| /* |
| * Squashfs - a compressed read only filesystem for Linux |
| * |
| * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
| * Phillip Lougher <phillip@lougher.demon.co.uk> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2, |
| * or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| * |
| * cache.c |
| */ |
| |
| /* |
| * Blocks in Squashfs are compressed. To avoid repeatedly decompressing |
| * recently accessed data Squashfs uses two small metadata and fragment caches. |
| * |
| * This file implements a generic cache implementation used for both caches, |
| * plus functions layered ontop of the generic cache implementation to |
| * access the metadata and fragment caches. |
| * |
| * To avoid out of memory and fragmentation isssues with vmalloc the cache |
| * uses sequences of kmalloced PAGE_CACHE_SIZE buffers. |
| * |
| * It should be noted that the cache is not used for file datablocks, these |
| * are decompressed and cached in the page-cache in the normal way. The |
| * cache is only used to temporarily cache fragment and metadata blocks |
| * which have been read as as a result of a metadata (i.e. inode or |
| * directory) or fragment access. Because metadata and fragments are packed |
| * together into blocks (to gain greater compression) the read of a particular |
| * piece of metadata or fragment will retrieve other metadata/fragments which |
| * have been packed with it, these because of locality-of-reference may be read |
| * in the near future. Temporarily caching them ensures they are available for |
| * near future access without requiring an additional read and decompress. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/vfs.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/wait.h> |
| #include <linux/pagemap.h> |
| |
| #include "squashfs_fs.h" |
| #include "squashfs_fs_sb.h" |
| #include "squashfs.h" |
| |
| /* |
| * Look-up block in cache, and increment usage count. If not in cache, read |
| * and decompress it from disk. |
| */ |
| struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb, |
| struct squashfs_cache *cache, u64 block, int length) |
| { |
| int i, n; |
| struct squashfs_cache_entry *entry; |
| |
| spin_lock(&cache->lock); |
| |
| while (1) { |
| for (i = 0; i < cache->entries; i++) |
| if (cache->entry[i].block == block) |
| break; |
| |
| if (i == cache->entries) { |
| /* |
| * Block not in cache, if all cache entries are used |
| * go to sleep waiting for one to become available. |
| */ |
| if (cache->unused == 0) { |
| cache->num_waiters++; |
| spin_unlock(&cache->lock); |
| wait_event(cache->wait_queue, cache->unused); |
| spin_lock(&cache->lock); |
| cache->num_waiters--; |
| continue; |
| } |
| |
| /* |
| * At least one unused cache entry. A simple |
| * round-robin strategy is used to choose the entry to |
| * be evicted from the cache. |
| */ |
| i = cache->next_blk; |
| for (n = 0; n < cache->entries; n++) { |
| if (cache->entry[i].refcount == 0) |
| break; |
| i = (i + 1) % cache->entries; |
| } |
| |
| cache->next_blk = (i + 1) % cache->entries; |
| entry = &cache->entry[i]; |
| |
| /* |
| * Initialise choosen cache entry, and fill it in from |
| * disk. |
| */ |
| cache->unused--; |
| entry->block = block; |
| entry->refcount = 1; |
| entry->pending = 1; |
| entry->num_waiters = 0; |
| entry->error = 0; |
| spin_unlock(&cache->lock); |
| |
| entry->length = squashfs_read_data(sb, entry->data, |
| block, length, &entry->next_index, |
| cache->block_size, cache->pages); |
| |
| spin_lock(&cache->lock); |
| |
| if (entry->length < 0) |
| entry->error = entry->length; |
| |
| entry->pending = 0; |
| |
| /* |
| * While filling this entry one or more other processes |
| * have looked it up in the cache, and have slept |
| * waiting for it to become available. |
| */ |
| if (entry->num_waiters) { |
| spin_unlock(&cache->lock); |
| wake_up_all(&entry->wait_queue); |
| } else |
| spin_unlock(&cache->lock); |
| |
| goto out; |
| } |
| |
| /* |
| * Block already in cache. Increment refcount so it doesn't |
| * get reused until we're finished with it, if it was |
| * previously unused there's one less cache entry available |
| * for reuse. |
| */ |
| entry = &cache->entry[i]; |
| if (entry->refcount == 0) |
| cache->unused--; |
| entry->refcount++; |
| |
| /* |
| * If the entry is currently being filled in by another process |
| * go to sleep waiting for it to become available. |
| */ |
| if (entry->pending) { |
| entry->num_waiters++; |
| spin_unlock(&cache->lock); |
| wait_event(entry->wait_queue, !entry->pending); |
| } else |
| spin_unlock(&cache->lock); |
| |
| goto out; |
| } |
| |
| out: |
| TRACE("Got %s %d, start block %lld, refcount %d, error %d\n", |
| cache->name, i, entry->block, entry->refcount, entry->error); |
| |
| if (entry->error) |
| ERROR("Unable to read %s cache entry [%llx]\n", cache->name, |
| block); |
| return entry; |
| } |
| |
| |
| /* |
| * Release cache entry, once usage count is zero it can be reused. |
| */ |
| void squashfs_cache_put(struct squashfs_cache_entry *entry) |
| { |
| struct squashfs_cache *cache = entry->cache; |
| |
| spin_lock(&cache->lock); |
| entry->refcount--; |
| if (entry->refcount == 0) { |
| cache->unused++; |
| /* |
| * If there's any processes waiting for a block to become |
| * available, wake one up. |
| */ |
| if (cache->num_waiters) { |
| spin_unlock(&cache->lock); |
| wake_up(&cache->wait_queue); |
| return; |
| } |
| } |
| spin_unlock(&cache->lock); |
| } |
| |
| /* |
| * Delete cache reclaiming all kmalloced buffers. |
| */ |
| void squashfs_cache_delete(struct squashfs_cache *cache) |
| { |
| int i, j; |
| |
| if (cache == NULL) |
| return; |
| |
| for (i = 0; i < cache->entries; i++) { |
| if (cache->entry[i].data) { |
| for (j = 0; j < cache->pages; j++) |
| kfree(cache->entry[i].data[j]); |
| kfree(cache->entry[i].data); |
| } |
| } |
| |
| kfree(cache->entry); |
| kfree(cache); |
| } |
| |
| |
| /* |
| * Initialise cache allocating the specified number of entries, each of |
| * size block_size. To avoid vmalloc fragmentation issues each entry |
| * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers. |
| */ |
| struct squashfs_cache *squashfs_cache_init(char *name, int entries, |
| int block_size) |
| { |
| int i, j; |
| struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL); |
| |
| if (cache == NULL) { |
| ERROR("Failed to allocate %s cache\n", name); |
| return NULL; |
| } |
| |
| cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL); |
| if (cache->entry == NULL) { |
| ERROR("Failed to allocate %s cache\n", name); |
| goto cleanup; |
| } |
| |
| cache->next_blk = 0; |
| cache->unused = entries; |
| cache->entries = entries; |
| cache->block_size = block_size; |
| cache->pages = block_size >> PAGE_CACHE_SHIFT; |
| cache->pages = cache->pages ? cache->pages : 1; |
| cache->name = name; |
| cache->num_waiters = 0; |
| spin_lock_init(&cache->lock); |
| init_waitqueue_head(&cache->wait_queue); |
| |
| for (i = 0; i < entries; i++) { |
| struct squashfs_cache_entry *entry = &cache->entry[i]; |
| |
| init_waitqueue_head(&cache->entry[i].wait_queue); |
| entry->cache = cache; |
| entry->block = SQUASHFS_INVALID_BLK; |
| entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL); |
| if (entry->data == NULL) { |
| ERROR("Failed to allocate %s cache entry\n", name); |
| goto cleanup; |
| } |
| |
| for (j = 0; j < cache->pages; j++) { |
| entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL); |
| if (entry->data[j] == NULL) { |
| ERROR("Failed to allocate %s buffer\n", name); |
| goto cleanup; |
| } |
| } |
| } |
| |
| return cache; |
| |
| cleanup: |
| squashfs_cache_delete(cache); |
| return NULL; |
| } |
| |
| |
| /* |
| * Copy upto length bytes from cache entry to buffer starting at offset bytes |
| * into the cache entry. If there's not length bytes then copy the number of |
| * bytes available. In all cases return the number of bytes copied. |
| */ |
| int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry, |
| int offset, int length) |
| { |
| int remaining = length; |
| |
| if (length == 0) |
| return 0; |
| else if (buffer == NULL) |
| return min(length, entry->length - offset); |
| |
| while (offset < entry->length) { |
| void *buff = entry->data[offset / PAGE_CACHE_SIZE] |
| + (offset % PAGE_CACHE_SIZE); |
| int bytes = min_t(int, entry->length - offset, |
| PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE)); |
| |
| if (bytes >= remaining) { |
| memcpy(buffer, buff, remaining); |
| remaining = 0; |
| break; |
| } |
| |
| memcpy(buffer, buff, bytes); |
| buffer += bytes; |
| remaining -= bytes; |
| offset += bytes; |
| } |
| |
| return length - remaining; |
| } |
| |
| |
| /* |
| * Read length bytes from metadata position <block, offset> (block is the |
| * start of the compressed block on disk, and offset is the offset into |
| * the block once decompressed). Data is packed into consecutive blocks, |
| * and length bytes may require reading more than one block. |
| */ |
| int squashfs_read_metadata(struct super_block *sb, void *buffer, |
| u64 *block, int *offset, int length) |
| { |
| struct squashfs_sb_info *msblk = sb->s_fs_info; |
| int bytes, copied = length; |
| struct squashfs_cache_entry *entry; |
| |
| TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset); |
| |
| while (length) { |
| entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0); |
| if (entry->error) |
| return entry->error; |
| else if (*offset >= entry->length) |
| return -EIO; |
| |
| bytes = squashfs_copy_data(buffer, entry, *offset, length); |
| if (buffer) |
| buffer += bytes; |
| length -= bytes; |
| *offset += bytes; |
| |
| if (*offset == entry->length) { |
| *block = entry->next_index; |
| *offset = 0; |
| } |
| |
| squashfs_cache_put(entry); |
| } |
| |
| return copied; |
| } |
| |
| |
| /* |
| * Look-up in the fragmment cache the fragment located at <start_block> in the |
| * filesystem. If necessary read and decompress it from disk. |
| */ |
| struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb, |
| u64 start_block, int length) |
| { |
| struct squashfs_sb_info *msblk = sb->s_fs_info; |
| |
| return squashfs_cache_get(sb, msblk->fragment_cache, start_block, |
| length); |
| } |
| |
| |
| /* |
| * Read and decompress the datablock located at <start_block> in the |
| * filesystem. The cache is used here to avoid duplicating locking and |
| * read/decompress code. |
| */ |
| struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb, |
| u64 start_block, int length) |
| { |
| struct squashfs_sb_info *msblk = sb->s_fs_info; |
| |
| return squashfs_cache_get(sb, msblk->read_page, start_block, length); |
| } |
| |
| |
| /* |
| * Read a filesystem table (uncompressed sequence of bytes) from disk |
| */ |
| int squashfs_read_table(struct super_block *sb, void *buffer, u64 block, |
| int length) |
| { |
| int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| int i, res; |
| void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE) |
| data[i] = buffer; |
| res = squashfs_read_data(sb, data, block, length | |
| SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages); |
| kfree(data); |
| return res; |
| } |