blob: 859fc15688180ad8961b08604eb68e1061df16a0 [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* msm_dsps - control DSPS clocks, gpios and vregs.
*
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/msm_dsps.h>
#include <mach/irqs.h>
#include <mach/msm_iomap.h>
#include <mach/msm_smsm.h>
#include <mach/msm_dsps.h>
#include <mach/subsystem_restart.h>
#include "ramdump.h"
#include "timer.h"
#define DRV_NAME "msm_dsps"
#define DRV_VERSION "4.03"
#define PPSS_TIMER0_32KHZ_REG 0x1004
#define PPSS_TIMER0_20MHZ_REG 0x0804
/**
* Driver Context
*
* @dev_class - device class.
* @dev_num - device major & minor number.
* @dev - the device.
* @cdev - character device for user interface.
* @pdata - platform data.
* @pil - handle to DSPS Firmware loader.
* @dspsfw_ramdump_dev - handle to ramdump device for DSPS
* @dspsfw_ramdump_segments - Ramdump segment information for DSPS
* @smem_ramdump_dev - handle to ramdump device for smem
* @smem_ramdump_segments - Ramdump segment information for smem
* @is_on - DSPS is on.
* @ref_count - open/close reference count.
* @ppss_base - ppss registers virtual base address.
*/
struct dsps_drv {
struct class *dev_class;
dev_t dev_num;
struct device *dev;
struct cdev *cdev;
struct msm_dsps_platform_data *pdata;
void *pil;
int is_on;
int ref_count;
void __iomem *ppss_base;
};
/**
* Driver context.
*/
static struct dsps_drv *drv;
/**
* Load DSPS Firmware.
*/
static int dsps_load(void)
{
pr_debug("%s.\n", __func__);
drv->pil = subsystem_get("dsps");
if (IS_ERR(drv->pil)) {
pr_err("%s: fail to load DSPS firmware.\n", __func__);
return -ENODEV;
}
msleep(20);
return 0;
}
/**
* Unload DSPS Firmware.
*/
static void dsps_unload(void)
{
pr_debug("%s.\n", __func__);
subsystem_put(drv->pil);
}
/**
* Suspend DSPS CPU.
*
* Only call if dsps_pwr_ctl_en is false.
* If dsps_pwr_ctl_en is true, then DSPS will control its own power state.
*/
static void dsps_suspend(void)
{
pr_debug("%s.\n", __func__);
writel_relaxed(1, drv->ppss_base + drv->pdata->ppss_pause_reg);
mb(); /* Make sure write commited before ioctl returns. */
}
/**
* Resume DSPS CPU.
*
* Only call if dsps_pwr_ctl_en is false.
* If dsps_pwr_ctl_en is true, then DSPS will control its own power state.
*/
static void dsps_resume(void)
{
pr_debug("%s.\n", __func__);
writel_relaxed(0, drv->ppss_base + drv->pdata->ppss_pause_reg);
mb(); /* Make sure write commited before ioctl returns. */
}
/**
* Read DSPS slow timer.
*/
static u32 dsps_read_slow_timer(void)
{
u32 val;
/* Read the timer value from the MSM sclk. The MSM slow clock & DSPS
* timers are in sync, so these are the same value */
val = msm_timer_get_sclk_ticks();
pr_debug("%s.count=%d.\n", __func__, val);
return val;
}
/**
* Read DSPS fast timer.
*/
static u32 dsps_read_fast_timer(void)
{
u32 val;
val = readl_relaxed(drv->ppss_base + PPSS_TIMER0_20MHZ_REG);
rmb(); /* order reads from the user output buffer */
pr_debug("%s.count=%d.\n", __func__, val);
return val;
}
/**
* Power on request.
*
* Set clocks to ON.
* Set sensors chip-select GPIO to non-reset (on) value.
*
*/
static int dsps_power_on_handler(void)
{
int ret = 0;
int i, ci, gi, ri;
pr_debug("%s.\n", __func__);
if (drv->is_on) {
pr_debug("%s: already ON.\n", __func__);
return 0;
}
for (ci = 0; ci < drv->pdata->clks_num; ci++) {
const char *name = drv->pdata->clks[ci].name;
u32 rate = drv->pdata->clks[ci].rate;
struct clk *clock = drv->pdata->clks[ci].clock;
if (clock == NULL)
continue;
if (rate > 0) {
ret = clk_set_rate(clock, rate);
pr_debug("%s: clk %s set rate %d.",
__func__, name, rate);
if (ret) {
pr_err("%s: clk %s set rate %d. err=%d.",
__func__, name, rate, ret);
goto clk_err;
}
}
ret = clk_prepare_enable(clock);
if (ret) {
pr_err("%s: enable clk %s err %d.",
__func__, name, ret);
goto clk_err;
}
}
for (gi = 0; gi < drv->pdata->gpios_num; gi++) {
const char *name = drv->pdata->gpios[gi].name;
int num = drv->pdata->gpios[gi].num;
int val = drv->pdata->gpios[gi].on_val;
int is_owner = drv->pdata->gpios[gi].is_owner;
if (!is_owner)
continue;
ret = gpio_direction_output(num, val);
if (ret) {
pr_err("%s: set GPIO %s num %d to %d err %d.",
__func__, name, num, val, ret);
goto gpio_err;
}
}
for (ri = 0; ri < drv->pdata->regs_num; ri++) {
const char *name = drv->pdata->regs[ri].name;
struct regulator *reg = drv->pdata->regs[ri].reg;
int volt = drv->pdata->regs[ri].volt;
if (reg == NULL)
continue;
pr_debug("%s: set regulator %s.", __func__, name);
ret = regulator_set_voltage(reg, volt, volt);
if (ret) {
pr_err("%s: set regulator %s voltage %d err = %d.\n",
__func__, name, volt, ret);
goto reg_err;
}
ret = regulator_enable(reg);
if (ret) {
pr_err("%s: enable regulator %s err = %d.\n",
__func__, name, ret);
goto reg_err;
}
}
drv->is_on = true;
return 0;
/*
* If failling to set ANY clock/gpio/regulator to ON then we set
* them back to OFF to avoid consuming power for unused
* clocks/gpios/regulators.
*/
reg_err:
for (i = 0; i < ri; i++) {
struct regulator *reg = drv->pdata->regs[ri].reg;
if (reg == NULL)
continue;
regulator_disable(reg);
}
gpio_err:
for (i = 0; i < gi; i++) {
int num = drv->pdata->gpios[i].num;
int val = drv->pdata->gpios[i].off_val;
int is_owner = drv->pdata->gpios[i].is_owner;
if (!is_owner)
continue;
ret = gpio_direction_output(num, val);
}
clk_err:
for (i = 0; i < ci; i++) {
struct clk *clock = drv->pdata->clks[i].clock;
if (clock == NULL)
continue;
clk_disable_unprepare(clock);
}
return -ENODEV;
}
/**
* Power off request.
*
* Set clocks to OFF.
* Set sensors chip-select GPIO to reset (off) value.
*
*/
static int dsps_power_off_handler(void)
{
int ret;
int i;
pr_debug("%s.\n", __func__);
if (!drv->is_on) {
pr_debug("%s: already OFF.\n", __func__);
return 0;
}
for (i = 0; i < drv->pdata->clks_num; i++)
if (drv->pdata->clks[i].clock) {
const char *name = drv->pdata->clks[i].name;
pr_debug("%s: set clk %s off.", __func__, name);
clk_disable_unprepare(drv->pdata->clks[i].clock);
}
for (i = 0; i < drv->pdata->regs_num; i++)
if (drv->pdata->regs[i].reg) {
const char *name = drv->pdata->regs[i].name;
pr_debug("%s: set regulator %s off.", __func__, name);
regulator_disable(drv->pdata->regs[i].reg);
}
/* Clocks on/off has reference count but GPIOs don't. */
drv->is_on = false;
for (i = 0; i < drv->pdata->gpios_num; i++) {
const char *name = drv->pdata->gpios[i].name;
int num = drv->pdata->gpios[i].num;
int val = drv->pdata->gpios[i].off_val;
pr_debug("%s: set gpio %s off.", __func__, name);
ret = gpio_direction_output(num, val);
if (ret) {
pr_err("%s: set GPIO %s err %d.", __func__, name, ret);
return ret;
}
}
return 0;
}
/**
* IO Control - handle commands from client.
*
*/
static long dsps_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
int ret = 0;
u32 val = 0;
pr_debug("%s.\n", __func__);
switch (cmd) {
case DSPS_IOCTL_ON:
if (!drv->pdata->dsps_pwr_ctl_en) {
ret = dsps_power_on_handler();
dsps_resume();
}
break;
case DSPS_IOCTL_OFF:
if (!drv->pdata->dsps_pwr_ctl_en) {
dsps_suspend();
ret = dsps_power_off_handler();
}
break;
case DSPS_IOCTL_READ_SLOW_TIMER:
val = dsps_read_slow_timer();
ret = put_user(val, (u32 __user *) arg);
break;
case DSPS_IOCTL_READ_FAST_TIMER:
val = dsps_read_fast_timer();
ret = put_user(val, (u32 __user *) arg);
break;
case DSPS_IOCTL_RESET:
pr_err("%s: User-initiated DSPS reset.\nResetting DSPS\n",
__func__);
subsystem_restart("dsps");
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/**
* allocate resources.
* @pdev - pointer to platform device.
*/
static int dsps_alloc_resources(struct platform_device *pdev)
{
int ret = -ENODEV;
struct resource *ppss_res;
int i;
pr_debug("%s.\n", __func__);
if ((drv->pdata->signature != DSPS_SIGNATURE)) {
pr_err("%s: invalid signature for pdata.", __func__);
return -EINVAL;
}
ppss_res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ppss_reg");
if (!ppss_res) {
pr_err("%s: failed to get ppss_reg resource.\n", __func__);
return -EINVAL;
}
for (i = 0; i < drv->pdata->clks_num; i++) {
const char *name = drv->pdata->clks[i].name;
struct clk *clock;
drv->pdata->clks[i].clock = NULL;
pr_debug("%s: get clk %s.", __func__, name);
clock = clk_get(drv->dev, name);
if (IS_ERR(clock)) {
pr_err("%s: can't get clk %s.", __func__, name);
goto clk_err;
}
drv->pdata->clks[i].clock = clock;
}
for (i = 0; i < drv->pdata->gpios_num; i++) {
const char *name = drv->pdata->gpios[i].name;
int num = drv->pdata->gpios[i].num;
drv->pdata->gpios[i].is_owner = false;
pr_debug("%s: get gpio %s.", __func__, name);
ret = gpio_request(num, name);
if (ret) {
pr_err("%s: request GPIO %s err %d.",
__func__, name, ret);
goto gpio_err;
}
drv->pdata->gpios[i].is_owner = true;
}
for (i = 0; i < drv->pdata->regs_num; i++) {
const char *name = drv->pdata->regs[i].name;
drv->pdata->regs[i].reg = NULL;
pr_debug("%s: get regulator %s.", __func__, name);
drv->pdata->regs[i].reg = regulator_get(drv->dev, name);
if (IS_ERR(drv->pdata->regs[i].reg)) {
pr_err("%s: get regulator %s failed.",
__func__, name);
goto reg_err;
}
}
drv->ppss_base = ioremap(ppss_res->start,
resource_size(ppss_res));
if (drv->pdata->init)
drv->pdata->init(drv->pdata);
return 0;
reg_err:
for (i = 0; i < drv->pdata->regs_num; i++) {
if (drv->pdata->regs[i].reg) {
regulator_put(drv->pdata->regs[i].reg);
drv->pdata->regs[i].reg = NULL;
}
}
gpio_err:
for (i = 0; i < drv->pdata->gpios_num; i++)
if (drv->pdata->gpios[i].is_owner) {
gpio_free(drv->pdata->gpios[i].num);
drv->pdata->gpios[i].is_owner = false;
}
clk_err:
for (i = 0; i < drv->pdata->clks_num; i++)
if (drv->pdata->clks[i].clock) {
clk_put(drv->pdata->clks[i].clock);
drv->pdata->clks[i].clock = NULL;
}
return ret;
}
/**
* Open File.
*
*/
static int dsps_open(struct inode *ip, struct file *fp)
{
int ret = 0;
pr_debug("%s.\n", __func__);
if (drv->ref_count == 0) {
/* clocks must be ON before loading.*/
ret = dsps_power_on_handler();
if (ret)
return ret;
ret = dsps_load();
if (ret) {
dsps_power_off_handler();
return ret;
}
if (!drv->pdata->dsps_pwr_ctl_en)
dsps_resume();
}
drv->ref_count++;
return ret;
}
/**
* free resources.
*
*/
static void dsps_free_resources(void)
{
int i;
pr_debug("%s.\n", __func__);
for (i = 0; i < drv->pdata->clks_num; i++)
if (drv->pdata->clks[i].clock) {
clk_put(drv->pdata->clks[i].clock);
drv->pdata->clks[i].clock = NULL;
}
for (i = 0; i < drv->pdata->gpios_num; i++)
if (drv->pdata->gpios[i].is_owner) {
gpio_free(drv->pdata->gpios[i].num);
drv->pdata->gpios[i].is_owner = false;
}
for (i = 0; i < drv->pdata->regs_num; i++) {
if (drv->pdata->regs[i].reg) {
regulator_put(drv->pdata->regs[i].reg);
drv->pdata->regs[i].reg = NULL;
}
}
iounmap(drv->ppss_base);
}
/**
* Close File.
*
* The client shall close and re-open the file for re-loading the DSPS
* firmware.
* The file system will close the file if the user space app has crashed.
*
* If the DSPS is running, then we must reset DSPS CPU & HW before
* setting the clocks off.
* The DSPS reset should be done as part of the pil_put().
* The DSPS reset should be used for error recovery if the DSPS firmware
* has crashed and re-loading the firmware is required.
*/
static int dsps_release(struct inode *inode, struct file *file)
{
pr_debug("%s.\n", __func__);
drv->ref_count--;
if (drv->ref_count == 0) {
if (!drv->pdata->dsps_pwr_ctl_en) {
dsps_suspend();
dsps_unload();
dsps_power_off_handler();
}
}
return 0;
}
const struct file_operations dsps_fops = {
.owner = THIS_MODULE,
.open = dsps_open,
.release = dsps_release,
.unlocked_ioctl = dsps_ioctl,
};
/**
* platform driver
*
*/
static int __devinit dsps_probe(struct platform_device *pdev)
{
int ret;
pr_debug("%s.\n", __func__);
if (pdev->dev.platform_data == NULL) {
pr_err("%s: platform data is NULL.\n", __func__);
return -ENODEV;
}
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
if (drv == NULL) {
pr_err("%s: kzalloc fail.\n", __func__);
goto alloc_err;
}
drv->pdata = pdev->dev.platform_data;
drv->dev_class = class_create(THIS_MODULE, DRV_NAME);
if (drv->dev_class == NULL) {
pr_err("%s: class_create fail.\n", __func__);
goto res_err;
}
ret = alloc_chrdev_region(&drv->dev_num, 0, 1, DRV_NAME);
if (ret) {
pr_err("%s: alloc_chrdev_region fail.\n", __func__);
goto alloc_chrdev_region_err;
}
drv->dev = device_create(drv->dev_class, NULL,
drv->dev_num,
drv, DRV_NAME);
if (IS_ERR(drv->dev)) {
pr_err("%s: device_create fail.\n", __func__);
goto device_create_err;
}
drv->cdev = cdev_alloc();
if (drv->cdev == NULL) {
pr_err("%s: cdev_alloc fail.\n", __func__);
goto cdev_alloc_err;
}
cdev_init(drv->cdev, &dsps_fops);
drv->cdev->owner = THIS_MODULE;
ret = cdev_add(drv->cdev, drv->dev_num, 1);
if (ret) {
pr_err("%s: cdev_add fail.\n", __func__);
goto cdev_add_err;
}
ret = dsps_alloc_resources(pdev);
if (ret) {
pr_err("%s: failed to allocate dsps resources.\n", __func__);
goto cdev_add_err;
}
return 0;
cdev_add_err:
kfree(drv->cdev);
cdev_alloc_err:
device_destroy(drv->dev_class, drv->dev_num);
device_create_err:
unregister_chrdev_region(drv->dev_num, 1);
alloc_chrdev_region_err:
class_destroy(drv->dev_class);
res_err:
kfree(drv);
drv = NULL;
alloc_err:
return -ENODEV;
}
static int __devexit dsps_remove(struct platform_device *pdev)
{
pr_debug("%s.\n", __func__);
dsps_power_off_handler();
dsps_free_resources();
cdev_del(drv->cdev);
kfree(drv->cdev);
drv->cdev = NULL;
device_destroy(drv->dev_class, drv->dev_num);
unregister_chrdev_region(drv->dev_num, 1);
class_destroy(drv->dev_class);
kfree(drv);
drv = NULL;
return 0;
}
static struct platform_driver dsps_driver = {
.probe = dsps_probe,
.remove = __exit_p(dsps_remove),
.driver = {
.name = "msm_dsps",
},
};
/**
* Module Init.
*/
static int __init dsps_init(void)
{
int ret;
pr_info("%s driver version %s.\n", DRV_NAME, DRV_VERSION);
ret = platform_driver_register(&dsps_driver);
if (ret)
pr_err("dsps_init.err=%d.\n", ret);
return ret;
}
/**
* Module Exit.
*/
static void __exit dsps_exit(void)
{
pr_debug("%s.\n", __func__);
platform_driver_unregister(&dsps_driver);
}
module_init(dsps_init);
module_exit(dsps_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Dedicated Sensors Processor Subsystem (DSPS) driver");
MODULE_AUTHOR("Amir Samuelov <amirs@codeaurora.org>");