk_ipu_disable(struct clk *clk)
{
u32 reg;
_clk_ccgr_disable(clk);
/* Disable handshake with IPU whe dividers are changed */
reg = __raw_readl(MXC_CCM_CCDR);
reg |= MXC_CCM_CCDR_IPU_HS_MASK;
__raw_writel(reg, MXC_CCM_CCDR);
/* Disable handshake with IPU when LPM is entered */
reg = __raw_readl(MXC_CCM_CLPCR);
reg |= MXC_CCM_CLPCR_BYPASS_IPU_LPM_HS;
__raw_writel(reg, MXC_CCM_CLPCR);
}
static struct clk ahbmux1_clk = {
.parent = &ahb_clk,
.secondary = &ahb_max_clk,
.enable_reg = MXC_CCM_CCGR0,
.enable_shift = MXC_CCM_CCGRx_CG8_OFFSET,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable_inwait,
};
static struct clk ipu_sec_clk = {
.parent = &emi_fast_clk,
.secondary = &ahbmux1_clk,
};
static struct clk ddr_hf_clk = {
.parent = &pll1_sw_clk,
.get_rate = _clk_ddr_hf_get_rate,
};
static struct clk ddr_clk = {
.parent = &ddr_hf_clk,
};
/* clock definitions for MIPI HSC unit which has been removed
* from documentation, but not from hardware
*/
static int _clk_hsc_enable(struct clk *clk)
{
u32 reg;
_clk_ccgr_enable(clk);
/* Handshake with IPU when certain clock rates are changed. */
reg = __raw_readl(MXC_CCM_CCDR);
reg &= ~MXC_CCM_CCDR_HSC_HS_MASK;
__raw_writel(reg, MXC_CCM_CCDR);
reg = __raw_readl(MXC_CCM_CLPCR);
reg &= ~MXC_CCM_CLPCR_BYPASS_HSC_LPM_HS;
__raw_writel(reg, MXC_CCM_CLPCR);
return 0;
}
static void _clk_hsc_disable(struct clk *clk)
{
u32 reg;
_clk_ccgr_disable(clk);
/* No handshake with HSC as its not enabled. */
reg = __raw_readl(MXC_CCM_CCDR);
reg |= MXC_CCM_CCDR_HSC_HS_MASK;
__raw_writel(reg, MXC_CCM_CCDR);
reg = __raw_readl(MXC_CCM_CLPCR);
reg |= MXC_CCM_CLPCR_BYPASS_HSC_LPM_HS;
__raw_writel(reg, MXC_CCM_CLPCR);
}
static struct clk mipi_hsp_clk = {
.parent = &ipu_clk,
.enable_reg = MXC_CCM_CCGR4,
.enable_shift = MXC_CCM_CCGRx_CG6_OFFSET,
.enable = _clk_hsc_enable,
.disable = _clk_hsc_disable,
.secondary = &mipi_hsc1_clk,
};
#define DEFINE_CLOCK_CCGR(name, i, er, es, pfx, p, s) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = pfx##_get_rate, \
.set_rate = pfx##_set_rate, \
.round_rate = pfx##_round_rate, \
.set_parent = pfx##_set_parent, \
.enable = _clk_ccgr_enable, \
.disable = _clk_ccgr_disable, \
.parent = p, \
.secondary = s, \
}
#define DEFINE_CLOCK_MAX(name, i, er, es, pfx, p, s) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = pfx##_get_rate, \
.set_rate = pfx##_set_rate, \
.set_parent = pfx##_set_parent, \
.enable = _clk_max_enable, \
.disable = _clk_max_disable, \
.parent = p, \
.secondary = s, \
}
#define CLK_GET_RATE(name, nr, bitsname) \
static unsigned long clk_##name##_get_rate(struct clk *clk) \
{ \
u32 reg, pred, podf; \
\
reg = __raw_readl(MXC_CCM_CSCDR##nr); \
pred = (reg & MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK) \
>> MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET; \
podf = (reg & MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK) \
>> MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET; \
\
return DIV_ROUND_CLOSEST(clk_get_rate(clk->parent), \
(pred + 1) * (podf + 1)); \
}
#define CLK_SET_PARENT(name, nr, bitsname) \
static int clk_##name##_set_parent(struct clk *clk, struct clk *parent) \
{ \
u32 reg, mux; \
\
mux = _get_mux(parent, &pll1_sw_clk, &pll2_sw_clk, \
&pll3_sw_clk, &lp_apm_clk); \
reg = __raw_readl(MXC_CCM_CSCMR##nr) & \
~MXC_CCM_CSCMR##nr##_##bitsname##_CLK_SEL_MASK; \
reg |= mux << MXC_CCM_CSCMR##nr##_##bitsname##_CLK_SEL_OFFSET; \
__raw_writel(reg, MXC_CCM_CSCMR##nr); \
\
return 0; \
}
#define CLK_SET_RATE(name, nr, bitsname) \
static int clk_##name##_set_rate(struct clk *clk, unsigned long rate) \
{ \
u32 reg, div, parent_rate; \
u32 pre = 0, post = 0; \
\
parent_rate = clk_get_rate(clk->parent); \
div = parent_rate / rate; \
\
if ((parent_rate / div) != rate) \
return -EINVAL; \
\
__calc_pre_post_dividers(div, &pre, &post, \
(MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK >> \
MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET) + 1, \
(MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK >> \
MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET) + 1);\
\
/* Set sdhc1 clock divider */ \
reg = __raw_readl(MXC_CCM_CSCDR##nr) & \
~(MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_MASK \
| MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_MASK); \
reg |= (post - 1) << \
MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PODF_OFFSET; \
reg |= (pre - 1) << \
MXC_CCM_CSCDR##nr##_##bitsname##_CLK_PRED_OFFSET; \
__raw_writel(reg, MXC_CCM_CSCDR##nr); \
\
return 0; \
}
/* UART */
CLK_GET_RATE(uart, 1, UART)
CLK_SET_PARENT(uart, 1, UART)
static struct clk uart_root_clk = {
.parent = &pll2_sw_clk,
.get_rate = clk_uart_get_rate,
.set_parent = clk_uart_set_parent,
};
/* USBOH3 */
CLK_GET_RATE(usboh3, 1, USBOH3)
CLK_SET_PARENT(usboh3, 1, USBOH3)
static struct clk usboh3_clk = {
.parent = &pll2_sw_clk,
.get_rate = clk_usboh3_get_rate,
.set_parent = clk_usboh3_set_parent,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable,
.enable_reg = MXC_CCM_CCGR2,
.enable_shift = MXC_CCM_CCGRx_CG14_OFFSET,
};
static struct clk usb_ahb_clk = {
.parent = &ipg_clk,
.enable = _clk_ccgr_enable,
.disable = _clk_ccgr_disable,
.enable_reg = MXC_CCM_CCGR2,
.enable_shift = MXC_CCM_CCGRx_CG13_OFFSET,
};
static int clk_usb_phy1_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CSCMR1) & ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
if (parent == &pll3_sw_clk)
reg |= 1 << MXC_CCM_CSCMR1_USB_PHY_CLK_SEL_OFFSET;
__raw_writel(reg, MXC_CCM_CSCMR1);
return 0;
}
static struct clk usb_phy1_clk = {
.parent = &pll3_sw_clk,
.set_parent = clk_usb_phy1_set_parent,
.enable = _clk_ccgr_enable,
.enable_reg = MXC_CCM_CCGR2,
.enable_shift = MXC_CCM_CCGRx_CG0_OFFSET,
.disable = _clk_ccgr_disable,
};
/* eCSPI */
CLK_GET_RATE(ecspi, 2, CSPI)
CLK_SET_PARENT(ecspi, 1, CSPI)
static struct clk ecspi_main_clk = {
.parent = &pll3_sw_clk,
.get_rate = clk_ecspi_get_rate,
.set_parent = clk_ecspi_set_parent,
};
/* eSDHC */
CLK_GET_RATE(esdhc1, 1, ESDHC1_MSHC1)
CLK_SET_PARENT(esdhc1, 1, ESDHC1_MSHC1)
CLK_SET_RATE(esdhc1, 1, ESDHC1_MSHC1)
/* mx51 specific */
CLK_GET_RATE(esdhc2, 1, ESDHC2_MSHC2)
CLK_SET_PARENT(esdhc2, 1, ESDHC2_MSHC2)
CLK_SET_RATE(esdhc2, 1, ESDHC2_MSHC2)
static int clk_esdhc3_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CSCMR1);
if (parent == &esdhc1_clk)
reg &= ~MXC_CCM_CSCMR1_ESDHC3_CLK_SEL;
else if (parent == &esdhc2_clk)
reg |= MXC_CCM_CSCMR1_ESDHC3_CLK_SEL;
else
return -EINVAL;
__raw_writel(reg, MXC_CCM_CSCMR1);
return 0;
}
static int clk_esdhc4_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CSCMR1);
if (parent == &esdhc1_clk)
reg &= ~MXC_CCM_CSCMR1_ESDHC4_CLK_SEL;
else if (parent == &esdhc2_clk)
reg |= MXC_CCM_CSCMR1_ESDHC4_CLK_SEL;
else
return -EINVAL;
__raw_writel(reg, MXC_CCM_CSCMR1);
return 0;
}
/* mx53 specific */
static int clk_esdhc2_mx53_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CSCMR1);
if (parent == &esdhc1_clk)
reg &= ~MXC_CCM_CSCMR1_ESDHC2_MSHC2_MX53_CLK_SEL;
else if (parent == &esdhc3_mx53_clk)
reg |= MXC_CCM_CSCMR1_ESDHC2_MSHC2_MX53_CLK_SEL;
else
return -EINVAL;
__raw_writel(reg, MXC_CCM_CSCMR1);
return 0;
}
CLK_GET_RATE(esdhc3_mx53, 1, ESDHC3_MX53)
CLK_SET_PARENT(esdhc3_mx53, 1, ESDHC3_MX53)
CLK_SET_RATE(esdhc3_mx53, 1, ESDHC3_MX53)
static int clk_esdhc4_mx53_set_parent(struct clk *clk, struct clk *parent)
{
u32 reg;
reg = __raw_readl(MXC_CCM_CSCMR1);
if (parent == &esdhc1_clk)
reg &= ~MXC_CCM_CSCMR1_ESDHC4_CLK_SEL;
else if (parent == &esdhc3_mx53_clk)
reg |= MXC_CCM_CSCMR1_ESDHC4_CLK_SEL;
else
return -EINVAL;
__raw_writel(reg, MXC_CCM_CSCMR1);
return 0;
}
#define DEFINE_CLOCK_FULL(name, i, er, es, gr, sr, e, d, p, s) \
static struct clk name = { \
.id = i, \
.enable_reg = er, \
.enable_shift = es, \
.get_rate = gr, \
.set_rate = sr, \
.enable = e, \
.disable = d, \
.parent = p, \
.secondary = s, \
}
#define DEFINE_CLOCK(name, i, er, es, gr, sr, p, s) \
DEFINE_CLOCK_FULL(name, i, er, es, gr, sr, _clk_ccgr_enable, _clk_ccgr_disable, p, s)
/* Shared peripheral bus arbiter */
DEFINE_CLOCK(spba_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG0_OFFSET,
NULL, NULL, &ipg_clk, NULL);
/* UART */
DEFINE_CLOCK(uart1_ipg_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG3_OFFSET,
NULL, NULL, &ipg_clk, &aips_tz1_clk);
DEFINE_CLOCK(uart2_ipg_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG5_OFFSET,
NULL, NULL, &ipg_clk, &aips_tz1_clk);
DEFINE_CLOCK(uart3_ipg_clk, 2, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG7_OFFSET,
NULL, NULL, &ipg_clk, &spba_clk);
DEFINE_CLOCK(uart1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG4_OFFSET,
NULL, NULL, &uart_root_clk, &uart1_ipg_clk);
DEFINE_CLOCK(uart2_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG6_OFFSET,
NULL, NULL, &uart_root_clk, &uart2_ipg_clk);
DEFINE_CLOCK(uart3_clk, 2, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG8_OFFSET,
NULL, NULL, &uart_root_clk, &uart3_ipg_clk);
/* GPT */
DEFINE_CLOCK(gpt_ipg_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG10_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(gpt_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG9_OFFSET,
NULL, NULL, &ipg_clk, &gpt_ipg_clk);
DEFINE_CLOCK(pwm1_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG6_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(pwm2_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG8_OFFSET,
NULL, NULL, &ipg_clk, NULL);
/* I2C */
DEFINE_CLOCK(i2c1_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG9_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(i2c2_clk, 1, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG10_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(hsi2c_clk, 0, MXC_CCM_CCGR1, MXC_CCM_CCGRx_CG11_OFFSET,
NULL, NULL, &ipg_clk, NULL);
/* FEC */
DEFINE_CLOCK(fec_clk, 0, MXC_CCM_CCGR2, MXC_CCM_CCGRx_CG12_OFFSET,
NULL, NULL, &ipg_clk, NULL);
/* NFC */
DEFINE_CLOCK_CCGR(nfc_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG10_OFFSET,
clk_nfc, &emi_slow_clk, NULL);
/* SSI */
DEFINE_CLOCK(ssi1_ipg_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG8_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(ssi1_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG9_OFFSET,
NULL, NULL, &pll3_sw_clk, &ssi1_ipg_clk);
DEFINE_CLOCK(ssi2_ipg_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG10_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(ssi2_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG11_OFFSET,
NULL, NULL, &pll3_sw_clk, &ssi2_ipg_clk);
DEFINE_CLOCK(ssi3_ipg_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG12_OFFSET,
NULL, NULL, &ipg_clk, NULL);
DEFINE_CLOCK(ssi3_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG13_OFFSET,
NULL, NULL, &pll3_sw_clk, &ssi3_ipg_clk);
/* eCSPI */
DEFINE_CLOCK_FULL(ecspi1_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG9_OFFSET,
NULL, NULL, _clk_ccgr_enable_inrun, _clk_ccgr_disable,
&ipg_clk, &spba_clk);
DEFINE_CLOCK(ecspi1_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG10_OFFSET,
NULL, NULL, &ecspi_main_clk, &ecspi1_ipg_clk);
DEFINE_CLOCK_FULL(ecspi2_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG11_OFFSET,
NULL, NULL, _clk_ccgr_enable_inrun, _clk_ccgr_disable,
&ipg_clk, &aips_tz2_clk);
DEFINE_CLOCK(ecspi2_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG12_OFFSET,
NULL, NULL, &ecspi_main_clk, &ecspi2_ipg_clk);
/* CSPI */
DEFINE_CLOCK(cspi_ipg_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG9_OFFSET,
NULL, NULL, &ipg_clk, &aips_tz2_clk);
DEFINE_CLOCK(cspi_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG13_OFFSET,
NULL, NULL, &ipg_clk, &cspi_ipg_clk);
/* SDMA */
DEFINE_CLOCK(sdma_clk, 1, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG15_OFFSET,
NULL, NULL, &ahb_clk, NULL);
/* eSDHC */
DEFINE_CLOCK_FULL(esdhc1_ipg_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG0_OFFSET,
NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL);
DEFINE_CLOCK_MAX(esdhc1_clk, 0, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG1_OFFSET,
clk_esdhc1, &pll2_sw_clk, &esdhc1_ipg_clk);
DEFINE_CLOCK_FULL(esdhc2_ipg_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG2_OFFSET,
NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL);
DEFINE_CLOCK_FULL(esdhc3_ipg_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG4_OFFSET,
NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL);
DEFINE_CLOCK_FULL(esdhc4_ipg_clk, 3, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG6_OFFSET,
NULL, NULL, _clk_max_enable, _clk_max_disable, &ipg_clk, NULL);
/* mx51 specific */
DEFINE_CLOCK_MAX(esdhc2_clk, 1, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG3_OFFSET,
clk_esdhc2, &pll2_sw_clk, &esdhc2_ipg_clk);
static struct clk esdhc3_clk = {
.id = 2,
.parent = &esdhc1_clk,
.set_parent = clk_esdhc3_set_parent,
.enable_reg = MXC_CCM_CCGR3,
.enable_shift = MXC_CCM_CCGRx_CG5_OFFSET,
.enable = _clk_max_enable,
.disable = _clk_max_disable,
.secondary = &esdhc3_ipg_clk,
};
static struct clk esdhc4_clk = {
.id = 3,
.parent = &esdhc1_clk,
.set_parent = clk_esdhc4_set_parent,
.enable_reg = MXC_CCM_CCGR3,
.enable_shift = MXC_CCM_CCGRx_CG7_OFFSET,
.enable = _clk_max_enable,
.disable = _clk_max_disable,
.secondary = &esdhc4_ipg_clk,
};
/* mx53 specific */
static struct clk esdhc2_mx53_clk = {
.id = 2,
.parent = &esdhc1_clk,
.set_parent = clk_esdhc2_mx53_set_parent,
.enable_reg = MXC_CCM_CCGR3,
.enable_shift = MXC_CCM_CCGRx_CG3_OFFSET,
.enable = _clk_max_enable,
.disable = _clk_max_disable,
.secondary = &esdhc3_ipg_clk,
};
DEFINE_CLOCK_MAX(esdhc3_mx53_clk, 2, MXC_CCM_CCGR3, MXC_CCM_CCGRx_CG5_OFFSET,
clk_esdhc3_mx53, &pll2_sw_clk, &esdhc2_ipg_clk);
static struct clk esdhc4_mx53_clk = {
.id = 3,
.parent = &esdhc1_clk,
.set_parent = clk_esdhc4_mx53_set_parent,
.enable_reg = MXC_CCM_CCGR3,
.enable_shift = MXC_CCM_CCGRx_CG7_OFFSET,
.enable = _clk_max_enable,
.disable = _clk_max_disable,
.secondary = &esdhc4_ipg_clk,
};
DEFINE_CLOCK(mipi_esc_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG5_OFFSET, NULL, NULL, NULL, &pll2_sw_clk);
DEFINE_CLOCK(mipi_hsc2_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG4_OFFSET, NULL, NULL, &mipi_esc_clk, &pll2_sw_clk);
DEFINE_CLOCK(mipi_hsc1_clk, 0, MXC_CCM_CCGR4, MXC_CCM_CCGRx_CG3_OFFSET, NULL, NULL, &mipi_hsc2_clk, &pll2_sw_clk);
/* IPU */
DEFINE_CLOCK_FULL(ipu_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG5_OFFSET,
NULL, NULL, clk_ipu_enable, clk_ipu_disable, &ahb_clk, &ipu_sec_clk);
DEFINE_CLOCK_FULL(emi_fast_clk, 0, MXC_CCM_CCGR5, MXC_CCM_CCGRx_CG7_OFFSET,
NULL, NULL, _clk_ccgr_enable, _clk_ccgr_disable_inwait,
&ddr_clk, NULL);
DEFINE_CLOCK(ipu_di0_clk, 0, MXC_CCM_CCGR6, MXC_CCM_CCGRx_CG5_OFFSET,
NULL, NULL, &pll3_sw_clk, NULL);
DEFINE_CLOCK(ipu_di1_clk, 0, MXC_CCM_CCGR6, MXC_CCM_CCGRx_CG6_OFFSET,
NULL, NULL, &pll3_sw_clk, NULL);
#define _REGISTER_CLOCK(d, n, c) \
{ \
.dev_id = d, \
.con_id = n, \
.clk = &c, \
},
static struct clk_lookup mx51_lookups[] = {
_REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK(NULL, "gpt", gpt_clk)
_REGISTER_CLOCK("fec.0", NULL, fec_clk)
_REGISTER_CLOCK("mxc_pwm.0", "pwm", pwm1_clk)
_REGISTER_CLOCK("mxc_pwm.1", "pwm", pwm2_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK("imx-i2c.2", NULL, hsi2c_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb", usboh3_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb_ahb", usb_ahb_clk)
_REGISTER_CLOCK("mxc-ehci.0", "usb_phy1", usb_phy1_clk)
_REGISTER_CLOCK("mxc-ehci.1", "usb", usboh3_clk)
_REGISTER_CLOCK("mxc-ehci.1", "usb_ahb", usb_ahb_clk)
_REGISTER_CLOCK("mxc-ehci.2", "usb", usboh3_clk)
_REGISTER_CLOCK("mxc-ehci.2", "usb_ahb", usb_ahb_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb", usboh3_clk)
_REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", ahb_clk)
_REGISTER_CLOCK("imx-keypad", NULL, dummy_clk)
_REGISTER_CLOCK("mxc_nand", NULL, nfc_clk)
_REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk)
_REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk)
_REGISTER_CLOCK("imx-ssi.2", NULL, ssi3_clk)
_REGISTER_CLOCK("imx-sdma", NULL, sdma_clk)
_REGISTER_CLOCK(NULL, "ckih", ckih_clk)
_REGISTER_CLOCK(NULL, "ckih2", ckih2_clk)
_REGISTER_CLOCK(NULL, "gpt_32k", gpt_32k_clk)
_REGISTER_CLOCK("imx51-ecspi.0", NULL, ecspi1_clk)
_REGISTER_CLOCK("imx51-ecspi.1", NULL, ecspi2_clk)
_REGISTER_CLOCK("imx51-cspi.0", NULL, cspi_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.0", NULL, esdhc1_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.1", NULL, esdhc2_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.2", NULL, esdhc3_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.3", NULL, esdhc4_clk)
_REGISTER_CLOCK(NULL, "cpu_clk", cpu_clk)
_REGISTER_CLOCK(NULL, "iim_clk", iim_clk)
_REGISTER_CLOCK("imx2-wdt.0", NULL, dummy_clk)
_REGISTER_CLOCK("imx2-wdt.1", NULL, dummy_clk)
_REGISTER_CLOCK(NULL, "mipi_hsp", mipi_hsp_clk)
_REGISTER_CLOCK("imx-ipuv3", NULL, ipu_clk)
_REGISTER_CLOCK("imx-ipuv3", "di0", ipu_di0_clk)
_REGISTER_CLOCK("imx-ipuv3", "di1", ipu_di1_clk)
_REGISTER_CLOCK(NULL, "gpc_dvfs", gpc_dvfs_clk)
};
static struct clk_lookup mx53_lookups[] = {
_REGISTER_CLOCK("imx-uart.0", NULL, uart1_clk)
_REGISTER_CLOCK("imx-uart.1", NULL, uart2_clk)
_REGISTER_CLOCK("imx-uart.2", NULL, uart3_clk)
_REGISTER_CLOCK(NULL, "gpt", gpt_clk)
_REGISTER_CLOCK("fec.0", NULL, fec_clk)
_REGISTER_CLOCK(NULL, "iim_clk", iim_clk)
_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.0", NULL, esdhc1_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.1", NULL, esdhc2_mx53_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.2", NULL, esdhc3_mx53_clk)
_REGISTER_CLOCK("sdhci-esdhc-imx.3", NULL, esdhc4_mx53_clk)
_REGISTER_CLOCK("imx53-ecspi.0", NULL, ecspi1_clk)
_REGISTER_CLOCK("imx53-ecspi.1", NULL, ecspi2_clk)
_REGISTER_CLOCK("imx53-cspi.0", NULL, cspi_clk)
_REGISTER_CLOCK("imx2-wdt.0", NULL, dummy_clk)
_REGISTER_CLOCK("imx2-wdt.1", NULL, dummy_clk)
};
static void clk_tree_init(void)
{
u32 reg;
ipg_perclk.set_parent(&ipg_perclk, &lp_apm_clk);
/*
* Initialise the IPG PER CLK dividers to 3. IPG_PER_CLK should be at
* 8MHz, its derived from lp_apm.
*
* FIXME: Verify if true for all boards
*/
reg = __raw_readl(MXC_CCM_CBCDR);
reg &= ~MXC_CCM_CBCDR_PERCLK_PRED1_MASK;
reg &= ~MXC_CCM_CBCDR_PERCLK_PRED2_MASK;
reg &= ~MXC_CCM_CBCDR_PERCLK_PODF_MASK;
reg |= (2 << MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET);
__raw_writel(reg, MXC_CCM_CBCDR);
}
int __init mx51_clocks_init(unsigned long ckil, unsigned long osc,
unsigned long ckih1, unsigned long ckih2)
{
int i;
external_low_reference = ckil;
external_high_reference = ckih1;
ckih2_reference = ckih2;
oscillator_reference = osc;
for (i = 0; i < ARRAY_SIZE(mx51_lookups); i++)
clkdev_add(&mx51_lookups[i]);
clk_tree_init();
clk_enable(&cpu_clk);
clk_enable(&main_bus_clk);
clk_enable(&iim_clk);
mx51_revision();
clk_disable(&iim_clk);
mx51_display_revision();
/* move usb_phy_clk to 24MHz */
clk_set_parent(&usb_phy1_clk, &osc_clk);
/* set the usboh3_clk parent to pll2_sw_clk */
clk_set_parent(&usboh3_clk, &pll2_sw_clk);
/* Set SDHC parents to be PLL2 */
clk_set_parent(&esdhc1_clk, &pll2_sw_clk);
clk_set_parent(&esdhc2_clk, &pll2_sw_clk);
/* set SDHC root clock as 166.25MHZ*/
clk_set_rate(&esdhc1_clk, 166250000);
clk_set_rate(&esdhc2_clk, 166250000);
/* System timer */
mxc_timer_init(&gpt_clk, MX51_IO_ADDRESS(MX51_GPT1_BASE_ADDR),
MX51_MXC_INT_GPT);
return 0;
}
int __init mx53_clocks_init(unsigned long ckil, unsigned long osc,
unsigned long ckih1, unsigned long ckih2)
{
int i;
external_low_reference = ckil;
external_high_reference = ckih1;
ckih2_reference = ckih2;
oscillator_reference = osc;
for (i = 0; i < ARRAY_SIZE(mx53_lookups); i++)
clkdev_add(&mx53_lookups[i]);
clk_tree_init();
clk_set_parent(&uart_root_clk, &pll3_sw_clk);
clk_enable(&cpu_clk);
clk_enable(&main_bus_clk);
clk_enable(&iim_clk);
mx53_revision();
clk_disable(&iim_clk);
/* Set SDHC parents to be PLL2 */
clk_set_parent(&esdhc1_clk, &pll2_sw_clk);
clk_set_parent(&esdhc3_mx53_clk, &pll2_sw_clk);
/* set SDHC root clock as 200MHZ*/
clk_set_rate(&esdhc1_clk, 200000000);
clk_set_rate(&esdhc3_mx53_clk, 200000000);
/* System timer */
mxc_timer_init(&gpt_clk, MX53_IO_ADDRESS(MX53_GPT1_BASE_ADDR),
MX53_INT_GPT);
return 0;
}