| /* Generate assembler source containing symbol information |
| * |
| * Copyright 2002 by Kai Germaschewski |
| * |
| * This software may be used and distributed according to the terms |
| * of the GNU General Public License, incorporated herein by reference. |
| * |
| * Usage: nm -n vmlinux | scripts/kallsyms [--all-symbols] > symbols.S |
| * |
| * ChangeLog: |
| * |
| * (25/Aug/2004) Paulo Marques <pmarques@grupopie.com> |
| * Changed the compression method from stem compression to "table lookup" |
| * compression |
| * |
| * Table compression uses all the unused char codes on the symbols and |
| * maps these to the most used substrings (tokens). For instance, it might |
| * map char code 0xF7 to represent "write_" and then in every symbol where |
| * "write_" appears it can be replaced by 0xF7, saving 5 bytes. |
| * The used codes themselves are also placed in the table so that the |
| * decompresion can work without "special cases". |
| * Applied to kernel symbols, this usually produces a compression ratio |
| * of about 50%. |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <ctype.h> |
| |
| /* maximum token length used. It doesn't pay to increase it a lot, because |
| * very long substrings probably don't repeat themselves too often. */ |
| #define MAX_TOK_SIZE 11 |
| #define KSYM_NAME_LEN 127 |
| |
| /* we use only a subset of the complete symbol table to gather the token count, |
| * to speed up compression, at the expense of a little compression ratio */ |
| #define WORKING_SET 1024 |
| |
| /* first find the best token only on the list of tokens that would profit more |
| * than GOOD_BAD_THRESHOLD. Only if this list is empty go to the "bad" list. |
| * Increasing this value will put less tokens on the "good" list, so the search |
| * is faster. However, if the good list runs out of tokens, we must painfully |
| * search the bad list. */ |
| #define GOOD_BAD_THRESHOLD 10 |
| |
| /* token hash parameters */ |
| #define HASH_BITS 18 |
| #define HASH_TABLE_SIZE (1 << HASH_BITS) |
| #define HASH_MASK (HASH_TABLE_SIZE - 1) |
| #define HASH_BASE_OFFSET 2166136261U |
| #define HASH_FOLD(a) ((a)&(HASH_MASK)) |
| |
| /* flags to mark symbols */ |
| #define SYM_FLAG_VALID 1 |
| #define SYM_FLAG_SAMPLED 2 |
| |
| struct sym_entry { |
| unsigned long long addr; |
| char type; |
| unsigned char flags; |
| unsigned char len; |
| unsigned char *sym; |
| }; |
| |
| |
| static struct sym_entry *table; |
| static int size, cnt; |
| static unsigned long long _stext, _etext, _sinittext, _einittext; |
| static int all_symbols = 0; |
| static char symbol_prefix_char = '\0'; |
| |
| struct token { |
| unsigned char data[MAX_TOK_SIZE]; |
| unsigned char len; |
| /* profit: the number of bytes that could be saved by inserting this |
| * token into the table */ |
| int profit; |
| struct token *next; /* next token on the hash list */ |
| struct token *right; /* next token on the good/bad list */ |
| struct token *left; /* previous token on the good/bad list */ |
| struct token *smaller; /* token that is less one letter than this one */ |
| }; |
| |
| struct token bad_head, good_head; |
| struct token *hash_table[HASH_TABLE_SIZE]; |
| |
| /* the table that holds the result of the compression */ |
| unsigned char best_table[256][MAX_TOK_SIZE+1]; |
| unsigned char best_table_len[256]; |
| |
| |
| static void |
| usage(void) |
| { |
| fprintf(stderr, "Usage: kallsyms [--all-symbols] [--symbol-prefix=<prefix char>] < in.map > out.S\n"); |
| exit(1); |
| } |
| |
| /* |
| * This ignores the intensely annoying "mapping symbols" found |
| * in ARM ELF files: $a, $t and $d. |
| */ |
| static inline int |
| is_arm_mapping_symbol(const char *str) |
| { |
| return str[0] == '$' && strchr("atd", str[1]) |
| && (str[2] == '\0' || str[2] == '.'); |
| } |
| |
| static int |
| read_symbol(FILE *in, struct sym_entry *s) |
| { |
| char str[500]; |
| char *sym; |
| int rc; |
| |
| rc = fscanf(in, "%llx %c %499s\n", &s->addr, &s->type, str); |
| if (rc != 3) { |
| if (rc != EOF) { |
| /* skip line */ |
| fgets(str, 500, in); |
| } |
| return -1; |
| } |
| |
| sym = str; |
| /* skip prefix char */ |
| if (symbol_prefix_char && str[0] == symbol_prefix_char) |
| sym++; |
| |
| /* Ignore most absolute/undefined (?) symbols. */ |
| if (strcmp(sym, "_stext") == 0) |
| _stext = s->addr; |
| else if (strcmp(sym, "_etext") == 0) |
| _etext = s->addr; |
| else if (strcmp(sym, "_sinittext") == 0) |
| _sinittext = s->addr; |
| else if (strcmp(sym, "_einittext") == 0) |
| _einittext = s->addr; |
| else if (toupper(s->type) == 'A') |
| { |
| /* Keep these useful absolute symbols */ |
| if (strcmp(sym, "__kernel_syscall_via_break") && |
| strcmp(sym, "__kernel_syscall_via_epc") && |
| strcmp(sym, "__kernel_sigtramp") && |
| strcmp(sym, "__gp")) |
| return -1; |
| |
| } |
| else if (toupper(s->type) == 'U' || |
| is_arm_mapping_symbol(sym)) |
| return -1; |
| |
| /* include the type field in the symbol name, so that it gets |
| * compressed together */ |
| s->len = strlen(str) + 1; |
| s->sym = (char *) malloc(s->len + 1); |
| strcpy(s->sym + 1, str); |
| s->sym[0] = s->type; |
| |
| return 0; |
| } |
| |
| static int |
| symbol_valid(struct sym_entry *s) |
| { |
| /* Symbols which vary between passes. Passes 1 and 2 must have |
| * identical symbol lists. The kallsyms_* symbols below are only added |
| * after pass 1, they would be included in pass 2 when --all-symbols is |
| * specified so exclude them to get a stable symbol list. |
| */ |
| static char *special_symbols[] = { |
| "kallsyms_addresses", |
| "kallsyms_num_syms", |
| "kallsyms_names", |
| "kallsyms_markers", |
| "kallsyms_token_table", |
| "kallsyms_token_index", |
| |
| /* Exclude linker generated symbols which vary between passes */ |
| "_SDA_BASE_", /* ppc */ |
| "_SDA2_BASE_", /* ppc */ |
| NULL }; |
| int i; |
| int offset = 1; |
| |
| /* skip prefix char */ |
| if (symbol_prefix_char && *(s->sym + 1) == symbol_prefix_char) |
| offset++; |
| |
| /* if --all-symbols is not specified, then symbols outside the text |
| * and inittext sections are discarded */ |
| if (!all_symbols) { |
| if ((s->addr < _stext || s->addr > _etext) |
| && (s->addr < _sinittext || s->addr > _einittext)) |
| return 0; |
| /* Corner case. Discard any symbols with the same value as |
| * _etext or _einittext, they can move between pass 1 and 2 |
| * when the kallsyms data is added. If these symbols move then |
| * they may get dropped in pass 2, which breaks the kallsyms |
| * rules. |
| */ |
| if ((s->addr == _etext && strcmp(s->sym + offset, "_etext")) || |
| (s->addr == _einittext && strcmp(s->sym + offset, "_einittext"))) |
| return 0; |
| } |
| |
| /* Exclude symbols which vary between passes. */ |
| if (strstr(s->sym + offset, "_compiled.")) |
| return 0; |
| |
| for (i = 0; special_symbols[i]; i++) |
| if( strcmp(s->sym + offset, special_symbols[i]) == 0 ) |
| return 0; |
| |
| return 1; |
| } |
| |
| static void |
| read_map(FILE *in) |
| { |
| while (!feof(in)) { |
| if (cnt >= size) { |
| size += 10000; |
| table = realloc(table, sizeof(*table) * size); |
| if (!table) { |
| fprintf(stderr, "out of memory\n"); |
| exit (1); |
| } |
| } |
| if (read_symbol(in, &table[cnt]) == 0) |
| cnt++; |
| } |
| } |
| |
| static void output_label(char *label) |
| { |
| if (symbol_prefix_char) |
| printf(".globl %c%s\n", symbol_prefix_char, label); |
| else |
| printf(".globl %s\n", label); |
| printf("\tALGN\n"); |
| if (symbol_prefix_char) |
| printf("%c%s:\n", symbol_prefix_char, label); |
| else |
| printf("%s:\n", label); |
| } |
| |
| /* uncompress a compressed symbol. When this function is called, the best table |
| * might still be compressed itself, so the function needs to be recursive */ |
| static int expand_symbol(unsigned char *data, int len, char *result) |
| { |
| int c, rlen, total=0; |
| |
| while (len) { |
| c = *data; |
| /* if the table holds a single char that is the same as the one |
| * we are looking for, then end the search */ |
| if (best_table[c][0]==c && best_table_len[c]==1) { |
| *result++ = c; |
| total++; |
| } else { |
| /* if not, recurse and expand */ |
| rlen = expand_symbol(best_table[c], best_table_len[c], result); |
| total += rlen; |
| result += rlen; |
| } |
| data++; |
| len--; |
| } |
| *result=0; |
| |
| return total; |
| } |
| |
| static void |
| write_src(void) |
| { |
| int i, k, off, valid; |
| unsigned int best_idx[256]; |
| unsigned int *markers; |
| char buf[KSYM_NAME_LEN+1]; |
| |
| printf("#include <asm/types.h>\n"); |
| printf("#if BITS_PER_LONG == 64\n"); |
| printf("#define PTR .quad\n"); |
| printf("#define ALGN .align 8\n"); |
| printf("#else\n"); |
| printf("#define PTR .long\n"); |
| printf("#define ALGN .align 4\n"); |
| printf("#endif\n"); |
| |
| printf(".data\n"); |
| |
| output_label("kallsyms_addresses"); |
| valid = 0; |
| for (i = 0; i < cnt; i++) { |
| if (table[i].flags & SYM_FLAG_VALID) { |
| printf("\tPTR\t%#llx\n", table[i].addr); |
| valid++; |
| } |
| } |
| printf("\n"); |
| |
| output_label("kallsyms_num_syms"); |
| printf("\tPTR\t%d\n", valid); |
| printf("\n"); |
| |
| /* table of offset markers, that give the offset in the compressed stream |
| * every 256 symbols */ |
| markers = (unsigned int *) malloc(sizeof(unsigned int)*((valid + 255) / 256)); |
| |
| output_label("kallsyms_names"); |
| valid = 0; |
| off = 0; |
| for (i = 0; i < cnt; i++) { |
| |
| if (!table[i].flags & SYM_FLAG_VALID) |
| continue; |
| |
| if ((valid & 0xFF) == 0) |
| markers[valid >> 8] = off; |
| |
| printf("\t.byte 0x%02x", table[i].len); |
| for (k = 0; k < table[i].len; k++) |
| printf(", 0x%02x", table[i].sym[k]); |
| printf("\n"); |
| |
| off += table[i].len + 1; |
| valid++; |
| } |
| printf("\n"); |
| |
| output_label("kallsyms_markers"); |
| for (i = 0; i < ((valid + 255) >> 8); i++) |
| printf("\tPTR\t%d\n", markers[i]); |
| printf("\n"); |
| |
| free(markers); |
| |
| output_label("kallsyms_token_table"); |
| off = 0; |
| for (i = 0; i < 256; i++) { |
| best_idx[i] = off; |
| expand_symbol(best_table[i],best_table_len[i],buf); |
| printf("\t.asciz\t\"%s\"\n", buf); |
| off += strlen(buf) + 1; |
| } |
| printf("\n"); |
| |
| output_label("kallsyms_token_index"); |
| for (i = 0; i < 256; i++) |
| printf("\t.short\t%d\n", best_idx[i]); |
| printf("\n"); |
| } |
| |
| |
| /* table lookup compression functions */ |
| |
| static inline unsigned int rehash_token(unsigned int hash, unsigned char data) |
| { |
| return ((hash * 16777619) ^ data); |
| } |
| |
| static unsigned int hash_token(unsigned char *data, int len) |
| { |
| unsigned int hash=HASH_BASE_OFFSET; |
| int i; |
| |
| for (i = 0; i < len; i++) |
| hash = rehash_token(hash, data[i]); |
| |
| return HASH_FOLD(hash); |
| } |
| |
| /* find a token given its data and hash value */ |
| static struct token *find_token_hash(unsigned char *data, int len, unsigned int hash) |
| { |
| struct token *ptr; |
| |
| ptr = hash_table[hash]; |
| |
| while (ptr) { |
| if ((ptr->len == len) && (memcmp(ptr->data, data, len) == 0)) |
| return ptr; |
| ptr=ptr->next; |
| } |
| |
| return NULL; |
| } |
| |
| static inline void insert_token_in_group(struct token *head, struct token *ptr) |
| { |
| ptr->right = head->right; |
| ptr->right->left = ptr; |
| head->right = ptr; |
| ptr->left = head; |
| } |
| |
| static inline void remove_token_from_group(struct token *ptr) |
| { |
| ptr->left->right = ptr->right; |
| ptr->right->left = ptr->left; |
| } |
| |
| |
| /* build the counts for all the tokens that start with "data", and have lenghts |
| * from 2 to "len" */ |
| static void learn_token(unsigned char *data, int len) |
| { |
| struct token *ptr,*last_ptr; |
| int i, newprofit; |
| unsigned int hash = HASH_BASE_OFFSET; |
| unsigned int hashes[MAX_TOK_SIZE + 1]; |
| |
| if (len > MAX_TOK_SIZE) |
| len = MAX_TOK_SIZE; |
| |
| /* calculate and store the hash values for all the sub-tokens */ |
| hash = rehash_token(hash, data[0]); |
| for (i = 2; i <= len; i++) { |
| hash = rehash_token(hash, data[i-1]); |
| hashes[i] = HASH_FOLD(hash); |
| } |
| |
| last_ptr = NULL; |
| ptr = NULL; |
| |
| for (i = len; i >= 2; i--) { |
| hash = hashes[i]; |
| |
| if (!ptr) ptr = find_token_hash(data, i, hash); |
| |
| if (!ptr) { |
| /* create a new token entry */ |
| ptr = (struct token *) malloc(sizeof(*ptr)); |
| |
| memcpy(ptr->data, data, i); |
| ptr->len = i; |
| |
| /* when we create an entry, it's profit is 0 because |
| * we also take into account the size of the token on |
| * the compressed table. We then subtract GOOD_BAD_THRESHOLD |
| * so that the test to see if this token belongs to |
| * the good or bad list, is a comparison to zero */ |
| ptr->profit = -GOOD_BAD_THRESHOLD; |
| |
| ptr->next = hash_table[hash]; |
| hash_table[hash] = ptr; |
| |
| insert_token_in_group(&bad_head, ptr); |
| |
| ptr->smaller = NULL; |
| } else { |
| newprofit = ptr->profit + (ptr->len - 1); |
| /* check to see if this token needs to be moved to a |
| * different list */ |
| if((ptr->profit < 0) && (newprofit >= 0)) { |
| remove_token_from_group(ptr); |
| insert_token_in_group(&good_head,ptr); |
| } |
| ptr->profit = newprofit; |
| } |
| |
| if (last_ptr) last_ptr->smaller = ptr; |
| last_ptr = ptr; |
| |
| ptr = ptr->smaller; |
| } |
| } |
| |
| /* decrease the counts for all the tokens that start with "data", and have lenghts |
| * from 2 to "len". This function is much simpler than learn_token because we have |
| * more guarantees (tho tokens exist, the ->smaller pointer is set, etc.) |
| * The two separate functions exist only because of compression performance */ |
| static void forget_token(unsigned char *data, int len) |
| { |
| struct token *ptr; |
| int i, newprofit; |
| unsigned int hash=0; |
| |
| if (len > MAX_TOK_SIZE) len = MAX_TOK_SIZE; |
| |
| hash = hash_token(data, len); |
| ptr = find_token_hash(data, len, hash); |
| |
| for (i = len; i >= 2; i--) { |
| |
| newprofit = ptr->profit - (ptr->len - 1); |
| if ((ptr->profit >= 0) && (newprofit < 0)) { |
| remove_token_from_group(ptr); |
| insert_token_in_group(&bad_head, ptr); |
| } |
| ptr->profit=newprofit; |
| |
| ptr=ptr->smaller; |
| } |
| } |
| |
| /* count all the possible tokens in a symbol */ |
| static void learn_symbol(unsigned char *symbol, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len - 1; i++) |
| learn_token(symbol + i, len - i); |
| } |
| |
| /* decrease the count for all the possible tokens in a symbol */ |
| static void forget_symbol(unsigned char *symbol, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len - 1; i++) |
| forget_token(symbol + i, len - i); |
| } |
| |
| /* set all the symbol flags and do the initial token count */ |
| static void build_initial_tok_table(void) |
| { |
| int i, use_it, valid; |
| |
| valid = 0; |
| for (i = 0; i < cnt; i++) { |
| table[i].flags = 0; |
| if ( symbol_valid(&table[i]) ) { |
| table[i].flags |= SYM_FLAG_VALID; |
| valid++; |
| } |
| } |
| |
| use_it = 0; |
| for (i = 0; i < cnt; i++) { |
| |
| /* subsample the available symbols. This method is almost like |
| * a Bresenham's algorithm to get uniformly distributed samples |
| * across the symbol table */ |
| if (table[i].flags & SYM_FLAG_VALID) { |
| |
| use_it += WORKING_SET; |
| |
| if (use_it >= valid) { |
| table[i].flags |= SYM_FLAG_SAMPLED; |
| use_it -= valid; |
| } |
| } |
| if (table[i].flags & SYM_FLAG_SAMPLED) |
| learn_symbol(table[i].sym, table[i].len); |
| } |
| } |
| |
| /* replace a given token in all the valid symbols. Use the sampled symbols |
| * to update the counts */ |
| static void compress_symbols(unsigned char *str, int tlen, int idx) |
| { |
| int i, len, learn, size; |
| unsigned char *p; |
| |
| for (i = 0; i < cnt; i++) { |
| |
| if (!(table[i].flags & SYM_FLAG_VALID)) continue; |
| |
| len = table[i].len; |
| learn = 0; |
| p = table[i].sym; |
| |
| do { |
| /* find the token on the symbol */ |
| p = (unsigned char *) strstr((char *) p, (char *) str); |
| if (!p) break; |
| |
| if (!learn) { |
| /* if this symbol was used to count, decrease it */ |
| if (table[i].flags & SYM_FLAG_SAMPLED) |
| forget_symbol(table[i].sym, len); |
| learn = 1; |
| } |
| |
| *p = idx; |
| size = (len - (p - table[i].sym)) - tlen + 1; |
| memmove(p + 1, p + tlen, size); |
| p++; |
| len -= tlen - 1; |
| |
| } while (size >= tlen); |
| |
| if(learn) { |
| table[i].len = len; |
| /* if this symbol was used to count, learn it again */ |
| if(table[i].flags & SYM_FLAG_SAMPLED) |
| learn_symbol(table[i].sym, len); |
| } |
| } |
| } |
| |
| /* search the token with the maximum profit */ |
| static struct token *find_best_token(void) |
| { |
| struct token *ptr,*best,*head; |
| int bestprofit; |
| |
| bestprofit=-10000; |
| |
| /* failsafe: if the "good" list is empty search from the "bad" list */ |
| if(good_head.right == &good_head) head = &bad_head; |
| else head = &good_head; |
| |
| ptr = head->right; |
| best = NULL; |
| while (ptr != head) { |
| if (ptr->profit > bestprofit) { |
| bestprofit = ptr->profit; |
| best = ptr; |
| } |
| ptr = ptr->right; |
| } |
| |
| return best; |
| } |
| |
| /* this is the core of the algorithm: calculate the "best" table */ |
| static void optimize_result(void) |
| { |
| struct token *best; |
| int i; |
| |
| /* using the '\0' symbol last allows compress_symbols to use standard |
| * fast string functions */ |
| for (i = 255; i >= 0; i--) { |
| |
| /* if this table slot is empty (it is not used by an actual |
| * original char code */ |
| if (!best_table_len[i]) { |
| |
| /* find the token with the breates profit value */ |
| best = find_best_token(); |
| |
| /* place it in the "best" table */ |
| best_table_len[i] = best->len; |
| memcpy(best_table[i], best->data, best_table_len[i]); |
| /* zero terminate the token so that we can use strstr |
| in compress_symbols */ |
| best_table[i][best_table_len[i]]='\0'; |
| |
| /* replace this token in all the valid symbols */ |
| compress_symbols(best_table[i], best_table_len[i], i); |
| } |
| } |
| } |
| |
| /* start by placing the symbols that are actually used on the table */ |
| static void insert_real_symbols_in_table(void) |
| { |
| int i, j, c; |
| |
| memset(best_table, 0, sizeof(best_table)); |
| memset(best_table_len, 0, sizeof(best_table_len)); |
| |
| for (i = 0; i < cnt; i++) { |
| if (table[i].flags & SYM_FLAG_VALID) { |
| for (j = 0; j < table[i].len; j++) { |
| c = table[i].sym[j]; |
| best_table[c][0]=c; |
| best_table_len[c]=1; |
| } |
| } |
| } |
| } |
| |
| static void optimize_token_table(void) |
| { |
| memset(hash_table, 0, sizeof(hash_table)); |
| |
| good_head.left = &good_head; |
| good_head.right = &good_head; |
| |
| bad_head.left = &bad_head; |
| bad_head.right = &bad_head; |
| |
| build_initial_tok_table(); |
| |
| insert_real_symbols_in_table(); |
| |
| /* When valid symbol is not registered, exit to error */ |
| if (good_head.left == good_head.right && |
| bad_head.left == bad_head.right) { |
| fprintf(stderr, "No valid symbol.\n"); |
| exit(1); |
| } |
| |
| optimize_result(); |
| } |
| |
| |
| int |
| main(int argc, char **argv) |
| { |
| if (argc >= 2) { |
| int i; |
| for (i = 1; i < argc; i++) { |
| if(strcmp(argv[i], "--all-symbols") == 0) |
| all_symbols = 1; |
| else if (strncmp(argv[i], "--symbol-prefix=", 16) == 0) { |
| char *p = &argv[i][16]; |
| /* skip quote */ |
| if ((*p == '"' && *(p+2) == '"') || (*p == '\'' && *(p+2) == '\'')) |
| p++; |
| symbol_prefix_char = *p; |
| } else |
| usage(); |
| } |
| } else if (argc != 1) |
| usage(); |
| |
| read_map(stdin); |
| optimize_token_table(); |
| write_src(); |
| |
| return 0; |
| } |