| #include "amd64_edac.h" |
| #include <asm/k8.h> |
| |
| static struct edac_pci_ctl_info *amd64_ctl_pci; |
| |
| static int report_gart_errors; |
| module_param(report_gart_errors, int, 0644); |
| |
| /* |
| * Set by command line parameter. If BIOS has enabled the ECC, this override is |
| * cleared to prevent re-enabling the hardware by this driver. |
| */ |
| static int ecc_enable_override; |
| module_param(ecc_enable_override, int, 0644); |
| |
| static struct msr *msrs; |
| |
| /* Lookup table for all possible MC control instances */ |
| struct amd64_pvt; |
| static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES]; |
| static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES]; |
| |
| /* |
| * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and |
| * later. |
| */ |
| static int ddr2_dbam_revCG[] = { |
| [0] = 32, |
| [1] = 64, |
| [2] = 128, |
| [3] = 256, |
| [4] = 512, |
| [5] = 1024, |
| [6] = 2048, |
| }; |
| |
| static int ddr2_dbam_revD[] = { |
| [0] = 32, |
| [1] = 64, |
| [2 ... 3] = 128, |
| [4] = 256, |
| [5] = 512, |
| [6] = 256, |
| [7] = 512, |
| [8 ... 9] = 1024, |
| [10] = 2048, |
| }; |
| |
| static int ddr2_dbam[] = { [0] = 128, |
| [1] = 256, |
| [2 ... 4] = 512, |
| [5 ... 6] = 1024, |
| [7 ... 8] = 2048, |
| [9 ... 10] = 4096, |
| [11] = 8192, |
| }; |
| |
| static int ddr3_dbam[] = { [0] = -1, |
| [1] = 256, |
| [2] = 512, |
| [3 ... 4] = -1, |
| [5 ... 6] = 1024, |
| [7 ... 8] = 2048, |
| [9 ... 10] = 4096, |
| [11] = 8192, |
| }; |
| |
| /* |
| * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing |
| * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- |
| * or higher value'. |
| * |
| *FIXME: Produce a better mapping/linearisation. |
| */ |
| |
| struct scrubrate scrubrates[] = { |
| { 0x01, 1600000000UL}, |
| { 0x02, 800000000UL}, |
| { 0x03, 400000000UL}, |
| { 0x04, 200000000UL}, |
| { 0x05, 100000000UL}, |
| { 0x06, 50000000UL}, |
| { 0x07, 25000000UL}, |
| { 0x08, 12284069UL}, |
| { 0x09, 6274509UL}, |
| { 0x0A, 3121951UL}, |
| { 0x0B, 1560975UL}, |
| { 0x0C, 781440UL}, |
| { 0x0D, 390720UL}, |
| { 0x0E, 195300UL}, |
| { 0x0F, 97650UL}, |
| { 0x10, 48854UL}, |
| { 0x11, 24427UL}, |
| { 0x12, 12213UL}, |
| { 0x13, 6101UL}, |
| { 0x14, 3051UL}, |
| { 0x15, 1523UL}, |
| { 0x16, 761UL}, |
| { 0x00, 0UL}, /* scrubbing off */ |
| }; |
| |
| /* |
| * Memory scrubber control interface. For K8, memory scrubbing is handled by |
| * hardware and can involve L2 cache, dcache as well as the main memory. With |
| * F10, this is extended to L3 cache scrubbing on CPU models sporting that |
| * functionality. |
| * |
| * This causes the "units" for the scrubbing speed to vary from 64 byte blocks |
| * (dram) over to cache lines. This is nasty, so we will use bandwidth in |
| * bytes/sec for the setting. |
| * |
| * Currently, we only do dram scrubbing. If the scrubbing is done in software on |
| * other archs, we might not have access to the caches directly. |
| */ |
| |
| /* |
| * scan the scrub rate mapping table for a close or matching bandwidth value to |
| * issue. If requested is too big, then use last maximum value found. |
| */ |
| static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, |
| u32 min_scrubrate) |
| { |
| u32 scrubval; |
| int i; |
| |
| /* |
| * map the configured rate (new_bw) to a value specific to the AMD64 |
| * memory controller and apply to register. Search for the first |
| * bandwidth entry that is greater or equal than the setting requested |
| * and program that. If at last entry, turn off DRAM scrubbing. |
| */ |
| for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { |
| /* |
| * skip scrub rates which aren't recommended |
| * (see F10 BKDG, F3x58) |
| */ |
| if (scrubrates[i].scrubval < min_scrubrate) |
| continue; |
| |
| if (scrubrates[i].bandwidth <= new_bw) |
| break; |
| |
| /* |
| * if no suitable bandwidth found, turn off DRAM scrubbing |
| * entirely by falling back to the last element in the |
| * scrubrates array. |
| */ |
| } |
| |
| scrubval = scrubrates[i].scrubval; |
| if (scrubval) |
| edac_printk(KERN_DEBUG, EDAC_MC, |
| "Setting scrub rate bandwidth: %u\n", |
| scrubrates[i].bandwidth); |
| else |
| edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); |
| |
| pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); |
| |
| return 0; |
| } |
| |
| static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 min_scrubrate = 0x0; |
| |
| switch (boot_cpu_data.x86) { |
| case 0xf: |
| min_scrubrate = K8_MIN_SCRUB_RATE_BITS; |
| break; |
| case 0x10: |
| min_scrubrate = F10_MIN_SCRUB_RATE_BITS; |
| break; |
| case 0x11: |
| min_scrubrate = F11_MIN_SCRUB_RATE_BITS; |
| break; |
| |
| default: |
| amd64_printk(KERN_ERR, "Unsupported family!\n"); |
| break; |
| } |
| return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth, |
| min_scrubrate); |
| } |
| |
| static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 scrubval = 0; |
| int status = -1, i; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); |
| |
| scrubval = scrubval & 0x001F; |
| |
| edac_printk(KERN_DEBUG, EDAC_MC, |
| "pci-read, sdram scrub control value: %d \n", scrubval); |
| |
| for (i = 0; ARRAY_SIZE(scrubrates); i++) { |
| if (scrubrates[i].scrubval == scrubval) { |
| *bw = scrubrates[i].bandwidth; |
| status = 0; |
| break; |
| } |
| } |
| |
| return status; |
| } |
| |
| /* Map from a CSROW entry to the mask entry that operates on it */ |
| static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) |
| { |
| if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) |
| return csrow; |
| else |
| return csrow >> 1; |
| } |
| |
| /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ |
| static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) |
| { |
| if (dct == 0) |
| return pvt->dcsb0[csrow]; |
| else |
| return pvt->dcsb1[csrow]; |
| } |
| |
| /* |
| * Return the 'mask' address the i'th CS entry. This function is needed because |
| * there number of DCSM registers on Rev E and prior vs Rev F and later is |
| * different. |
| */ |
| static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) |
| { |
| if (dct == 0) |
| return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; |
| else |
| return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; |
| } |
| |
| |
| /* |
| * In *base and *limit, pass back the full 40-bit base and limit physical |
| * addresses for the node given by node_id. This information is obtained from |
| * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The |
| * base and limit addresses are of type SysAddr, as defined at the start of |
| * section 3.4.4 (p. 70). They are the lowest and highest physical addresses |
| * in the address range they represent. |
| */ |
| static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, |
| u64 *base, u64 *limit) |
| { |
| *base = pvt->dram_base[node_id]; |
| *limit = pvt->dram_limit[node_id]; |
| } |
| |
| /* |
| * Return 1 if the SysAddr given by sys_addr matches the base/limit associated |
| * with node_id |
| */ |
| static int amd64_base_limit_match(struct amd64_pvt *pvt, |
| u64 sys_addr, int node_id) |
| { |
| u64 base, limit, addr; |
| |
| amd64_get_base_and_limit(pvt, node_id, &base, &limit); |
| |
| /* The K8 treats this as a 40-bit value. However, bits 63-40 will be |
| * all ones if the most significant implemented address bit is 1. |
| * Here we discard bits 63-40. See section 3.4.2 of AMD publication |
| * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 |
| * Application Programming. |
| */ |
| addr = sys_addr & 0x000000ffffffffffull; |
| |
| return (addr >= base) && (addr <= limit); |
| } |
| |
| /* |
| * Attempt to map a SysAddr to a node. On success, return a pointer to the |
| * mem_ctl_info structure for the node that the SysAddr maps to. |
| * |
| * On failure, return NULL. |
| */ |
| static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, |
| u64 sys_addr) |
| { |
| struct amd64_pvt *pvt; |
| int node_id; |
| u32 intlv_en, bits; |
| |
| /* |
| * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section |
| * 3.4.4.2) registers to map the SysAddr to a node ID. |
| */ |
| pvt = mci->pvt_info; |
| |
| /* |
| * The value of this field should be the same for all DRAM Base |
| * registers. Therefore we arbitrarily choose to read it from the |
| * register for node 0. |
| */ |
| intlv_en = pvt->dram_IntlvEn[0]; |
| |
| if (intlv_en == 0) { |
| for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) { |
| if (amd64_base_limit_match(pvt, sys_addr, node_id)) |
| goto found; |
| } |
| goto err_no_match; |
| } |
| |
| if (unlikely((intlv_en != 0x01) && |
| (intlv_en != 0x03) && |
| (intlv_en != 0x07))) { |
| amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from " |
| "IntlvEn field of DRAM Base Register for node 0: " |
| "this probably indicates a BIOS bug.\n", intlv_en); |
| return NULL; |
| } |
| |
| bits = (((u32) sys_addr) >> 12) & intlv_en; |
| |
| for (node_id = 0; ; ) { |
| if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits) |
| break; /* intlv_sel field matches */ |
| |
| if (++node_id >= DRAM_REG_COUNT) |
| goto err_no_match; |
| } |
| |
| /* sanity test for sys_addr */ |
| if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { |
| amd64_printk(KERN_WARNING, |
| "%s(): sys_addr 0x%llx falls outside base/limit " |
| "address range for node %d with node interleaving " |
| "enabled.\n", |
| __func__, sys_addr, node_id); |
| return NULL; |
| } |
| |
| found: |
| return edac_mc_find(node_id); |
| |
| err_no_match: |
| debugf2("sys_addr 0x%lx doesn't match any node\n", |
| (unsigned long)sys_addr); |
| |
| return NULL; |
| } |
| |
| /* |
| * Extract the DRAM CS base address from selected csrow register. |
| */ |
| static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) |
| { |
| return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << |
| pvt->dcs_shift; |
| } |
| |
| /* |
| * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. |
| */ |
| static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) |
| { |
| u64 dcsm_bits, other_bits; |
| u64 mask; |
| |
| /* Extract bits from DRAM CS Mask. */ |
| dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; |
| |
| other_bits = pvt->dcsm_mask; |
| other_bits = ~(other_bits << pvt->dcs_shift); |
| |
| /* |
| * The extracted bits from DCSM belong in the spaces represented by |
| * the cleared bits in other_bits. |
| */ |
| mask = (dcsm_bits << pvt->dcs_shift) | other_bits; |
| |
| return mask; |
| } |
| |
| /* |
| * @input_addr is an InputAddr associated with the node given by mci. Return the |
| * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). |
| */ |
| static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) |
| { |
| struct amd64_pvt *pvt; |
| int csrow; |
| u64 base, mask; |
| |
| pvt = mci->pvt_info; |
| |
| /* |
| * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS |
| * base/mask register pair, test the condition shown near the start of |
| * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). |
| */ |
| for (csrow = 0; csrow < pvt->cs_count; csrow++) { |
| |
| /* This DRAM chip select is disabled on this node */ |
| if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) |
| continue; |
| |
| base = base_from_dct_base(pvt, csrow); |
| mask = ~mask_from_dct_mask(pvt, csrow); |
| |
| if ((input_addr & mask) == (base & mask)) { |
| debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", |
| (unsigned long)input_addr, csrow, |
| pvt->mc_node_id); |
| |
| return csrow; |
| } |
| } |
| |
| debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", |
| (unsigned long)input_addr, pvt->mc_node_id); |
| |
| return -1; |
| } |
| |
| /* |
| * Return the base value defined by the DRAM Base register for the node |
| * represented by mci. This function returns the full 40-bit value despite the |
| * fact that the register only stores bits 39-24 of the value. See section |
| * 3.4.4.1 (BKDG #26094, K8, revA-E) |
| */ |
| static inline u64 get_dram_base(struct mem_ctl_info *mci) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| |
| return pvt->dram_base[pvt->mc_node_id]; |
| } |
| |
| /* |
| * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) |
| * for the node represented by mci. Info is passed back in *hole_base, |
| * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if |
| * info is invalid. Info may be invalid for either of the following reasons: |
| * |
| * - The revision of the node is not E or greater. In this case, the DRAM Hole |
| * Address Register does not exist. |
| * |
| * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, |
| * indicating that its contents are not valid. |
| * |
| * The values passed back in *hole_base, *hole_offset, and *hole_size are |
| * complete 32-bit values despite the fact that the bitfields in the DHAR |
| * only represent bits 31-24 of the base and offset values. |
| */ |
| int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, |
| u64 *hole_offset, u64 *hole_size) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u64 base; |
| |
| /* only revE and later have the DRAM Hole Address Register */ |
| if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { |
| debugf1(" revision %d for node %d does not support DHAR\n", |
| pvt->ext_model, pvt->mc_node_id); |
| return 1; |
| } |
| |
| /* only valid for Fam10h */ |
| if (boot_cpu_data.x86 == 0x10 && |
| (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { |
| debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); |
| return 1; |
| } |
| |
| if ((pvt->dhar & DHAR_VALID) == 0) { |
| debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", |
| pvt->mc_node_id); |
| return 1; |
| } |
| |
| /* This node has Memory Hoisting */ |
| |
| /* +------------------+--------------------+--------------------+----- |
| * | memory | DRAM hole | relocated | |
| * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | |
| * | | | DRAM hole | |
| * | | | [0x100000000, | |
| * | | | (0x100000000+ | |
| * | | | (0xffffffff-x))] | |
| * +------------------+--------------------+--------------------+----- |
| * |
| * Above is a diagram of physical memory showing the DRAM hole and the |
| * relocated addresses from the DRAM hole. As shown, the DRAM hole |
| * starts at address x (the base address) and extends through address |
| * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the |
| * addresses in the hole so that they start at 0x100000000. |
| */ |
| |
| base = dhar_base(pvt->dhar); |
| |
| *hole_base = base; |
| *hole_size = (0x1ull << 32) - base; |
| |
| if (boot_cpu_data.x86 > 0xf) |
| *hole_offset = f10_dhar_offset(pvt->dhar); |
| else |
| *hole_offset = k8_dhar_offset(pvt->dhar); |
| |
| debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", |
| pvt->mc_node_id, (unsigned long)*hole_base, |
| (unsigned long)*hole_offset, (unsigned long)*hole_size); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); |
| |
| /* |
| * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is |
| * assumed that sys_addr maps to the node given by mci. |
| * |
| * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section |
| * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a |
| * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, |
| * then it is also involved in translating a SysAddr to a DramAddr. Sections |
| * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. |
| * These parts of the documentation are unclear. I interpret them as follows: |
| * |
| * When node n receives a SysAddr, it processes the SysAddr as follows: |
| * |
| * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM |
| * Limit registers for node n. If the SysAddr is not within the range |
| * specified by the base and limit values, then node n ignores the Sysaddr |
| * (since it does not map to node n). Otherwise continue to step 2 below. |
| * |
| * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is |
| * disabled so skip to step 3 below. Otherwise see if the SysAddr is within |
| * the range of relocated addresses (starting at 0x100000000) from the DRAM |
| * hole. If not, skip to step 3 below. Else get the value of the |
| * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the |
| * offset defined by this value from the SysAddr. |
| * |
| * 3. Obtain the base address for node n from the DRAMBase field of the DRAM |
| * Base register for node n. To obtain the DramAddr, subtract the base |
| * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). |
| */ |
| static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) |
| { |
| u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; |
| int ret = 0; |
| |
| dram_base = get_dram_base(mci); |
| |
| ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, |
| &hole_size); |
| if (!ret) { |
| if ((sys_addr >= (1ull << 32)) && |
| (sys_addr < ((1ull << 32) + hole_size))) { |
| /* use DHAR to translate SysAddr to DramAddr */ |
| dram_addr = sys_addr - hole_offset; |
| |
| debugf2("using DHAR to translate SysAddr 0x%lx to " |
| "DramAddr 0x%lx\n", |
| (unsigned long)sys_addr, |
| (unsigned long)dram_addr); |
| |
| return dram_addr; |
| } |
| } |
| |
| /* |
| * Translate the SysAddr to a DramAddr as shown near the start of |
| * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 |
| * only deals with 40-bit values. Therefore we discard bits 63-40 of |
| * sys_addr below. If bit 39 of sys_addr is 1 then the bits we |
| * discard are all 1s. Otherwise the bits we discard are all 0s. See |
| * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture |
| * Programmer's Manual Volume 1 Application Programming. |
| */ |
| dram_addr = (sys_addr & 0xffffffffffull) - dram_base; |
| |
| debugf2("using DRAM Base register to translate SysAddr 0x%lx to " |
| "DramAddr 0x%lx\n", (unsigned long)sys_addr, |
| (unsigned long)dram_addr); |
| return dram_addr; |
| } |
| |
| /* |
| * @intlv_en is the value of the IntlvEn field from a DRAM Base register |
| * (section 3.4.4.1). Return the number of bits from a SysAddr that are used |
| * for node interleaving. |
| */ |
| static int num_node_interleave_bits(unsigned intlv_en) |
| { |
| static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; |
| int n; |
| |
| BUG_ON(intlv_en > 7); |
| n = intlv_shift_table[intlv_en]; |
| return n; |
| } |
| |
| /* Translate the DramAddr given by @dram_addr to an InputAddr. */ |
| static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) |
| { |
| struct amd64_pvt *pvt; |
| int intlv_shift; |
| u64 input_addr; |
| |
| pvt = mci->pvt_info; |
| |
| /* |
| * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) |
| * concerning translating a DramAddr to an InputAddr. |
| */ |
| intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); |
| input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + |
| (dram_addr & 0xfff); |
| |
| debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", |
| intlv_shift, (unsigned long)dram_addr, |
| (unsigned long)input_addr); |
| |
| return input_addr; |
| } |
| |
| /* |
| * Translate the SysAddr represented by @sys_addr to an InputAddr. It is |
| * assumed that @sys_addr maps to the node given by mci. |
| */ |
| static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) |
| { |
| u64 input_addr; |
| |
| input_addr = |
| dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); |
| |
| debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", |
| (unsigned long)sys_addr, (unsigned long)input_addr); |
| |
| return input_addr; |
| } |
| |
| |
| /* |
| * @input_addr is an InputAddr associated with the node represented by mci. |
| * Translate @input_addr to a DramAddr and return the result. |
| */ |
| static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) |
| { |
| struct amd64_pvt *pvt; |
| int node_id, intlv_shift; |
| u64 bits, dram_addr; |
| u32 intlv_sel; |
| |
| /* |
| * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) |
| * shows how to translate a DramAddr to an InputAddr. Here we reverse |
| * this procedure. When translating from a DramAddr to an InputAddr, the |
| * bits used for node interleaving are discarded. Here we recover these |
| * bits from the IntlvSel field of the DRAM Limit register (section |
| * 3.4.4.2) for the node that input_addr is associated with. |
| */ |
| pvt = mci->pvt_info; |
| node_id = pvt->mc_node_id; |
| BUG_ON((node_id < 0) || (node_id > 7)); |
| |
| intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); |
| |
| if (intlv_shift == 0) { |
| debugf1(" InputAddr 0x%lx translates to DramAddr of " |
| "same value\n", (unsigned long)input_addr); |
| |
| return input_addr; |
| } |
| |
| bits = ((input_addr & 0xffffff000ull) << intlv_shift) + |
| (input_addr & 0xfff); |
| |
| intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); |
| dram_addr = bits + (intlv_sel << 12); |
| |
| debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " |
| "(%d node interleave bits)\n", (unsigned long)input_addr, |
| (unsigned long)dram_addr, intlv_shift); |
| |
| return dram_addr; |
| } |
| |
| /* |
| * @dram_addr is a DramAddr that maps to the node represented by mci. Convert |
| * @dram_addr to a SysAddr. |
| */ |
| static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; |
| int ret = 0; |
| |
| ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, |
| &hole_size); |
| if (!ret) { |
| if ((dram_addr >= hole_base) && |
| (dram_addr < (hole_base + hole_size))) { |
| sys_addr = dram_addr + hole_offset; |
| |
| debugf1("using DHAR to translate DramAddr 0x%lx to " |
| "SysAddr 0x%lx\n", (unsigned long)dram_addr, |
| (unsigned long)sys_addr); |
| |
| return sys_addr; |
| } |
| } |
| |
| amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); |
| sys_addr = dram_addr + base; |
| |
| /* |
| * The sys_addr we have computed up to this point is a 40-bit value |
| * because the k8 deals with 40-bit values. However, the value we are |
| * supposed to return is a full 64-bit physical address. The AMD |
| * x86-64 architecture specifies that the most significant implemented |
| * address bit through bit 63 of a physical address must be either all |
| * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a |
| * 64-bit value below. See section 3.4.2 of AMD publication 24592: |
| * AMD x86-64 Architecture Programmer's Manual Volume 1 Application |
| * Programming. |
| */ |
| sys_addr |= ~((sys_addr & (1ull << 39)) - 1); |
| |
| debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", |
| pvt->mc_node_id, (unsigned long)dram_addr, |
| (unsigned long)sys_addr); |
| |
| return sys_addr; |
| } |
| |
| /* |
| * @input_addr is an InputAddr associated with the node given by mci. Translate |
| * @input_addr to a SysAddr. |
| */ |
| static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, |
| u64 input_addr) |
| { |
| return dram_addr_to_sys_addr(mci, |
| input_addr_to_dram_addr(mci, input_addr)); |
| } |
| |
| /* |
| * Find the minimum and maximum InputAddr values that map to the given @csrow. |
| * Pass back these values in *input_addr_min and *input_addr_max. |
| */ |
| static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, |
| u64 *input_addr_min, u64 *input_addr_max) |
| { |
| struct amd64_pvt *pvt; |
| u64 base, mask; |
| |
| pvt = mci->pvt_info; |
| BUG_ON((csrow < 0) || (csrow >= pvt->cs_count)); |
| |
| base = base_from_dct_base(pvt, csrow); |
| mask = mask_from_dct_mask(pvt, csrow); |
| |
| *input_addr_min = base & ~mask; |
| *input_addr_max = base | mask | pvt->dcs_mask_notused; |
| } |
| |
| /* Map the Error address to a PAGE and PAGE OFFSET. */ |
| static inline void error_address_to_page_and_offset(u64 error_address, |
| u32 *page, u32 *offset) |
| { |
| *page = (u32) (error_address >> PAGE_SHIFT); |
| *offset = ((u32) error_address) & ~PAGE_MASK; |
| } |
| |
| /* |
| * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address |
| * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers |
| * of a node that detected an ECC memory error. mci represents the node that |
| * the error address maps to (possibly different from the node that detected |
| * the error). Return the number of the csrow that sys_addr maps to, or -1 on |
| * error. |
| */ |
| static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) |
| { |
| int csrow; |
| |
| csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); |
| |
| if (csrow == -1) |
| amd64_mc_printk(mci, KERN_ERR, |
| "Failed to translate InputAddr to csrow for " |
| "address 0x%lx\n", (unsigned long)sys_addr); |
| return csrow; |
| } |
| |
| static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); |
| |
| static void amd64_cpu_display_info(struct amd64_pvt *pvt) |
| { |
| if (boot_cpu_data.x86 == 0x11) |
| edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n"); |
| else if (boot_cpu_data.x86 == 0x10) |
| edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n"); |
| else if (boot_cpu_data.x86 == 0xf) |
| edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n", |
| (pvt->ext_model >= K8_REV_F) ? |
| "Rev F or later" : "Rev E or earlier"); |
| else |
| /* we'll hardly ever ever get here */ |
| edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n"); |
| } |
| |
| /* |
| * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs |
| * are ECC capable. |
| */ |
| static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) |
| { |
| int bit; |
| enum dev_type edac_cap = EDAC_FLAG_NONE; |
| |
| bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) |
| ? 19 |
| : 17; |
| |
| if (pvt->dclr0 & BIT(bit)) |
| edac_cap = EDAC_FLAG_SECDED; |
| |
| return edac_cap; |
| } |
| |
| |
| static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt); |
| |
| static void amd64_dump_dramcfg_low(u32 dclr, int chan) |
| { |
| debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); |
| |
| debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", |
| (dclr & BIT(16)) ? "un" : "", |
| (dclr & BIT(19)) ? "yes" : "no"); |
| |
| debugf1(" PAR/ERR parity: %s\n", |
| (dclr & BIT(8)) ? "enabled" : "disabled"); |
| |
| debugf1(" DCT 128bit mode width: %s\n", |
| (dclr & BIT(11)) ? "128b" : "64b"); |
| |
| debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", |
| (dclr & BIT(12)) ? "yes" : "no", |
| (dclr & BIT(13)) ? "yes" : "no", |
| (dclr & BIT(14)) ? "yes" : "no", |
| (dclr & BIT(15)) ? "yes" : "no"); |
| } |
| |
| /* Display and decode various NB registers for debug purposes. */ |
| static void amd64_dump_misc_regs(struct amd64_pvt *pvt) |
| { |
| int ganged; |
| |
| debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); |
| |
| debugf1(" NB two channel DRAM capable: %s\n", |
| (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no"); |
| |
| debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", |
| (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no", |
| (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no"); |
| |
| amd64_dump_dramcfg_low(pvt->dclr0, 0); |
| |
| debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); |
| |
| debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " |
| "offset: 0x%08x\n", |
| pvt->dhar, |
| dhar_base(pvt->dhar), |
| (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar) |
| : f10_dhar_offset(pvt->dhar)); |
| |
| debugf1(" DramHoleValid: %s\n", |
| (pvt->dhar & DHAR_VALID) ? "yes" : "no"); |
| |
| /* everything below this point is Fam10h and above */ |
| if (boot_cpu_data.x86 == 0xf) { |
| amd64_debug_display_dimm_sizes(0, pvt); |
| return; |
| } |
| |
| /* Only if NOT ganged does dclr1 have valid info */ |
| if (!dct_ganging_enabled(pvt)) |
| amd64_dump_dramcfg_low(pvt->dclr1, 1); |
| |
| /* |
| * Determine if ganged and then dump memory sizes for first controller, |
| * and if NOT ganged dump info for 2nd controller. |
| */ |
| ganged = dct_ganging_enabled(pvt); |
| |
| amd64_debug_display_dimm_sizes(0, pvt); |
| |
| if (!ganged) |
| amd64_debug_display_dimm_sizes(1, pvt); |
| } |
| |
| /* Read in both of DBAM registers */ |
| static void amd64_read_dbam_reg(struct amd64_pvt *pvt) |
| { |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0); |
| |
| if (boot_cpu_data.x86 >= 0x10) |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1); |
| } |
| |
| /* |
| * NOTE: CPU Revision Dependent code: Rev E and Rev F |
| * |
| * Set the DCSB and DCSM mask values depending on the CPU revision value. Also |
| * set the shift factor for the DCSB and DCSM values. |
| * |
| * ->dcs_mask_notused, RevE: |
| * |
| * To find the max InputAddr for the csrow, start with the base address and set |
| * all bits that are "don't care" bits in the test at the start of section |
| * 3.5.4 (p. 84). |
| * |
| * The "don't care" bits are all set bits in the mask and all bits in the gaps |
| * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS |
| * represents bits [24:20] and [12:0], which are all bits in the above-mentioned |
| * gaps. |
| * |
| * ->dcs_mask_notused, RevF and later: |
| * |
| * To find the max InputAddr for the csrow, start with the base address and set |
| * all bits that are "don't care" bits in the test at the start of NPT section |
| * 4.5.4 (p. 87). |
| * |
| * The "don't care" bits are all set bits in the mask and all bits in the gaps |
| * between bit ranges [36:27] and [21:13]. |
| * |
| * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], |
| * which are all bits in the above-mentioned gaps. |
| */ |
| static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) |
| { |
| |
| if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { |
| pvt->dcsb_base = REV_E_DCSB_BASE_BITS; |
| pvt->dcsm_mask = REV_E_DCSM_MASK_BITS; |
| pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS; |
| pvt->dcs_shift = REV_E_DCS_SHIFT; |
| pvt->cs_count = 8; |
| pvt->num_dcsm = 8; |
| } else { |
| pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS; |
| pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS; |
| pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS; |
| pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT; |
| |
| if (boot_cpu_data.x86 == 0x11) { |
| pvt->cs_count = 4; |
| pvt->num_dcsm = 2; |
| } else { |
| pvt->cs_count = 8; |
| pvt->num_dcsm = 4; |
| } |
| } |
| } |
| |
| /* |
| * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers |
| */ |
| static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) |
| { |
| int cs, reg; |
| |
| amd64_set_dct_base_and_mask(pvt); |
| |
| for (cs = 0; cs < pvt->cs_count; cs++) { |
| reg = K8_DCSB0 + (cs * 4); |
| if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs])) |
| debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", |
| cs, pvt->dcsb0[cs], reg); |
| |
| /* If DCT are NOT ganged, then read in DCT1's base */ |
| if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { |
| reg = F10_DCSB1 + (cs * 4); |
| if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, |
| &pvt->dcsb1[cs])) |
| debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", |
| cs, pvt->dcsb1[cs], reg); |
| } else { |
| pvt->dcsb1[cs] = 0; |
| } |
| } |
| |
| for (cs = 0; cs < pvt->num_dcsm; cs++) { |
| reg = K8_DCSM0 + (cs * 4); |
| if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs])) |
| debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", |
| cs, pvt->dcsm0[cs], reg); |
| |
| /* If DCT are NOT ganged, then read in DCT1's mask */ |
| if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { |
| reg = F10_DCSM1 + (cs * 4); |
| if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, |
| &pvt->dcsm1[cs])) |
| debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", |
| cs, pvt->dcsm1[cs], reg); |
| } else { |
| pvt->dcsm1[cs] = 0; |
| } |
| } |
| } |
| |
| static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) |
| { |
| enum mem_type type; |
| |
| if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) { |
| if (pvt->dchr0 & DDR3_MODE) |
| type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; |
| else |
| type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; |
| } else { |
| type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; |
| } |
| |
| debugf1(" Memory type is: %s\n", edac_mem_types[type]); |
| |
| return type; |
| } |
| |
| /* |
| * Read the DRAM Configuration Low register. It differs between CG, D & E revs |
| * and the later RevF memory controllers (DDR vs DDR2) |
| * |
| * Return: |
| * number of memory channels in operation |
| * Pass back: |
| * contents of the DCL0_LOW register |
| */ |
| static int k8_early_channel_count(struct amd64_pvt *pvt) |
| { |
| int flag, err = 0; |
| |
| err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); |
| if (err) |
| return err; |
| |
| if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) { |
| /* RevF (NPT) and later */ |
| flag = pvt->dclr0 & F10_WIDTH_128; |
| } else { |
| /* RevE and earlier */ |
| flag = pvt->dclr0 & REVE_WIDTH_128; |
| } |
| |
| /* not used */ |
| pvt->dclr1 = 0; |
| |
| return (flag) ? 2 : 1; |
| } |
| |
| /* extract the ERROR ADDRESS for the K8 CPUs */ |
| static u64 k8_get_error_address(struct mem_ctl_info *mci, |
| struct err_regs *info) |
| { |
| return (((u64) (info->nbeah & 0xff)) << 32) + |
| (info->nbeal & ~0x03); |
| } |
| |
| /* |
| * Read the Base and Limit registers for K8 based Memory controllers; extract |
| * fields from the 'raw' reg into separate data fields |
| * |
| * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN |
| */ |
| static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) |
| { |
| u32 low; |
| u32 off = dram << 3; /* 8 bytes between DRAM entries */ |
| |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low); |
| |
| /* Extract parts into separate data entries */ |
| pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; |
| pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; |
| pvt->dram_rw_en[dram] = (low & 0x3); |
| |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low); |
| |
| /* |
| * Extract parts into separate data entries. Limit is the HIGHEST memory |
| * location of the region, so lower 24 bits need to be all ones |
| */ |
| pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; |
| pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; |
| pvt->dram_DstNode[dram] = (low & 0x7); |
| } |
| |
| static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, |
| struct err_regs *info, |
| u64 sys_addr) |
| { |
| struct mem_ctl_info *src_mci; |
| unsigned short syndrome; |
| int channel, csrow; |
| u32 page, offset; |
| |
| /* Extract the syndrome parts and form a 16-bit syndrome */ |
| syndrome = HIGH_SYNDROME(info->nbsl) << 8; |
| syndrome |= LOW_SYNDROME(info->nbsh); |
| |
| /* CHIPKILL enabled */ |
| if (info->nbcfg & K8_NBCFG_CHIPKILL) { |
| channel = get_channel_from_ecc_syndrome(mci, syndrome); |
| if (channel < 0) { |
| /* |
| * Syndrome didn't map, so we don't know which of the |
| * 2 DIMMs is in error. So we need to ID 'both' of them |
| * as suspect. |
| */ |
| amd64_mc_printk(mci, KERN_WARNING, |
| "unknown syndrome 0x%x - possible error " |
| "reporting race\n", syndrome); |
| edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); |
| return; |
| } |
| } else { |
| /* |
| * non-chipkill ecc mode |
| * |
| * The k8 documentation is unclear about how to determine the |
| * channel number when using non-chipkill memory. This method |
| * was obtained from email communication with someone at AMD. |
| * (Wish the email was placed in this comment - norsk) |
| */ |
| channel = ((sys_addr & BIT(3)) != 0); |
| } |
| |
| /* |
| * Find out which node the error address belongs to. This may be |
| * different from the node that detected the error. |
| */ |
| src_mci = find_mc_by_sys_addr(mci, sys_addr); |
| if (!src_mci) { |
| amd64_mc_printk(mci, KERN_ERR, |
| "failed to map error address 0x%lx to a node\n", |
| (unsigned long)sys_addr); |
| edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); |
| return; |
| } |
| |
| /* Now map the sys_addr to a CSROW */ |
| csrow = sys_addr_to_csrow(src_mci, sys_addr); |
| if (csrow < 0) { |
| edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); |
| } else { |
| error_address_to_page_and_offset(sys_addr, &page, &offset); |
| |
| edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, |
| channel, EDAC_MOD_STR); |
| } |
| } |
| |
| static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) |
| { |
| int *dbam_map; |
| |
| if (pvt->ext_model >= K8_REV_F) |
| dbam_map = ddr2_dbam; |
| else if (pvt->ext_model >= K8_REV_D) |
| dbam_map = ddr2_dbam_revD; |
| else |
| dbam_map = ddr2_dbam_revCG; |
| |
| return dbam_map[cs_mode]; |
| } |
| |
| /* |
| * Get the number of DCT channels in use. |
| * |
| * Return: |
| * number of Memory Channels in operation |
| * Pass back: |
| * contents of the DCL0_LOW register |
| */ |
| static int f10_early_channel_count(struct amd64_pvt *pvt) |
| { |
| int dbams[] = { DBAM0, DBAM1 }; |
| int i, j, channels = 0; |
| u32 dbam; |
| |
| /* If we are in 128 bit mode, then we are using 2 channels */ |
| if (pvt->dclr0 & F10_WIDTH_128) { |
| channels = 2; |
| return channels; |
| } |
| |
| /* |
| * Need to check if in unganged mode: In such, there are 2 channels, |
| * but they are not in 128 bit mode and thus the above 'dclr0' status |
| * bit will be OFF. |
| * |
| * Need to check DCT0[0] and DCT1[0] to see if only one of them has |
| * their CSEnable bit on. If so, then SINGLE DIMM case. |
| */ |
| debugf0("Data width is not 128 bits - need more decoding\n"); |
| |
| /* |
| * Check DRAM Bank Address Mapping values for each DIMM to see if there |
| * is more than just one DIMM present in unganged mode. Need to check |
| * both controllers since DIMMs can be placed in either one. |
| */ |
| for (i = 0; i < ARRAY_SIZE(dbams); i++) { |
| if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam)) |
| goto err_reg; |
| |
| for (j = 0; j < 4; j++) { |
| if (DBAM_DIMM(j, dbam) > 0) { |
| channels++; |
| break; |
| } |
| } |
| } |
| |
| if (channels > 2) |
| channels = 2; |
| |
| debugf0("MCT channel count: %d\n", channels); |
| |
| return channels; |
| |
| err_reg: |
| return -1; |
| |
| } |
| |
| static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) |
| { |
| int *dbam_map; |
| |
| if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) |
| dbam_map = ddr3_dbam; |
| else |
| dbam_map = ddr2_dbam; |
| |
| return dbam_map[cs_mode]; |
| } |
| |
| /* Enable extended configuration access via 0xCF8 feature */ |
| static void amd64_setup(struct amd64_pvt *pvt) |
| { |
| u32 reg; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); |
| |
| pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG); |
| reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; |
| pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); |
| } |
| |
| /* Restore the extended configuration access via 0xCF8 feature */ |
| static void amd64_teardown(struct amd64_pvt *pvt) |
| { |
| u32 reg; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); |
| |
| reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG; |
| if (pvt->flags.cf8_extcfg) |
| reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; |
| pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); |
| } |
| |
| static u64 f10_get_error_address(struct mem_ctl_info *mci, |
| struct err_regs *info) |
| { |
| return (((u64) (info->nbeah & 0xffff)) << 32) + |
| (info->nbeal & ~0x01); |
| } |
| |
| /* |
| * Read the Base and Limit registers for F10 based Memory controllers. Extract |
| * fields from the 'raw' reg into separate data fields. |
| * |
| * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN. |
| */ |
| static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram) |
| { |
| u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit; |
| |
| low_offset = K8_DRAM_BASE_LOW + (dram << 3); |
| high_offset = F10_DRAM_BASE_HIGH + (dram << 3); |
| |
| /* read the 'raw' DRAM BASE Address register */ |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base); |
| |
| /* Read from the ECS data register */ |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base); |
| |
| /* Extract parts into separate data entries */ |
| pvt->dram_rw_en[dram] = (low_base & 0x3); |
| |
| if (pvt->dram_rw_en[dram] == 0) |
| return; |
| |
| pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7; |
| |
| pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) | |
| (((u64)low_base & 0xFFFF0000) << 8); |
| |
| low_offset = K8_DRAM_LIMIT_LOW + (dram << 3); |
| high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3); |
| |
| /* read the 'raw' LIMIT registers */ |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit); |
| |
| /* Read from the ECS data register for the HIGH portion */ |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit); |
| |
| pvt->dram_DstNode[dram] = (low_limit & 0x7); |
| pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7; |
| |
| /* |
| * Extract address values and form a LIMIT address. Limit is the HIGHEST |
| * memory location of the region, so low 24 bits need to be all ones. |
| */ |
| pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) | |
| (((u64) low_limit & 0xFFFF0000) << 8) | |
| 0x00FFFFFF; |
| } |
| |
| static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) |
| { |
| |
| if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW, |
| &pvt->dram_ctl_select_low)) { |
| debugf0("F2x110 (DCTL Sel. Low): 0x%08x, " |
| "High range addresses at: 0x%x\n", |
| pvt->dram_ctl_select_low, |
| dct_sel_baseaddr(pvt)); |
| |
| debugf0(" DCT mode: %s, All DCTs on: %s\n", |
| (dct_ganging_enabled(pvt) ? "ganged" : "unganged"), |
| (dct_dram_enabled(pvt) ? "yes" : "no")); |
| |
| if (!dct_ganging_enabled(pvt)) |
| debugf0(" Address range split per DCT: %s\n", |
| (dct_high_range_enabled(pvt) ? "yes" : "no")); |
| |
| debugf0(" DCT data interleave for ECC: %s, " |
| "DRAM cleared since last warm reset: %s\n", |
| (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), |
| (dct_memory_cleared(pvt) ? "yes" : "no")); |
| |
| debugf0(" DCT channel interleave: %s, " |
| "DCT interleave bits selector: 0x%x\n", |
| (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), |
| dct_sel_interleave_addr(pvt)); |
| } |
| |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH, |
| &pvt->dram_ctl_select_high); |
| } |
| |
| /* |
| * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory |
| * Interleaving Modes. |
| */ |
| static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, |
| int hi_range_sel, u32 intlv_en) |
| { |
| u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1; |
| |
| if (dct_ganging_enabled(pvt)) |
| cs = 0; |
| else if (hi_range_sel) |
| cs = dct_sel_high; |
| else if (dct_interleave_enabled(pvt)) { |
| /* |
| * see F2x110[DctSelIntLvAddr] - channel interleave mode |
| */ |
| if (dct_sel_interleave_addr(pvt) == 0) |
| cs = sys_addr >> 6 & 1; |
| else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) { |
| temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; |
| |
| if (dct_sel_interleave_addr(pvt) & 1) |
| cs = (sys_addr >> 9 & 1) ^ temp; |
| else |
| cs = (sys_addr >> 6 & 1) ^ temp; |
| } else if (intlv_en & 4) |
| cs = sys_addr >> 15 & 1; |
| else if (intlv_en & 2) |
| cs = sys_addr >> 14 & 1; |
| else if (intlv_en & 1) |
| cs = sys_addr >> 13 & 1; |
| else |
| cs = sys_addr >> 12 & 1; |
| } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) |
| cs = ~dct_sel_high & 1; |
| else |
| cs = 0; |
| |
| return cs; |
| } |
| |
| static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en) |
| { |
| if (intlv_en == 1) |
| return 1; |
| else if (intlv_en == 3) |
| return 2; |
| else if (intlv_en == 7) |
| return 3; |
| |
| return 0; |
| } |
| |
| /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */ |
| static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel, |
| u32 dct_sel_base_addr, |
| u64 dct_sel_base_off, |
| u32 hole_valid, u32 hole_off, |
| u64 dram_base) |
| { |
| u64 chan_off; |
| |
| if (hi_range_sel) { |
| if (!(dct_sel_base_addr & 0xFFFFF800) && |
| hole_valid && (sys_addr >= 0x100000000ULL)) |
| chan_off = hole_off << 16; |
| else |
| chan_off = dct_sel_base_off; |
| } else { |
| if (hole_valid && (sys_addr >= 0x100000000ULL)) |
| chan_off = hole_off << 16; |
| else |
| chan_off = dram_base & 0xFFFFF8000000ULL; |
| } |
| |
| return (sys_addr & 0x0000FFFFFFFFFFC0ULL) - |
| (chan_off & 0x0000FFFFFF800000ULL); |
| } |
| |
| /* Hack for the time being - Can we get this from BIOS?? */ |
| #define CH0SPARE_RANK 0 |
| #define CH1SPARE_RANK 1 |
| |
| /* |
| * checks if the csrow passed in is marked as SPARED, if so returns the new |
| * spare row |
| */ |
| static inline int f10_process_possible_spare(int csrow, |
| u32 cs, struct amd64_pvt *pvt) |
| { |
| u32 swap_done; |
| u32 bad_dram_cs; |
| |
| /* Depending on channel, isolate respective SPARING info */ |
| if (cs) { |
| swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); |
| bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); |
| if (swap_done && (csrow == bad_dram_cs)) |
| csrow = CH1SPARE_RANK; |
| } else { |
| swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); |
| bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); |
| if (swap_done && (csrow == bad_dram_cs)) |
| csrow = CH0SPARE_RANK; |
| } |
| return csrow; |
| } |
| |
| /* |
| * Iterate over the DRAM DCT "base" and "mask" registers looking for a |
| * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' |
| * |
| * Return: |
| * -EINVAL: NOT FOUND |
| * 0..csrow = Chip-Select Row |
| */ |
| static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs) |
| { |
| struct mem_ctl_info *mci; |
| struct amd64_pvt *pvt; |
| u32 cs_base, cs_mask; |
| int cs_found = -EINVAL; |
| int csrow; |
| |
| mci = mci_lookup[nid]; |
| if (!mci) |
| return cs_found; |
| |
| pvt = mci->pvt_info; |
| |
| debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs); |
| |
| for (csrow = 0; csrow < pvt->cs_count; csrow++) { |
| |
| cs_base = amd64_get_dct_base(pvt, cs, csrow); |
| if (!(cs_base & K8_DCSB_CS_ENABLE)) |
| continue; |
| |
| /* |
| * We have an ENABLED CSROW, Isolate just the MASK bits of the |
| * target: [28:19] and [13:5], which map to [36:27] and [21:13] |
| * of the actual address. |
| */ |
| cs_base &= REV_F_F1Xh_DCSB_BASE_BITS; |
| |
| /* |
| * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and |
| * [4:0] to become ON. Then mask off bits [28:0] ([36:8]) |
| */ |
| cs_mask = amd64_get_dct_mask(pvt, cs, csrow); |
| |
| debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n", |
| csrow, cs_base, cs_mask); |
| |
| cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF; |
| |
| debugf1(" Final CSMask=0x%x\n", cs_mask); |
| debugf1(" (InputAddr & ~CSMask)=0x%x " |
| "(CSBase & ~CSMask)=0x%x\n", |
| (in_addr & ~cs_mask), (cs_base & ~cs_mask)); |
| |
| if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) { |
| cs_found = f10_process_possible_spare(csrow, cs, pvt); |
| |
| debugf1(" MATCH csrow=%d\n", cs_found); |
| break; |
| } |
| } |
| return cs_found; |
| } |
| |
| /* For a given @dram_range, check if @sys_addr falls within it. */ |
| static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range, |
| u64 sys_addr, int *nid, int *chan_sel) |
| { |
| int node_id, cs_found = -EINVAL, high_range = 0; |
| u32 intlv_en, intlv_sel, intlv_shift, hole_off; |
| u32 hole_valid, tmp, dct_sel_base, channel; |
| u64 dram_base, chan_addr, dct_sel_base_off; |
| |
| dram_base = pvt->dram_base[dram_range]; |
| intlv_en = pvt->dram_IntlvEn[dram_range]; |
| |
| node_id = pvt->dram_DstNode[dram_range]; |
| intlv_sel = pvt->dram_IntlvSel[dram_range]; |
| |
| debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n", |
| dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]); |
| |
| /* |
| * This assumes that one node's DHAR is the same as all the other |
| * nodes' DHAR. |
| */ |
| hole_off = (pvt->dhar & 0x0000FF80); |
| hole_valid = (pvt->dhar & 0x1); |
| dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16; |
| |
| debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n", |
| hole_off, hole_valid, intlv_sel); |
| |
| if (intlv_en || |
| (intlv_sel != ((sys_addr >> 12) & intlv_en))) |
| return -EINVAL; |
| |
| dct_sel_base = dct_sel_baseaddr(pvt); |
| |
| /* |
| * check whether addresses >= DctSelBaseAddr[47:27] are to be used to |
| * select between DCT0 and DCT1. |
| */ |
| if (dct_high_range_enabled(pvt) && |
| !dct_ganging_enabled(pvt) && |
| ((sys_addr >> 27) >= (dct_sel_base >> 11))) |
| high_range = 1; |
| |
| channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); |
| |
| chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base, |
| dct_sel_base_off, hole_valid, |
| hole_off, dram_base); |
| |
| intlv_shift = f10_map_intlv_en_to_shift(intlv_en); |
| |
| /* remove Node ID (in case of memory interleaving) */ |
| tmp = chan_addr & 0xFC0; |
| |
| chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp; |
| |
| /* remove channel interleave and hash */ |
| if (dct_interleave_enabled(pvt) && |
| !dct_high_range_enabled(pvt) && |
| !dct_ganging_enabled(pvt)) { |
| if (dct_sel_interleave_addr(pvt) != 1) |
| chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL; |
| else { |
| tmp = chan_addr & 0xFC0; |
| chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1) |
| | tmp; |
| } |
| } |
| |
| debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n", |
| chan_addr, (u32)(chan_addr >> 8)); |
| |
| cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel); |
| |
| if (cs_found >= 0) { |
| *nid = node_id; |
| *chan_sel = channel; |
| } |
| return cs_found; |
| } |
| |
| static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, |
| int *node, int *chan_sel) |
| { |
| int dram_range, cs_found = -EINVAL; |
| u64 dram_base, dram_limit; |
| |
| for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) { |
| |
| if (!pvt->dram_rw_en[dram_range]) |
| continue; |
| |
| dram_base = pvt->dram_base[dram_range]; |
| dram_limit = pvt->dram_limit[dram_range]; |
| |
| if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) { |
| |
| cs_found = f10_match_to_this_node(pvt, dram_range, |
| sys_addr, node, |
| chan_sel); |
| if (cs_found >= 0) |
| break; |
| } |
| } |
| return cs_found; |
| } |
| |
| /* |
| * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps |
| * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). |
| * |
| * The @sys_addr is usually an error address received from the hardware |
| * (MCX_ADDR). |
| */ |
| static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, |
| struct err_regs *info, |
| u64 sys_addr) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 page, offset; |
| unsigned short syndrome; |
| int nid, csrow, chan = 0; |
| |
| csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); |
| |
| if (csrow < 0) { |
| edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); |
| return; |
| } |
| |
| error_address_to_page_and_offset(sys_addr, &page, &offset); |
| |
| syndrome = HIGH_SYNDROME(info->nbsl) << 8; |
| syndrome |= LOW_SYNDROME(info->nbsh); |
| |
| /* |
| * We need the syndromes for channel detection only when we're |
| * ganged. Otherwise @chan should already contain the channel at |
| * this point. |
| */ |
| if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL) |
| chan = get_channel_from_ecc_syndrome(mci, syndrome); |
| |
| if (chan >= 0) |
| edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, |
| EDAC_MOD_STR); |
| else |
| /* |
| * Channel unknown, report all channels on this CSROW as failed. |
| */ |
| for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) |
| edac_mc_handle_ce(mci, page, offset, syndrome, |
| csrow, chan, EDAC_MOD_STR); |
| } |
| |
| /* |
| * debug routine to display the memory sizes of all logical DIMMs and its |
| * CSROWs as well |
| */ |
| static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt) |
| { |
| int dimm, size0, size1; |
| u32 dbam; |
| u32 *dcsb; |
| |
| if (boot_cpu_data.x86 == 0xf) { |
| /* K8 families < revF not supported yet */ |
| if (pvt->ext_model < K8_REV_F) |
| return; |
| else |
| WARN_ON(ctrl != 0); |
| } |
| |
| debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", |
| ctrl, ctrl ? pvt->dbam1 : pvt->dbam0); |
| |
| dbam = ctrl ? pvt->dbam1 : pvt->dbam0; |
| dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0; |
| |
| edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); |
| |
| /* Dump memory sizes for DIMM and its CSROWs */ |
| for (dimm = 0; dimm < 4; dimm++) { |
| |
| size0 = 0; |
| if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE) |
| size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); |
| |
| size1 = 0; |
| if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE) |
| size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); |
| |
| edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n", |
| dimm * 2, size0, dimm * 2 + 1, size1); |
| } |
| } |
| |
| /* |
| * There currently are 3 types type of MC devices for AMD Athlon/Opterons |
| * (as per PCI DEVICE_IDs): |
| * |
| * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI |
| * DEVICE ID, even though there is differences between the different Revisions |
| * (CG,D,E,F). |
| * |
| * Family F10h and F11h. |
| * |
| */ |
| static struct amd64_family_type amd64_family_types[] = { |
| [K8_CPUS] = { |
| .ctl_name = "RevF", |
| .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, |
| .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC, |
| .ops = { |
| .early_channel_count = k8_early_channel_count, |
| .get_error_address = k8_get_error_address, |
| .read_dram_base_limit = k8_read_dram_base_limit, |
| .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, |
| .dbam_to_cs = k8_dbam_to_chip_select, |
| } |
| }, |
| [F10_CPUS] = { |
| .ctl_name = "Family 10h", |
| .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP, |
| .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC, |
| .ops = { |
| .early_channel_count = f10_early_channel_count, |
| .get_error_address = f10_get_error_address, |
| .read_dram_base_limit = f10_read_dram_base_limit, |
| .read_dram_ctl_register = f10_read_dram_ctl_register, |
| .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, |
| .dbam_to_cs = f10_dbam_to_chip_select, |
| } |
| }, |
| [F11_CPUS] = { |
| .ctl_name = "Family 11h", |
| .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP, |
| .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC, |
| .ops = { |
| .early_channel_count = f10_early_channel_count, |
| .get_error_address = f10_get_error_address, |
| .read_dram_base_limit = f10_read_dram_base_limit, |
| .read_dram_ctl_register = f10_read_dram_ctl_register, |
| .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, |
| .dbam_to_cs = f10_dbam_to_chip_select, |
| } |
| }, |
| }; |
| |
| static struct pci_dev *pci_get_related_function(unsigned int vendor, |
| unsigned int device, |
| struct pci_dev *related) |
| { |
| struct pci_dev *dev = NULL; |
| |
| dev = pci_get_device(vendor, device, dev); |
| while (dev) { |
| if ((dev->bus->number == related->bus->number) && |
| (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) |
| break; |
| dev = pci_get_device(vendor, device, dev); |
| } |
| |
| return dev; |
| } |
| |
| /* |
| * These are tables of eigenvectors (one per line) which can be used for the |
| * construction of the syndrome tables. The modified syndrome search algorithm |
| * uses those to find the symbol in error and thus the DIMM. |
| * |
| * Algorithm courtesy of Ross LaFetra from AMD. |
| */ |
| static u16 x4_vectors[] = { |
| 0x2f57, 0x1afe, 0x66cc, 0xdd88, |
| 0x11eb, 0x3396, 0x7f4c, 0xeac8, |
| 0x0001, 0x0002, 0x0004, 0x0008, |
| 0x1013, 0x3032, 0x4044, 0x8088, |
| 0x106b, 0x30d6, 0x70fc, 0xe0a8, |
| 0x4857, 0xc4fe, 0x13cc, 0x3288, |
| 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, |
| 0x1f39, 0x251e, 0xbd6c, 0x6bd8, |
| 0x15c1, 0x2a42, 0x89ac, 0x4758, |
| 0x2b03, 0x1602, 0x4f0c, 0xca08, |
| 0x1f07, 0x3a0e, 0x6b04, 0xbd08, |
| 0x8ba7, 0x465e, 0x244c, 0x1cc8, |
| 0x2b87, 0x164e, 0x642c, 0xdc18, |
| 0x40b9, 0x80de, 0x1094, 0x20e8, |
| 0x27db, 0x1eb6, 0x9dac, 0x7b58, |
| 0x11c1, 0x2242, 0x84ac, 0x4c58, |
| 0x1be5, 0x2d7a, 0x5e34, 0xa718, |
| 0x4b39, 0x8d1e, 0x14b4, 0x28d8, |
| 0x4c97, 0xc87e, 0x11fc, 0x33a8, |
| 0x8e97, 0x497e, 0x2ffc, 0x1aa8, |
| 0x16b3, 0x3d62, 0x4f34, 0x8518, |
| 0x1e2f, 0x391a, 0x5cac, 0xf858, |
| 0x1d9f, 0x3b7a, 0x572c, 0xfe18, |
| 0x15f5, 0x2a5a, 0x5264, 0xa3b8, |
| 0x1dbb, 0x3b66, 0x715c, 0xe3f8, |
| 0x4397, 0xc27e, 0x17fc, 0x3ea8, |
| 0x1617, 0x3d3e, 0x6464, 0xb8b8, |
| 0x23ff, 0x12aa, 0xab6c, 0x56d8, |
| 0x2dfb, 0x1ba6, 0x913c, 0x7328, |
| 0x185d, 0x2ca6, 0x7914, 0x9e28, |
| 0x171b, 0x3e36, 0x7d7c, 0xebe8, |
| 0x4199, 0x82ee, 0x19f4, 0x2e58, |
| 0x4807, 0xc40e, 0x130c, 0x3208, |
| 0x1905, 0x2e0a, 0x5804, 0xac08, |
| 0x213f, 0x132a, 0xadfc, 0x5ba8, |
| 0x19a9, 0x2efe, 0xb5cc, 0x6f88, |
| }; |
| |
| static u16 x8_vectors[] = { |
| 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, |
| 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, |
| 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, |
| 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, |
| 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, |
| 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, |
| 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, |
| 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, |
| 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, |
| 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, |
| 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, |
| 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, |
| 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, |
| 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, |
| 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, |
| 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, |
| 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, |
| 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
| 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, |
| }; |
| |
| static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs, |
| int v_dim) |
| { |
| unsigned int i, err_sym; |
| |
| for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { |
| u16 s = syndrome; |
| int v_idx = err_sym * v_dim; |
| int v_end = (err_sym + 1) * v_dim; |
| |
| /* walk over all 16 bits of the syndrome */ |
| for (i = 1; i < (1U << 16); i <<= 1) { |
| |
| /* if bit is set in that eigenvector... */ |
| if (v_idx < v_end && vectors[v_idx] & i) { |
| u16 ev_comp = vectors[v_idx++]; |
| |
| /* ... and bit set in the modified syndrome, */ |
| if (s & i) { |
| /* remove it. */ |
| s ^= ev_comp; |
| |
| if (!s) |
| return err_sym; |
| } |
| |
| } else if (s & i) |
| /* can't get to zero, move to next symbol */ |
| break; |
| } |
| } |
| |
| debugf0("syndrome(%x) not found\n", syndrome); |
| return -1; |
| } |
| |
| static int map_err_sym_to_channel(int err_sym, int sym_size) |
| { |
| if (sym_size == 4) |
| switch (err_sym) { |
| case 0x20: |
| case 0x21: |
| return 0; |
| break; |
| case 0x22: |
| case 0x23: |
| return 1; |
| break; |
| default: |
| return err_sym >> 4; |
| break; |
| } |
| /* x8 symbols */ |
| else |
| switch (err_sym) { |
| /* imaginary bits not in a DIMM */ |
| case 0x10: |
| WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", |
| err_sym); |
| return -1; |
| break; |
| |
| case 0x11: |
| return 0; |
| break; |
| case 0x12: |
| return 1; |
| break; |
| default: |
| return err_sym >> 3; |
| break; |
| } |
| return -1; |
| } |
| |
| static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 value = 0; |
| int err_sym = 0; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value); |
| |
| /* F3x180[EccSymbolSize]=1, x8 symbols */ |
| if (boot_cpu_data.x86 == 0x10 && |
| boot_cpu_data.x86_model > 7 && |
| value & BIT(25)) { |
| err_sym = decode_syndrome(syndrome, x8_vectors, |
| ARRAY_SIZE(x8_vectors), 8); |
| return map_err_sym_to_channel(err_sym, 8); |
| } else { |
| err_sym = decode_syndrome(syndrome, x4_vectors, |
| ARRAY_SIZE(x4_vectors), 4); |
| return map_err_sym_to_channel(err_sym, 4); |
| } |
| } |
| |
| /* |
| * Check for valid error in the NB Status High register. If so, proceed to read |
| * NB Status Low, NB Address Low and NB Address High registers and store data |
| * into error structure. |
| * |
| * Returns: |
| * - 1: if hardware regs contains valid error info |
| * - 0: if no valid error is indicated |
| */ |
| static int amd64_get_error_info_regs(struct mem_ctl_info *mci, |
| struct err_regs *regs) |
| { |
| struct amd64_pvt *pvt; |
| struct pci_dev *misc_f3_ctl; |
| |
| pvt = mci->pvt_info; |
| misc_f3_ctl = pvt->misc_f3_ctl; |
| |
| if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, ®s->nbsh)) |
| return 0; |
| |
| if (!(regs->nbsh & K8_NBSH_VALID_BIT)) |
| return 0; |
| |
| /* valid error, read remaining error information registers */ |
| if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, ®s->nbsl) || |
| amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, ®s->nbeal) || |
| amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, ®s->nbeah) || |
| amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, ®s->nbcfg)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * This function is called to retrieve the error data from hardware and store it |
| * in the info structure. |
| * |
| * Returns: |
| * - 1: if a valid error is found |
| * - 0: if no error is found |
| */ |
| static int amd64_get_error_info(struct mem_ctl_info *mci, |
| struct err_regs *info) |
| { |
| struct amd64_pvt *pvt; |
| struct err_regs regs; |
| |
| pvt = mci->pvt_info; |
| |
| if (!amd64_get_error_info_regs(mci, info)) |
| return 0; |
| |
| /* |
| * Here's the problem with the K8's EDAC reporting: There are four |
| * registers which report pieces of error information. They are shared |
| * between CEs and UEs. Furthermore, contrary to what is stated in the |
| * BKDG, the overflow bit is never used! Every error always updates the |
| * reporting registers. |
| * |
| * Can you see the race condition? All four error reporting registers |
| * must be read before a new error updates them! There is no way to read |
| * all four registers atomically. The best than can be done is to detect |
| * that a race has occured and then report the error without any kind of |
| * precision. |
| * |
| * What is still positive is that errors are still reported and thus |
| * problems can still be detected - just not localized because the |
| * syndrome and address are spread out across registers. |
| * |
| * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev. |
| * UEs and CEs should have separate register sets with proper overflow |
| * bits that are used! At very least the problem can be fixed by |
| * honoring the ErrValid bit in 'nbsh' and not updating registers - just |
| * set the overflow bit - unless the current error is CE and the new |
| * error is UE which would be the only situation for overwriting the |
| * current values. |
| */ |
| |
| regs = *info; |
| |
| /* Use info from the second read - most current */ |
| if (unlikely(!amd64_get_error_info_regs(mci, info))) |
| return 0; |
| |
| /* clear the error bits in hardware */ |
| pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT); |
| |
| /* Check for the possible race condition */ |
| if ((regs.nbsh != info->nbsh) || |
| (regs.nbsl != info->nbsl) || |
| (regs.nbeah != info->nbeah) || |
| (regs.nbeal != info->nbeal)) { |
| amd64_mc_printk(mci, KERN_WARNING, |
| "hardware STATUS read access race condition " |
| "detected!\n"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR |
| * ADDRESS and process. |
| */ |
| static void amd64_handle_ce(struct mem_ctl_info *mci, |
| struct err_regs *info) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u64 sys_addr; |
| |
| /* Ensure that the Error Address is VALID */ |
| if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { |
| amd64_mc_printk(mci, KERN_ERR, |
| "HW has no ERROR_ADDRESS available\n"); |
| edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); |
| return; |
| } |
| |
| sys_addr = pvt->ops->get_error_address(mci, info); |
| |
| amd64_mc_printk(mci, KERN_ERR, |
| "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); |
| |
| pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr); |
| } |
| |
| /* Handle any Un-correctable Errors (UEs) */ |
| static void amd64_handle_ue(struct mem_ctl_info *mci, |
| struct err_regs *info) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| struct mem_ctl_info *log_mci, *src_mci = NULL; |
| int csrow; |
| u64 sys_addr; |
| u32 page, offset; |
| |
| log_mci = mci; |
| |
| if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { |
| amd64_mc_printk(mci, KERN_CRIT, |
| "HW has no ERROR_ADDRESS available\n"); |
| edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); |
| return; |
| } |
| |
| sys_addr = pvt->ops->get_error_address(mci, info); |
| |
| /* |
| * Find out which node the error address belongs to. This may be |
| * different from the node that detected the error. |
| */ |
| src_mci = find_mc_by_sys_addr(mci, sys_addr); |
| if (!src_mci) { |
| amd64_mc_printk(mci, KERN_CRIT, |
| "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n", |
| (unsigned long)sys_addr); |
| edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); |
| return; |
| } |
| |
| log_mci = src_mci; |
| |
| csrow = sys_addr_to_csrow(log_mci, sys_addr); |
| if (csrow < 0) { |
| amd64_mc_printk(mci, KERN_CRIT, |
| "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n", |
| (unsigned long)sys_addr); |
| edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); |
| } else { |
| error_address_to_page_and_offset(sys_addr, &page, &offset); |
| edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); |
| } |
| } |
| |
| static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, |
| struct err_regs *info) |
| { |
| u32 ec = ERROR_CODE(info->nbsl); |
| u32 xec = EXT_ERROR_CODE(info->nbsl); |
| int ecc_type = (info->nbsh >> 13) & 0x3; |
| |
| /* Bail early out if this was an 'observed' error */ |
| if (PP(ec) == K8_NBSL_PP_OBS) |
| return; |
| |
| /* Do only ECC errors */ |
| if (xec && xec != F10_NBSL_EXT_ERR_ECC) |
| return; |
| |
| if (ecc_type == 2) |
| amd64_handle_ce(mci, info); |
| else if (ecc_type == 1) |
| amd64_handle_ue(mci, info); |
| |
| /* |
| * If main error is CE then overflow must be CE. If main error is UE |
| * then overflow is unknown. We'll call the overflow a CE - if |
| * panic_on_ue is set then we're already panic'ed and won't arrive |
| * here. Else, then apparently someone doesn't think that UE's are |
| * catastrophic. |
| */ |
| if (info->nbsh & K8_NBSH_OVERFLOW) |
| edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow"); |
| } |
| |
| void amd64_decode_bus_error(int node_id, struct err_regs *regs) |
| { |
| struct mem_ctl_info *mci = mci_lookup[node_id]; |
| |
| __amd64_decode_bus_error(mci, regs); |
| |
| /* |
| * Check the UE bit of the NB status high register, if set generate some |
| * logs. If NOT a GART error, then process the event as a NO-INFO event. |
| * If it was a GART error, skip that process. |
| * |
| * FIXME: this should go somewhere else, if at all. |
| */ |
| if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors) |
| edac_mc_handle_ue_no_info(mci, "UE bit is set"); |
| |
| } |
| |
| /* |
| * The main polling 'check' function, called FROM the edac core to perform the |
| * error checking and if an error is encountered, error processing. |
| */ |
| static void amd64_check(struct mem_ctl_info *mci) |
| { |
| struct err_regs regs; |
| |
| if (amd64_get_error_info(mci, ®s)) { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| amd_decode_nb_mce(pvt->mc_node_id, ®s, 1); |
| } |
| } |
| |
| /* |
| * Input: |
| * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer |
| * 2) AMD Family index value |
| * |
| * Ouput: |
| * Upon return of 0, the following filled in: |
| * |
| * struct pvt->addr_f1_ctl |
| * struct pvt->misc_f3_ctl |
| * |
| * Filled in with related device funcitions of 'dram_f2_ctl' |
| * These devices are "reserved" via the pci_get_device() |
| * |
| * Upon return of 1 (error status): |
| * |
| * Nothing reserved |
| */ |
| static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx) |
| { |
| const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx]; |
| |
| /* Reserve the ADDRESS MAP Device */ |
| pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, |
| amd64_dev->addr_f1_ctl, |
| pvt->dram_f2_ctl); |
| |
| if (!pvt->addr_f1_ctl) { |
| amd64_printk(KERN_ERR, "error address map device not found: " |
| "vendor %x device 0x%x (broken BIOS?)\n", |
| PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl); |
| return 1; |
| } |
| |
| /* Reserve the MISC Device */ |
| pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, |
| amd64_dev->misc_f3_ctl, |
| pvt->dram_f2_ctl); |
| |
| if (!pvt->misc_f3_ctl) { |
| pci_dev_put(pvt->addr_f1_ctl); |
| pvt->addr_f1_ctl = NULL; |
| |
| amd64_printk(KERN_ERR, "error miscellaneous device not found: " |
| "vendor %x device 0x%x (broken BIOS?)\n", |
| PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl); |
| return 1; |
| } |
| |
| debugf1(" Addr Map device PCI Bus ID:\t%s\n", |
| pci_name(pvt->addr_f1_ctl)); |
| debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n", |
| pci_name(pvt->dram_f2_ctl)); |
| debugf1(" Misc device PCI Bus ID:\t%s\n", |
| pci_name(pvt->misc_f3_ctl)); |
| |
| return 0; |
| } |
| |
| static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt) |
| { |
| pci_dev_put(pvt->addr_f1_ctl); |
| pci_dev_put(pvt->misc_f3_ctl); |
| } |
| |
| /* |
| * Retrieve the hardware registers of the memory controller (this includes the |
| * 'Address Map' and 'Misc' device regs) |
| */ |
| static void amd64_read_mc_registers(struct amd64_pvt *pvt) |
| { |
| u64 msr_val; |
| int dram; |
| |
| /* |
| * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since |
| * those are Read-As-Zero |
| */ |
| rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); |
| debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); |
| |
| /* check first whether TOP_MEM2 is enabled */ |
| rdmsrl(MSR_K8_SYSCFG, msr_val); |
| if (msr_val & (1U << 21)) { |
| rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); |
| debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); |
| } else |
| debugf0(" TOP_MEM2 disabled.\n"); |
| |
| amd64_cpu_display_info(pvt); |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap); |
| |
| if (pvt->ops->read_dram_ctl_register) |
| pvt->ops->read_dram_ctl_register(pvt); |
| |
| for (dram = 0; dram < DRAM_REG_COUNT; dram++) { |
| /* |
| * Call CPU specific READ function to get the DRAM Base and |
| * Limit values from the DCT. |
| */ |
| pvt->ops->read_dram_base_limit(pvt, dram); |
| |
| /* |
| * Only print out debug info on rows with both R and W Enabled. |
| * Normal processing, compiler should optimize this whole 'if' |
| * debug output block away. |
| */ |
| if (pvt->dram_rw_en[dram] != 0) { |
| debugf1(" DRAM-BASE[%d]: 0x%016llx " |
| "DRAM-LIMIT: 0x%016llx\n", |
| dram, |
| pvt->dram_base[dram], |
| pvt->dram_limit[dram]); |
| |
| debugf1(" IntlvEn=%s %s %s " |
| "IntlvSel=%d DstNode=%d\n", |
| pvt->dram_IntlvEn[dram] ? |
| "Enabled" : "Disabled", |
| (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W", |
| (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R", |
| pvt->dram_IntlvSel[dram], |
| pvt->dram_DstNode[dram]); |
| } |
| } |
| |
| amd64_read_dct_base_mask(pvt); |
| |
| amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar); |
| amd64_read_dbam_reg(pvt); |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, |
| F10_ONLINE_SPARE, &pvt->online_spare); |
| |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0); |
| |
| if (!dct_ganging_enabled(pvt)) { |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1); |
| amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1); |
| } |
| amd64_dump_misc_regs(pvt); |
| } |
| |
| /* |
| * NOTE: CPU Revision Dependent code |
| * |
| * Input: |
| * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1) |
| * k8 private pointer to --> |
| * DRAM Bank Address mapping register |
| * node_id |
| * DCL register where dual_channel_active is |
| * |
| * The DBAM register consists of 4 sets of 4 bits each definitions: |
| * |
| * Bits: CSROWs |
| * 0-3 CSROWs 0 and 1 |
| * 4-7 CSROWs 2 and 3 |
| * 8-11 CSROWs 4 and 5 |
| * 12-15 CSROWs 6 and 7 |
| * |
| * Values range from: 0 to 15 |
| * The meaning of the values depends on CPU revision and dual-channel state, |
| * see relevant BKDG more info. |
| * |
| * The memory controller provides for total of only 8 CSROWs in its current |
| * architecture. Each "pair" of CSROWs normally represents just one DIMM in |
| * single channel or two (2) DIMMs in dual channel mode. |
| * |
| * The following code logic collapses the various tables for CSROW based on CPU |
| * revision. |
| * |
| * Returns: |
| * The number of PAGE_SIZE pages on the specified CSROW number it |
| * encompasses |
| * |
| */ |
| static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) |
| { |
| u32 cs_mode, nr_pages; |
| |
| /* |
| * The math on this doesn't look right on the surface because x/2*4 can |
| * be simplified to x*2 but this expression makes use of the fact that |
| * it is integral math where 1/2=0. This intermediate value becomes the |
| * number of bits to shift the DBAM register to extract the proper CSROW |
| * field. |
| */ |
| cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; |
| |
| nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT); |
| |
| /* |
| * If dual channel then double the memory size of single channel. |
| * Channel count is 1 or 2 |
| */ |
| nr_pages <<= (pvt->channel_count - 1); |
| |
| debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); |
| debugf0(" nr_pages= %u channel-count = %d\n", |
| nr_pages, pvt->channel_count); |
| |
| return nr_pages; |
| } |
| |
| /* |
| * Initialize the array of csrow attribute instances, based on the values |
| * from pci config hardware registers. |
| */ |
| static int amd64_init_csrows(struct mem_ctl_info *mci) |
| { |
| struct csrow_info *csrow; |
| struct amd64_pvt *pvt; |
| u64 input_addr_min, input_addr_max, sys_addr; |
| int i, empty = 1; |
| |
| pvt = mci->pvt_info; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg); |
| |
| debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg, |
| (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", |
| (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled" |
| ); |
| |
| for (i = 0; i < pvt->cs_count; i++) { |
| csrow = &mci->csrows[i]; |
| |
| if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) { |
| debugf1("----CSROW %d EMPTY for node %d\n", i, |
| pvt->mc_node_id); |
| continue; |
| } |
| |
| debugf1("----CSROW %d VALID for MC node %d\n", |
| i, pvt->mc_node_id); |
| |
| empty = 0; |
| csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); |
| find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); |
| sys_addr = input_addr_to_sys_addr(mci, input_addr_min); |
| csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); |
| sys_addr = input_addr_to_sys_addr(mci, input_addr_max); |
| csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); |
| csrow->page_mask = ~mask_from_dct_mask(pvt, i); |
| /* 8 bytes of resolution */ |
| |
| csrow->mtype = amd64_determine_memory_type(pvt); |
| |
| debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); |
| debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", |
| (unsigned long)input_addr_min, |
| (unsigned long)input_addr_max); |
| debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", |
| (unsigned long)sys_addr, csrow->page_mask); |
| debugf1(" nr_pages: %u first_page: 0x%lx " |
| "last_page: 0x%lx\n", |
| (unsigned)csrow->nr_pages, |
| csrow->first_page, csrow->last_page); |
| |
| /* |
| * determine whether CHIPKILL or JUST ECC or NO ECC is operating |
| */ |
| if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) |
| csrow->edac_mode = |
| (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? |
| EDAC_S4ECD4ED : EDAC_SECDED; |
| else |
| csrow->edac_mode = EDAC_NONE; |
| } |
| |
| return empty; |
| } |
| |
| /* get all cores on this DCT */ |
| static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| if (amd_get_nb_id(cpu) == nid) |
| cpumask_set_cpu(cpu, mask); |
| } |
| |
| /* check MCG_CTL on all the cpus on this node */ |
| static bool amd64_nb_mce_bank_enabled_on_node(int nid) |
| { |
| cpumask_var_t mask; |
| int cpu, nbe; |
| bool ret = false; |
| |
| if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { |
| amd64_printk(KERN_WARNING, "%s: error allocating mask\n", |
| __func__); |
| return false; |
| } |
| |
| get_cpus_on_this_dct_cpumask(mask, nid); |
| |
| rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); |
| |
| for_each_cpu(cpu, mask) { |
| struct msr *reg = per_cpu_ptr(msrs, cpu); |
| nbe = reg->l & K8_MSR_MCGCTL_NBE; |
| |
| debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", |
| cpu, reg->q, |
| (nbe ? "enabled" : "disabled")); |
| |
| if (!nbe) |
| goto out; |
| } |
| ret = true; |
| |
| out: |
| free_cpumask_var(mask); |
| return ret; |
| } |
| |
| static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on) |
| { |
| cpumask_var_t cmask; |
| int cpu; |
| |
| if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { |
| amd64_printk(KERN_WARNING, "%s: error allocating mask\n", |
| __func__); |
| return false; |
| } |
| |
| get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id); |
| |
| rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); |
| |
| for_each_cpu(cpu, cmask) { |
| |
| struct msr *reg = per_cpu_ptr(msrs, cpu); |
| |
| if (on) { |
| if (reg->l & K8_MSR_MCGCTL_NBE) |
| pvt->flags.ecc_report = 1; |
| |
| reg->l |= K8_MSR_MCGCTL_NBE; |
| } else { |
| /* |
| * Turn off ECC reporting only when it was off before |
| */ |
| if (!pvt->flags.ecc_report) |
| reg->l &= ~K8_MSR_MCGCTL_NBE; |
| } |
| } |
| wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); |
| |
| free_cpumask_var(cmask); |
| |
| return 0; |
| } |
| |
| /* |
| * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we" |
| * enable it. |
| */ |
| static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; |
| |
| if (!ecc_enable_override) |
| return; |
| |
| amd64_printk(KERN_WARNING, |
| "'ecc_enable_override' parameter is active, " |
| "Enabling AMD ECC hardware now: CAUTION\n"); |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value); |
| |
| /* turn on UECCn and CECCEn bits */ |
| pvt->old_nbctl = value & mask; |
| pvt->nbctl_mcgctl_saved = 1; |
| |
| value |= mask; |
| pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); |
| |
| if (amd64_toggle_ecc_err_reporting(pvt, ON)) |
| amd64_printk(KERN_WARNING, "Error enabling ECC reporting over " |
| "MCGCTL!\n"); |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); |
| |
| debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, |
| (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", |
| (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); |
| |
| if (!(value & K8_NBCFG_ECC_ENABLE)) { |
| amd64_printk(KERN_WARNING, |
| "This node reports that DRAM ECC is " |
| "currently Disabled; ENABLING now\n"); |
| |
| /* Attempt to turn on DRAM ECC Enable */ |
| value |= K8_NBCFG_ECC_ENABLE; |
| pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value); |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); |
| |
| if (!(value & K8_NBCFG_ECC_ENABLE)) { |
| amd64_printk(KERN_WARNING, |
| "Hardware rejects Enabling DRAM ECC checking\n" |
| "Check memory DIMM configuration\n"); |
| } else { |
| amd64_printk(KERN_DEBUG, |
| "Hardware accepted DRAM ECC Enable\n"); |
| } |
| } |
| debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, |
| (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", |
| (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); |
| |
| pvt->ctl_error_info.nbcfg = value; |
| } |
| |
| static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt) |
| { |
| u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; |
| |
| if (!pvt->nbctl_mcgctl_saved) |
| return; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value); |
| value &= ~mask; |
| value |= pvt->old_nbctl; |
| |
| /* restore the NB Enable MCGCTL bit */ |
| pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); |
| |
| if (amd64_toggle_ecc_err_reporting(pvt, OFF)) |
| amd64_printk(KERN_WARNING, "Error restoring ECC reporting over " |
| "MCGCTL!\n"); |
| } |
| |
| /* |
| * EDAC requires that the BIOS have ECC enabled before taking over the |
| * processing of ECC errors. This is because the BIOS can properly initialize |
| * the memory system completely. A command line option allows to force-enable |
| * hardware ECC later in amd64_enable_ecc_error_reporting(). |
| */ |
| static const char *ecc_warning = |
| "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n" |
| " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n" |
| " Also, use of the override can cause unknown side effects.\n"; |
| |
| static int amd64_check_ecc_enabled(struct amd64_pvt *pvt) |
| { |
| u32 value; |
| u8 ecc_enabled = 0; |
| bool nb_mce_en = false; |
| |
| amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); |
| |
| ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE); |
| if (!ecc_enabled) |
| amd64_printk(KERN_WARNING, "This node reports that Memory ECC " |
| "is currently disabled, set F3x%x[22] (%s).\n", |
| K8_NBCFG, pci_name(pvt->misc_f3_ctl)); |
| else |
| amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n"); |
| |
| nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id); |
| if (!nb_mce_en) |
| amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR " |
| "0x%08x[4] on node %d to enable.\n", |
| MSR_IA32_MCG_CTL, pvt->mc_node_id); |
| |
| if (!ecc_enabled || !nb_mce_en) { |
| if (!ecc_enable_override) { |
| amd64_printk(KERN_WARNING, "%s", ecc_warning); |
| return -ENODEV; |
| } |
| } else |
| /* CLEAR the override, since BIOS controlled it */ |
| ecc_enable_override = 0; |
| |
| return 0; |
| } |
| |
| struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + |
| ARRAY_SIZE(amd64_inj_attrs) + |
| 1]; |
| |
| struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; |
| |
| static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci) |
| { |
| unsigned int i = 0, j = 0; |
| |
| for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) |
| sysfs_attrs[i] = amd64_dbg_attrs[i]; |
| |
| for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) |
| sysfs_attrs[i] = amd64_inj_attrs[j]; |
| |
| sysfs_attrs[i] = terminator; |
| |
| mci->mc_driver_sysfs_attributes = sysfs_attrs; |
| } |
| |
| static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci) |
| { |
| struct amd64_pvt *pvt = mci->pvt_info; |
| |
| mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| |
| if (pvt->nbcap & K8_NBCAP_SECDED) |
| mci->edac_ctl_cap |= EDAC_FLAG_SECDED; |
| |
| if (pvt->nbcap & K8_NBCAP_CHIPKILL) |
| mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; |
| |
| mci->edac_cap = amd64_determine_edac_cap(pvt); |
| mci->mod_name = EDAC_MOD_STR; |
| mci->mod_ver = EDAC_AMD64_VERSION; |
| mci->ctl_name = get_amd_family_name(pvt->mc_type_index); |
| mci->dev_name = pci_name(pvt->dram_f2_ctl); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* IMPORTANT: Set the polling 'check' function in this module */ |
| mci->edac_check = amd64_check; |
| |
| /* memory scrubber interface */ |
| mci->set_sdram_scrub_rate = amd64_set_scrub_rate; |
| mci->get_sdram_scrub_rate = amd64_get_scrub_rate; |
| } |
| |
| /* |
| * Init stuff for this DRAM Controller device. |
| * |
| * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration |
| * Space feature MUST be enabled on ALL Processors prior to actually reading |
| * from the ECS registers. Since the loading of the module can occur on any |
| * 'core', and cores don't 'see' all the other processors ECS data when the |
| * others are NOT enabled. Our solution is to first enable ECS access in this |
| * routine on all processors, gather some data in a amd64_pvt structure and |
| * later come back in a finish-setup function to perform that final |
| * initialization. See also amd64_init_2nd_stage() for that. |
| */ |
| static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl, |
| int mc_type_index) |
| { |
| struct amd64_pvt *pvt = NULL; |
| int err = 0, ret; |
| |
| ret = -ENOMEM; |
| pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); |
| if (!pvt) |
| goto err_exit; |
| |
| pvt->mc_node_id = get_node_id(dram_f2_ctl); |
| |
| pvt->dram_f2_ctl = dram_f2_ctl; |
| pvt->ext_model = boot_cpu_data.x86_model >> 4; |
| pvt->mc_type_index = mc_type_index; |
| pvt->ops = family_ops(mc_type_index); |
| |
| /* |
| * We have the dram_f2_ctl device as an argument, now go reserve its |
| * sibling devices from the PCI system. |
| */ |
| ret = -ENODEV; |
| err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index); |
| if (err) |
| goto err_free; |
| |
| ret = -EINVAL; |
| err = amd64_check_ecc_enabled(pvt); |
| if (err) |
| goto err_put; |
| |
| /* |
| * Key operation here: setup of HW prior to performing ops on it. Some |
| * setup is required to access ECS data. After this is performed, the |
| * 'teardown' function must be called upon error and normal exit paths. |
| */ |
| if (boot_cpu_data.x86 >= 0x10) |
| amd64_setup(pvt); |
| |
| /* |
| * Save the pointer to the private data for use in 2nd initialization |
| * stage |
| */ |
| pvt_lookup[pvt->mc_node_id] = pvt; |
| |
| return 0; |
| |
| err_put: |
| amd64_free_mc_sibling_devices(pvt); |
| |
| err_free: |
| kfree(pvt); |
| |
| err_exit: |
| return ret; |
| } |
| |
| /* |
| * This is the finishing stage of the init code. Needs to be performed after all |
| * MCs' hardware have been prepped for accessing extended config space. |
| */ |
| static int amd64_init_2nd_stage(struct amd64_pvt *pvt) |
| { |
| int node_id = pvt->mc_node_id; |
| struct mem_ctl_info *mci; |
| int ret = -ENODEV; |
| |
| amd64_read_mc_registers(pvt); |
| |
| /* |
| * We need to determine how many memory channels there are. Then use |
| * that information for calculating the size of the dynamic instance |
| * tables in the 'mci' structure |
| */ |
| pvt->channel_count = pvt->ops->early_channel_count(pvt); |
| if (pvt->channel_count < 0) |
| goto err_exit; |
| |
| ret = -ENOMEM; |
| mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id); |
| if (!mci) |
| goto err_exit; |
| |
| mci->pvt_info = pvt; |
| |
| mci->dev = &pvt->dram_f2_ctl->dev; |
| amd64_setup_mci_misc_attributes(mci); |
| |
| if (amd64_init_csrows(mci)) |
| mci->edac_cap = EDAC_FLAG_NONE; |
| |
| amd64_enable_ecc_error_reporting(mci); |
| amd64_set_mc_sysfs_attributes(mci); |
| |
| ret = -ENODEV; |
| if (edac_mc_add_mc(mci)) { |
| debugf1("failed edac_mc_add_mc()\n"); |
| goto err_add_mc; |
| } |
| |
| mci_lookup[node_id] = mci; |
| pvt_lookup[node_id] = NULL; |
| |
| /* register stuff with EDAC MCE */ |
| if (report_gart_errors) |
| amd_report_gart_errors(true); |
| |
| amd_register_ecc_decoder(amd64_decode_bus_error); |
| |
| return 0; |
| |
| err_add_mc: |
| edac_mc_free(mci); |
| |
| err_exit: |
| debugf0("failure to init 2nd stage: ret=%d\n", ret); |
| |
| amd64_restore_ecc_error_reporting(pvt); |
| |
| if (boot_cpu_data.x86 > 0xf) |
| amd64_teardown(pvt); |
| |
| amd64_free_mc_sibling_devices(pvt); |
| |
| kfree(pvt_lookup[pvt->mc_node_id]); |
| pvt_lookup[node_id] = NULL; |
| |
| return ret; |
| } |
| |
| |
| static int __devinit amd64_init_one_instance(struct pci_dev *pdev, |
| const struct pci_device_id *mc_type) |
| { |
| int ret = 0; |
| |
| debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev), |
| get_amd_family_name(mc_type->driver_data)); |
| |
| ret = pci_enable_device(pdev); |
| if (ret < 0) |
| ret = -EIO; |
| else |
| ret = amd64_probe_one_instance(pdev, mc_type->driver_data); |
| |
| if (ret < 0) |
| debugf0("ret=%d\n", ret); |
| |
| return ret; |
| } |
| |
| static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| struct amd64_pvt *pvt; |
| |
| /* Remove from EDAC CORE tracking list */ |
| mci = edac_mc_del_mc(&pdev->dev); |
| if (!mci) |
| return; |
| |
| pvt = mci->pvt_info; |
| |
| amd64_restore_ecc_error_reporting(pvt); |
| |
| if (boot_cpu_data.x86 > 0xf) |
| amd64_teardown(pvt); |
| |
| amd64_free_mc_sibling_devices(pvt); |
| |
| kfree(pvt); |
| mci->pvt_info = NULL; |
| |
| mci_lookup[pvt->mc_node_id] = NULL; |
| |
| /* unregister from EDAC MCE */ |
| amd_report_gart_errors(false); |
| amd_unregister_ecc_decoder(amd64_decode_bus_error); |
| |
| /* Free the EDAC CORE resources */ |
| edac_mc_free(mci); |
| } |
| |
| /* |
| * This table is part of the interface for loading drivers for PCI devices. The |
| * PCI core identifies what devices are on a system during boot, and then |
| * inquiry this table to see if this driver is for a given device found. |
| */ |
| static const struct pci_device_id amd64_pci_table[] __devinitdata = { |
| { |
| .vendor = PCI_VENDOR_ID_AMD, |
| .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, |
| .subvendor = PCI_ANY_ID, |
| .subdevice = PCI_ANY_ID, |
| .class = 0, |
| .class_mask = 0, |
| .driver_data = K8_CPUS |
| }, |
| { |
| .vendor = PCI_VENDOR_ID_AMD, |
| .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, |
| .subvendor = PCI_ANY_ID, |
| .subdevice = PCI_ANY_ID, |
| .class = 0, |
| .class_mask = 0, |
| .driver_data = F10_CPUS |
| }, |
| { |
| .vendor = PCI_VENDOR_ID_AMD, |
| .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM, |
| .subvendor = PCI_ANY_ID, |
| .subdevice = PCI_ANY_ID, |
| .class = 0, |
| .class_mask = 0, |
| .driver_data = F11_CPUS |
| }, |
| {0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, amd64_pci_table); |
| |
| static struct pci_driver amd64_pci_driver = { |
| .name = EDAC_MOD_STR, |
| .probe = amd64_init_one_instance, |
| .remove = __devexit_p(amd64_remove_one_instance), |
| .id_table = amd64_pci_table, |
| }; |
| |
| static void amd64_setup_pci_device(void) |
| { |
| struct mem_ctl_info *mci; |
| struct amd64_pvt *pvt; |
| |
| if (amd64_ctl_pci) |
| return; |
| |
| mci = mci_lookup[0]; |
| if (mci) { |
| |
| pvt = mci->pvt_info; |
| amd64_ctl_pci = |
| edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev, |
| EDAC_MOD_STR); |
| |
| if (!amd64_ctl_pci) { |
| pr_warning("%s(): Unable to create PCI control\n", |
| __func__); |
| |
| pr_warning("%s(): PCI error report via EDAC not set\n", |
| __func__); |
| } |
| } |
| } |
| |
| static int __init amd64_edac_init(void) |
| { |
| int nb, err = -ENODEV; |
| |
| edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); |
| |
| opstate_init(); |
| |
| if (cache_k8_northbridges() < 0) |
| return err; |
| |
| msrs = msrs_alloc(); |
| |
| err = pci_register_driver(&amd64_pci_driver); |
| if (err) |
| return err; |
| |
| /* |
| * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd |
| * amd64_pvt structs. These will be used in the 2nd stage init function |
| * to finish initialization of the MC instances. |
| */ |
| for (nb = 0; nb < num_k8_northbridges; nb++) { |
| if (!pvt_lookup[nb]) |
| continue; |
| |
| err = amd64_init_2nd_stage(pvt_lookup[nb]); |
| if (err) |
| goto err_2nd_stage; |
| } |
| |
| amd64_setup_pci_device(); |
| |
| return 0; |
| |
| err_2nd_stage: |
| debugf0("2nd stage failed\n"); |
| pci_unregister_driver(&amd64_pci_driver); |
| |
| return err; |
| } |
| |
| static void __exit amd64_edac_exit(void) |
| { |
| if (amd64_ctl_pci) |
| edac_pci_release_generic_ctl(amd64_ctl_pci); |
| |
| pci_unregister_driver(&amd64_pci_driver); |
| |
| msrs_free(msrs); |
| msrs = NULL; |
| } |
| |
| module_init(amd64_edac_init); |
| module_exit(amd64_edac_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " |
| "Dave Peterson, Thayne Harbaugh"); |
| MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " |
| EDAC_AMD64_VERSION); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |