| /* |
| * Handle caching attributes in page tables (PAT) |
| * |
| * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * Suresh B Siddha <suresh.b.siddha@intel.com> |
| * |
| * Interval tree (augmented rbtree) used to store the PAT memory type |
| * reservations. |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/rbtree.h> |
| #include <linux/sched.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pat.h> |
| |
| #include "pat_internal.h" |
| |
| /* |
| * The memtype tree keeps track of memory type for specific |
| * physical memory areas. Without proper tracking, conflicting memory |
| * types in different mappings can cause CPU cache corruption. |
| * |
| * The tree is an interval tree (augmented rbtree) with tree ordered |
| * on starting address. Tree can contain multiple entries for |
| * different regions which overlap. All the aliases have the same |
| * cache attributes of course. |
| * |
| * memtype_lock protects the rbtree. |
| */ |
| |
| static void memtype_rb_augment_cb(struct rb_node *node); |
| static struct rb_root memtype_rbroot = RB_AUGMENT_ROOT(&memtype_rb_augment_cb); |
| |
| static int is_node_overlap(struct memtype *node, u64 start, u64 end) |
| { |
| if (node->start >= end || node->end <= start) |
| return 0; |
| |
| return 1; |
| } |
| |
| static u64 get_subtree_max_end(struct rb_node *node) |
| { |
| u64 ret = 0; |
| if (node) { |
| struct memtype *data = container_of(node, struct memtype, rb); |
| ret = data->subtree_max_end; |
| } |
| return ret; |
| } |
| |
| /* Update 'subtree_max_end' for a node, based on node and its children */ |
| static void update_node_max_end(struct rb_node *node) |
| { |
| struct memtype *data; |
| u64 max_end, child_max_end; |
| |
| if (!node) |
| return; |
| |
| data = container_of(node, struct memtype, rb); |
| max_end = data->end; |
| |
| child_max_end = get_subtree_max_end(node->rb_right); |
| if (child_max_end > max_end) |
| max_end = child_max_end; |
| |
| child_max_end = get_subtree_max_end(node->rb_left); |
| if (child_max_end > max_end) |
| max_end = child_max_end; |
| |
| data->subtree_max_end = max_end; |
| } |
| |
| /* Update 'subtree_max_end' for a node and all its ancestors */ |
| static void update_path_max_end(struct rb_node *node) |
| { |
| u64 old_max_end, new_max_end; |
| |
| while (node) { |
| struct memtype *data = container_of(node, struct memtype, rb); |
| |
| old_max_end = data->subtree_max_end; |
| update_node_max_end(node); |
| new_max_end = data->subtree_max_end; |
| |
| if (new_max_end == old_max_end) |
| break; |
| |
| node = rb_parent(node); |
| } |
| } |
| |
| /* Find the first (lowest start addr) overlapping range from rb tree */ |
| static struct memtype *memtype_rb_lowest_match(struct rb_root *root, |
| u64 start, u64 end) |
| { |
| struct rb_node *node = root->rb_node; |
| struct memtype *last_lower = NULL; |
| |
| while (node) { |
| struct memtype *data = container_of(node, struct memtype, rb); |
| |
| if (get_subtree_max_end(node->rb_left) > start) { |
| /* Lowest overlap if any must be on left side */ |
| node = node->rb_left; |
| } else if (is_node_overlap(data, start, end)) { |
| last_lower = data; |
| break; |
| } else if (start >= data->start) { |
| /* Lowest overlap if any must be on right side */ |
| node = node->rb_right; |
| } else { |
| break; |
| } |
| } |
| return last_lower; /* Returns NULL if there is no overlap */ |
| } |
| |
| static struct memtype *memtype_rb_exact_match(struct rb_root *root, |
| u64 start, u64 end) |
| { |
| struct memtype *match; |
| |
| match = memtype_rb_lowest_match(root, start, end); |
| while (match != NULL && match->start < end) { |
| struct rb_node *node; |
| |
| if (match->start == start && match->end == end) |
| return match; |
| |
| node = rb_next(&match->rb); |
| if (node) |
| match = container_of(node, struct memtype, rb); |
| else |
| match = NULL; |
| } |
| |
| return NULL; /* Returns NULL if there is no exact match */ |
| } |
| |
| static int memtype_rb_check_conflict(struct rb_root *root, |
| u64 start, u64 end, |
| unsigned long reqtype, unsigned long *newtype) |
| { |
| struct rb_node *node; |
| struct memtype *match; |
| int found_type = reqtype; |
| |
| match = memtype_rb_lowest_match(&memtype_rbroot, start, end); |
| if (match == NULL) |
| goto success; |
| |
| if (match->type != found_type && newtype == NULL) |
| goto failure; |
| |
| dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); |
| found_type = match->type; |
| |
| node = rb_next(&match->rb); |
| while (node) { |
| match = container_of(node, struct memtype, rb); |
| |
| if (match->start >= end) /* Checked all possible matches */ |
| goto success; |
| |
| if (is_node_overlap(match, start, end) && |
| match->type != found_type) { |
| goto failure; |
| } |
| |
| node = rb_next(&match->rb); |
| } |
| success: |
| if (newtype) |
| *newtype = found_type; |
| |
| return 0; |
| |
| failure: |
| printk(KERN_INFO "%s:%d conflicting memory types " |
| "%Lx-%Lx %s<->%s\n", current->comm, current->pid, start, |
| end, cattr_name(found_type), cattr_name(match->type)); |
| return -EBUSY; |
| } |
| |
| static void memtype_rb_augment_cb(struct rb_node *node) |
| { |
| if (node) |
| update_path_max_end(node); |
| } |
| |
| static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata) |
| { |
| struct rb_node **node = &(root->rb_node); |
| struct rb_node *parent = NULL; |
| |
| while (*node) { |
| struct memtype *data = container_of(*node, struct memtype, rb); |
| |
| parent = *node; |
| if (newdata->start <= data->start) |
| node = &((*node)->rb_left); |
| else if (newdata->start > data->start) |
| node = &((*node)->rb_right); |
| } |
| |
| rb_link_node(&newdata->rb, parent, node); |
| rb_insert_color(&newdata->rb, root); |
| } |
| |
| int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type) |
| { |
| int err = 0; |
| |
| err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end, |
| new->type, ret_type); |
| |
| if (!err) { |
| if (ret_type) |
| new->type = *ret_type; |
| |
| new->subtree_max_end = new->end; |
| memtype_rb_insert(&memtype_rbroot, new); |
| } |
| return err; |
| } |
| |
| struct memtype *rbt_memtype_erase(u64 start, u64 end) |
| { |
| struct memtype *data; |
| |
| data = memtype_rb_exact_match(&memtype_rbroot, start, end); |
| if (!data) |
| goto out; |
| |
| rb_erase(&data->rb, &memtype_rbroot); |
| out: |
| return data; |
| } |
| |
| struct memtype *rbt_memtype_lookup(u64 addr) |
| { |
| struct memtype *data; |
| data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE); |
| return data; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) |
| { |
| struct rb_node *node; |
| int i = 1; |
| |
| node = rb_first(&memtype_rbroot); |
| while (node && pos != i) { |
| node = rb_next(node); |
| i++; |
| } |
| |
| if (node) { /* pos == i */ |
| struct memtype *this = container_of(node, struct memtype, rb); |
| *out = *this; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| #endif |