blob: 3355e19b33085a6232f883ea72ed862050d07f4c [file] [log] [blame]
/* drivers/usb/gadget/f_diag.c
* Diag Function Device - Route ARM9 and ARM11 DIAG messages
* between HOST and DEVICE.
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2008-2013, The Linux Foundation. All rights reserved.
* Author: Brian Swetland <swetland@google.com>
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/ratelimit.h>
#include <mach/usbdiag.h>
#include <linux/usb/composite.h>
#include <linux/usb/gadget.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
static DEFINE_SPINLOCK(ch_lock);
static LIST_HEAD(usb_diag_ch_list);
static struct usb_interface_descriptor intf_desc = {
.bLength = sizeof intf_desc,
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = 0xFF,
.bInterfaceSubClass = 0xFF,
.bInterfaceProtocol = 0xFF,
};
static struct usb_endpoint_descriptor hs_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(512),
.bInterval = 0,
};
static struct usb_endpoint_descriptor fs_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(64),
.bInterval = 0,
};
static struct usb_endpoint_descriptor hs_bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(512),
.bInterval = 0,
};
static struct usb_endpoint_descriptor fs_bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(64),
.bInterval = 0,
};
static struct usb_endpoint_descriptor ss_bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor ss_bulk_in_comp_desc = {
.bLength = sizeof ss_bulk_in_comp_desc,
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* the following 2 values can be tweaked if necessary */
/* .bMaxBurst = 0, */
/* .bmAttributes = 0, */
};
static struct usb_endpoint_descriptor ss_bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor ss_bulk_out_comp_desc = {
.bLength = sizeof ss_bulk_out_comp_desc,
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* the following 2 values can be tweaked if necessary */
/* .bMaxBurst = 0, */
/* .bmAttributes = 0, */
};
static struct usb_descriptor_header *fs_diag_desc[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &fs_bulk_in_desc,
(struct usb_descriptor_header *) &fs_bulk_out_desc,
NULL,
};
static struct usb_descriptor_header *hs_diag_desc[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &hs_bulk_in_desc,
(struct usb_descriptor_header *) &hs_bulk_out_desc,
NULL,
};
static struct usb_descriptor_header *ss_diag_desc[] = {
(struct usb_descriptor_header *) &intf_desc,
(struct usb_descriptor_header *) &ss_bulk_in_desc,
(struct usb_descriptor_header *) &ss_bulk_in_comp_desc,
(struct usb_descriptor_header *) &ss_bulk_out_desc,
(struct usb_descriptor_header *) &ss_bulk_out_comp_desc,
NULL,
};
/**
* struct diag_context - USB diag function driver private structure
* @function: function structure for USB interface
* @out: USB OUT endpoint struct
* @in: USB IN endpoint struct
* @in_desc: USB IN endpoint descriptor struct
* @out_desc: USB OUT endpoint descriptor struct
* @read_pool: List of requests used for Rx (OUT ep)
* @write_pool: List of requests used for Tx (IN ep)
* @lock: Spinlock to proctect read_pool, write_pool lists
* @cdev: USB composite device struct
* @ch: USB diag channel
*
*/
struct diag_context {
struct usb_function function;
struct usb_ep *out;
struct usb_ep *in;
struct list_head read_pool;
struct list_head write_pool;
spinlock_t lock;
unsigned configured;
struct usb_composite_dev *cdev;
int (*update_pid_and_serial_num)(uint32_t, const char *);
struct usb_diag_ch *ch;
/* pkt counters */
unsigned long dpkts_tolaptop;
unsigned long dpkts_tomodem;
unsigned dpkts_tolaptop_pending;
/* A list node inside the diag_dev_list */
struct list_head list_item;
};
static struct list_head diag_dev_list;
static inline struct diag_context *func_to_diag(struct usb_function *f)
{
return container_of(f, struct diag_context, function);
}
static void diag_update_pid_and_serial_num(struct diag_context *ctxt)
{
struct usb_composite_dev *cdev = ctxt->cdev;
struct usb_gadget_strings *table;
struct usb_string *s;
if (!ctxt->update_pid_and_serial_num)
return;
/*
* update pid and serail number to dload only if diag
* interface is zeroth interface.
*/
if (intf_desc.bInterfaceNumber)
return;
/* pass on product id and serial number to dload */
if (!cdev->desc.iSerialNumber) {
ctxt->update_pid_and_serial_num(
cdev->desc.idProduct, 0);
return;
}
/*
* Serial number is filled by the composite driver. So
* it is fair enough to assume that it will always be
* found at first table of strings.
*/
table = *(cdev->driver->strings);
for (s = table->strings; s && s->s; s++)
if (s->id == cdev->desc.iSerialNumber) {
ctxt->update_pid_and_serial_num(
cdev->desc.idProduct, s->s);
break;
}
}
static void diag_write_complete(struct usb_ep *ep,
struct usb_request *req)
{
struct diag_context *ctxt = ep->driver_data;
struct diag_request *d_req = req->context;
unsigned long flags;
ctxt->dpkts_tolaptop_pending--;
if (!req->status) {
if ((req->length >= ep->maxpacket) &&
((req->length % ep->maxpacket) == 0)) {
ctxt->dpkts_tolaptop_pending++;
req->length = 0;
d_req->actual = req->actual;
d_req->status = req->status;
/* Queue zero length packet */
usb_ep_queue(ctxt->in, req, GFP_ATOMIC);
return;
}
}
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->write_pool);
if (req->length != 0) {
d_req->actual = req->actual;
d_req->status = req->status;
}
spin_unlock_irqrestore(&ctxt->lock, flags);
if (ctxt->ch && ctxt->ch->notify)
ctxt->ch->notify(ctxt->ch->priv, USB_DIAG_WRITE_DONE, d_req);
}
static void diag_read_complete(struct usb_ep *ep,
struct usb_request *req)
{
struct diag_context *ctxt = ep->driver_data;
struct diag_request *d_req = req->context;
unsigned long flags;
d_req->actual = req->actual;
d_req->status = req->status;
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->read_pool);
spin_unlock_irqrestore(&ctxt->lock, flags);
ctxt->dpkts_tomodem++;
if (ctxt->ch && ctxt->ch->notify)
ctxt->ch->notify(ctxt->ch->priv, USB_DIAG_READ_DONE, d_req);
}
/**
* usb_diag_open() - Open a diag channel over USB
* @name: Name of the channel
* @priv: Private structure pointer which will be passed in notify()
* @notify: Callback function to receive notifications
*
* This function iterates overs the available channels and returns
* the channel handler if the name matches. The notify callback is called
* for CONNECT, DISCONNECT, READ_DONE and WRITE_DONE events.
*
*/
struct usb_diag_ch *usb_diag_open(const char *name, void *priv,
void (*notify)(void *, unsigned, struct diag_request *))
{
struct usb_diag_ch *ch;
unsigned long flags;
int found = 0;
spin_lock_irqsave(&ch_lock, flags);
/* Check if we already have a channel with this name */
list_for_each_entry(ch, &usb_diag_ch_list, list) {
if (!strcmp(name, ch->name)) {
found = 1;
break;
}
}
spin_unlock_irqrestore(&ch_lock, flags);
if (!found) {
ch = kzalloc(sizeof(*ch), GFP_KERNEL);
if (!ch)
return ERR_PTR(-ENOMEM);
}
ch->name = name;
ch->priv = priv;
ch->notify = notify;
spin_lock_irqsave(&ch_lock, flags);
list_add_tail(&ch->list, &usb_diag_ch_list);
spin_unlock_irqrestore(&ch_lock, flags);
return ch;
}
EXPORT_SYMBOL(usb_diag_open);
/**
* usb_diag_close() - Close a diag channel over USB
* @ch: Channel handler
*
* This function closes the diag channel.
*
*/
void usb_diag_close(struct usb_diag_ch *ch)
{
struct diag_context *dev = NULL;
unsigned long flags;
spin_lock_irqsave(&ch_lock, flags);
ch->priv = NULL;
ch->notify = NULL;
/* Free-up the resources if channel is no more active */
list_del(&ch->list);
list_for_each_entry(dev, &diag_dev_list, list_item)
if (dev->ch == ch)
dev->ch = NULL;
kfree(ch);
spin_unlock_irqrestore(&ch_lock, flags);
}
EXPORT_SYMBOL(usb_diag_close);
static void free_reqs(struct diag_context *ctxt)
{
struct list_head *act, *tmp;
struct usb_request *req;
list_for_each_safe(act, tmp, &ctxt->write_pool) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
usb_ep_free_request(ctxt->in, req);
}
list_for_each_safe(act, tmp, &ctxt->read_pool) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
usb_ep_free_request(ctxt->out, req);
}
}
/**
* usb_diag_free_req() - Free USB requests
* @ch: Channel handler
*
* This function free read and write USB requests for the interface
* associated with this channel.
*
*/
void usb_diag_free_req(struct usb_diag_ch *ch)
{
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
if (ctxt) {
spin_lock_irqsave(&ctxt->lock, flags);
free_reqs(ctxt);
spin_unlock_irqrestore(&ctxt->lock, flags);
}
}
EXPORT_SYMBOL(usb_diag_free_req);
/**
* usb_diag_alloc_req() - Allocate USB requests
* @ch: Channel handler
* @n_write: Number of requests for Tx
* @n_read: Number of requests for Rx
*
* This function allocate read and write USB requests for the interface
* associated with this channel. The actual buffer is not allocated.
* The buffer is passed by diag char driver.
*
*/
int usb_diag_alloc_req(struct usb_diag_ch *ch, int n_write, int n_read)
{
struct diag_context *ctxt = ch->priv_usb;
struct usb_request *req;
int i;
unsigned long flags;
if (!ctxt)
return -ENODEV;
spin_lock_irqsave(&ctxt->lock, flags);
/* Free previous session's stale requests */
free_reqs(ctxt);
for (i = 0; i < n_write; i++) {
req = usb_ep_alloc_request(ctxt->in, GFP_ATOMIC);
if (!req)
goto fail;
req->complete = diag_write_complete;
list_add_tail(&req->list, &ctxt->write_pool);
}
for (i = 0; i < n_read; i++) {
req = usb_ep_alloc_request(ctxt->out, GFP_ATOMIC);
if (!req)
goto fail;
req->complete = diag_read_complete;
list_add_tail(&req->list, &ctxt->read_pool);
}
spin_unlock_irqrestore(&ctxt->lock, flags);
return 0;
fail:
free_reqs(ctxt);
spin_unlock_irqrestore(&ctxt->lock, flags);
return -ENOMEM;
}
EXPORT_SYMBOL(usb_diag_alloc_req);
/**
* usb_diag_read() - Read data from USB diag channel
* @ch: Channel handler
* @d_req: Diag request struct
*
* Enqueue a request on OUT endpoint of the interface corresponding to this
* channel. This function returns proper error code when interface is not
* in configured state, no Rx requests available and ep queue is failed.
*
* This function operates asynchronously. READ_DONE event is notified after
* completion of OUT request.
*
*/
int usb_diag_read(struct usb_diag_ch *ch, struct diag_request *d_req)
{
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
struct usb_request *req;
static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1);
if (!ctxt)
return -ENODEV;
spin_lock_irqsave(&ctxt->lock, flags);
if (!ctxt->configured) {
spin_unlock_irqrestore(&ctxt->lock, flags);
return -EIO;
}
if (list_empty(&ctxt->read_pool)) {
spin_unlock_irqrestore(&ctxt->lock, flags);
ERROR(ctxt->cdev, "%s: no requests available\n", __func__);
return -EAGAIN;
}
req = list_first_entry(&ctxt->read_pool, struct usb_request, list);
list_del(&req->list);
spin_unlock_irqrestore(&ctxt->lock, flags);
req->buf = d_req->buf;
req->length = d_req->length;
req->context = d_req;
if (usb_ep_queue(ctxt->out, req, GFP_ATOMIC)) {
/* If error add the link to linked list again*/
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->read_pool);
spin_unlock_irqrestore(&ctxt->lock, flags);
/* 1 error message for every 10 sec */
if (__ratelimit(&rl))
ERROR(ctxt->cdev, "%s: cannot queue"
" read request\n", __func__);
return -EIO;
}
return 0;
}
EXPORT_SYMBOL(usb_diag_read);
/**
* usb_diag_write() - Write data from USB diag channel
* @ch: Channel handler
* @d_req: Diag request struct
*
* Enqueue a request on IN endpoint of the interface corresponding to this
* channel. This function returns proper error code when interface is not
* in configured state, no Tx requests available and ep queue is failed.
*
* This function operates asynchronously. WRITE_DONE event is notified after
* completion of IN request.
*
*/
int usb_diag_write(struct usb_diag_ch *ch, struct diag_request *d_req)
{
struct diag_context *ctxt = ch->priv_usb;
unsigned long flags;
struct usb_request *req = NULL;
static DEFINE_RATELIMIT_STATE(rl, 10*HZ, 1);
if (!ctxt)
return -ENODEV;
spin_lock_irqsave(&ctxt->lock, flags);
if (!ctxt->configured) {
spin_unlock_irqrestore(&ctxt->lock, flags);
return -EIO;
}
if (list_empty(&ctxt->write_pool)) {
spin_unlock_irqrestore(&ctxt->lock, flags);
ERROR(ctxt->cdev, "%s: no requests available\n", __func__);
return -EAGAIN;
}
req = list_first_entry(&ctxt->write_pool, struct usb_request, list);
list_del(&req->list);
spin_unlock_irqrestore(&ctxt->lock, flags);
req->buf = d_req->buf;
req->length = d_req->length;
req->context = d_req;
if (usb_ep_queue(ctxt->in, req, GFP_ATOMIC)) {
/* If error add the link to linked list again*/
spin_lock_irqsave(&ctxt->lock, flags);
list_add_tail(&req->list, &ctxt->write_pool);
spin_unlock_irqrestore(&ctxt->lock, flags);
/* 1 error message for every 10 sec */
if (__ratelimit(&rl))
ERROR(ctxt->cdev, "%s: cannot queue"
" read request\n", __func__);
return -EIO;
}
ctxt->dpkts_tolaptop++;
ctxt->dpkts_tolaptop_pending++;
return 0;
}
EXPORT_SYMBOL(usb_diag_write);
static void diag_function_disable(struct usb_function *f)
{
struct diag_context *dev = func_to_diag(f);
unsigned long flags;
DBG(dev->cdev, "diag_function_disable\n");
spin_lock_irqsave(&dev->lock, flags);
dev->configured = 0;
spin_unlock_irqrestore(&dev->lock, flags);
if (dev->ch && dev->ch->notify)
dev->ch->notify(dev->ch->priv, USB_DIAG_DISCONNECT, NULL);
usb_ep_disable(dev->in);
dev->in->driver_data = NULL;
usb_ep_disable(dev->out);
dev->out->driver_data = NULL;
if (dev->ch)
dev->ch->priv_usb = NULL;
}
static int diag_function_set_alt(struct usb_function *f,
unsigned intf, unsigned alt)
{
struct diag_context *dev = func_to_diag(f);
struct usb_composite_dev *cdev = f->config->cdev;
unsigned long flags;
int rc = 0;
if (config_ep_by_speed(cdev->gadget, f, dev->in) ||
config_ep_by_speed(cdev->gadget, f, dev->out)) {
dev->in->desc = NULL;
dev->out->desc = NULL;
return -EINVAL;
}
if (!dev->ch)
return -ENODEV;
/*
* Indicate to the diag channel that the active diag device is dev.
* Since a few diag devices can point to the same channel.
*/
dev->ch->priv_usb = dev;
dev->in->driver_data = dev;
rc = usb_ep_enable(dev->in);
if (rc) {
ERROR(dev->cdev, "can't enable %s, result %d\n",
dev->in->name, rc);
return rc;
}
dev->out->driver_data = dev;
rc = usb_ep_enable(dev->out);
if (rc) {
ERROR(dev->cdev, "can't enable %s, result %d\n",
dev->out->name, rc);
usb_ep_disable(dev->in);
return rc;
}
dev->dpkts_tolaptop = 0;
dev->dpkts_tomodem = 0;
dev->dpkts_tolaptop_pending = 0;
spin_lock_irqsave(&dev->lock, flags);
dev->configured = 1;
spin_unlock_irqrestore(&dev->lock, flags);
if (dev->ch->notify)
dev->ch->notify(dev->ch->priv, USB_DIAG_CONNECT, NULL);
return rc;
}
static void diag_function_unbind(struct usb_configuration *c,
struct usb_function *f)
{
struct diag_context *ctxt = func_to_diag(f);
if (gadget_is_superspeed(c->cdev->gadget))
usb_free_descriptors(f->ss_descriptors);
if (gadget_is_dualspeed(c->cdev->gadget))
usb_free_descriptors(f->hs_descriptors);
usb_free_descriptors(f->descriptors);
/*
* Channel priv_usb may point to other diag function.
* Clear the priv_usb only if the channel is used by the
* diag dev we unbind here.
*/
if (ctxt->ch && ctxt->ch->priv_usb == ctxt)
ctxt->ch->priv_usb = NULL;
list_del(&ctxt->list_item);
kfree(ctxt);
}
static int diag_function_bind(struct usb_configuration *c,
struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct diag_context *ctxt = func_to_diag(f);
struct usb_ep *ep;
int status = -ENODEV;
intf_desc.bInterfaceNumber = usb_interface_id(c, f);
ep = usb_ep_autoconfig(cdev->gadget, &fs_bulk_in_desc);
if (!ep)
goto fail;
ctxt->in = ep;
ep->driver_data = ctxt;
ep = usb_ep_autoconfig(cdev->gadget, &fs_bulk_out_desc);
if (!ep)
goto fail;
ctxt->out = ep;
ep->driver_data = ctxt;
status = -ENOMEM;
/* copy descriptors, and track endpoint copies */
f->descriptors = usb_copy_descriptors(fs_diag_desc);
if (!f->descriptors)
goto fail;
if (gadget_is_dualspeed(c->cdev->gadget)) {
hs_bulk_in_desc.bEndpointAddress =
fs_bulk_in_desc.bEndpointAddress;
hs_bulk_out_desc.bEndpointAddress =
fs_bulk_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->hs_descriptors = usb_copy_descriptors(hs_diag_desc);
if (!f->hs_descriptors)
goto fail;
}
if (gadget_is_superspeed(c->cdev->gadget)) {
ss_bulk_in_desc.bEndpointAddress =
fs_bulk_in_desc.bEndpointAddress;
ss_bulk_out_desc.bEndpointAddress =
fs_bulk_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->ss_descriptors = usb_copy_descriptors(ss_diag_desc);
if (!f->ss_descriptors)
goto fail;
}
diag_update_pid_and_serial_num(ctxt);
return 0;
fail:
if (f->ss_descriptors)
usb_free_descriptors(f->ss_descriptors);
if (f->hs_descriptors)
usb_free_descriptors(f->hs_descriptors);
if (f->descriptors)
usb_free_descriptors(f->descriptors);
if (ctxt->out)
ctxt->out->driver_data = NULL;
if (ctxt->in)
ctxt->in->driver_data = NULL;
return status;
}
int diag_function_add(struct usb_configuration *c, const char *name,
int (*update_pid)(uint32_t, const char *))
{
struct diag_context *dev;
struct usb_diag_ch *_ch;
int found = 0, ret;
DBG(c->cdev, "diag_function_add\n");
list_for_each_entry(_ch, &usb_diag_ch_list, list) {
if (!strcmp(name, _ch->name)) {
found = 1;
break;
}
}
if (!found) {
ERROR(c->cdev, "unable to get diag usb channel\n");
return -ENODEV;
}
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
list_add_tail(&dev->list_item, &diag_dev_list);
/*
* A few diag devices can point to the same channel, in case that
* the diag devices belong to different configurations, however
* only the active diag device will claim the channel by setting
* the ch->priv_usb (see diag_function_set_alt).
*/
dev->ch = _ch;
dev->update_pid_and_serial_num = update_pid;
dev->cdev = c->cdev;
dev->function.name = _ch->name;
dev->function.descriptors = fs_diag_desc;
dev->function.hs_descriptors = hs_diag_desc;
dev->function.bind = diag_function_bind;
dev->function.unbind = diag_function_unbind;
dev->function.set_alt = diag_function_set_alt;
dev->function.disable = diag_function_disable;
spin_lock_init(&dev->lock);
INIT_LIST_HEAD(&dev->read_pool);
INIT_LIST_HEAD(&dev->write_pool);
ret = usb_add_function(c, &dev->function);
if (ret) {
INFO(c->cdev, "usb_add_function failed\n");
list_del(&dev->list_item);
kfree(dev);
}
return ret;
}
#if defined(CONFIG_DEBUG_FS)
static char debug_buffer[PAGE_SIZE];
static ssize_t debug_read_stats(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
char *buf = debug_buffer;
int temp = 0;
struct usb_diag_ch *ch;
list_for_each_entry(ch, &usb_diag_ch_list, list) {
struct diag_context *ctxt = ch->priv_usb;
if (ctxt)
temp += scnprintf(buf + temp, PAGE_SIZE - temp,
"---Name: %s---\n"
"endpoints: %s, %s\n"
"dpkts_tolaptop: %lu\n"
"dpkts_tomodem: %lu\n"
"pkts_tolaptop_pending: %u\n",
ch->name,
ctxt->in->name, ctxt->out->name,
ctxt->dpkts_tolaptop,
ctxt->dpkts_tomodem,
ctxt->dpkts_tolaptop_pending);
}
return simple_read_from_buffer(ubuf, count, ppos, buf, temp);
}
static ssize_t debug_reset_stats(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct usb_diag_ch *ch;
list_for_each_entry(ch, &usb_diag_ch_list, list) {
struct diag_context *ctxt = ch->priv_usb;
if (ctxt) {
ctxt->dpkts_tolaptop = 0;
ctxt->dpkts_tomodem = 0;
ctxt->dpkts_tolaptop_pending = 0;
}
}
return count;
}
static int debug_open(struct inode *inode, struct file *file)
{
return 0;
}
static const struct file_operations debug_fdiag_ops = {
.open = debug_open,
.read = debug_read_stats,
.write = debug_reset_stats,
};
struct dentry *dent_diag;
static void fdiag_debugfs_init(void)
{
dent_diag = debugfs_create_dir("usb_diag", 0);
if (IS_ERR(dent_diag))
return;
debugfs_create_file("status", 0444, dent_diag, 0, &debug_fdiag_ops);
}
#else
static void fdiag_debugfs_init(void)
{
return;
}
#endif
static void diag_cleanup(void)
{
struct list_head *act, *tmp;
struct usb_diag_ch *_ch;
unsigned long flags;
debugfs_remove_recursive(dent_diag);
list_for_each_safe(act, tmp, &usb_diag_ch_list) {
_ch = list_entry(act, struct usb_diag_ch, list);
spin_lock_irqsave(&ch_lock, flags);
/* Free if diagchar is not using the channel anymore */
if (!_ch->priv) {
list_del(&_ch->list);
kfree(_ch);
}
spin_unlock_irqrestore(&ch_lock, flags);
}
}
static int diag_setup(void)
{
INIT_LIST_HEAD(&diag_dev_list);
fdiag_debugfs_init();
return 0;
}