| /* |
| * Copyright (c) 2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/kernel.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/debugfs.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/cpufreq.h> |
| #include <linux/iopoll.h> |
| #include <linux/delay.h> |
| #include <linux/regulator/consumer.h> |
| |
| #include <mach/irqs.h> |
| |
| #include "msm_cpr.h" |
| |
| #define MODULE_NAME "msm-cpr" |
| |
| /** |
| * Convert the Delay time to Timer Count Register |
| * e.g if frequency is 19200 kHz and delay required is |
| * 20000us, so timer count will be 19200 * 20000 / 1000 |
| */ |
| #define TIMER_COUNT(freq, delay) ((freq * delay) / 1000) |
| #define ALL_CPR_IRQ 0x3F |
| #define STEP_QUOT_MAX 25 |
| #define STEP_QUOT_MIN 12 |
| |
| /* Need platform device handle for suspend and resume APIs */ |
| static struct platform_device *cpr_pdev; |
| |
| static bool enable = 1; |
| module_param(enable, bool, 0644); |
| MODULE_PARM_DESC(enable, "CPR Enable"); |
| |
| struct msm_cpr { |
| int curr_osc; |
| int cpr_mode; |
| int prev_mode; |
| uint32_t floor; |
| uint32_t ceiling; |
| bool max_volt_set; |
| void __iomem *base; |
| unsigned int irq; |
| uint32_t cur_Vmin; |
| uint32_t cur_Vmax; |
| struct mutex cpr_mutex; |
| struct regulator *vreg_cx; |
| const struct msm_cpr_config *config; |
| struct notifier_block freq_transition; |
| struct msm_cpr_vp_data *vp; |
| }; |
| |
| /* Need to maintain state data for suspend and resume APIs */ |
| static struct msm_cpr_reg cpr_save_state; |
| |
| static inline |
| void cpr_write_reg(struct msm_cpr *cpr, u32 offset, u32 value) |
| { |
| writel_relaxed(value, cpr->base + offset); |
| } |
| |
| static inline u32 cpr_read_reg(struct msm_cpr *cpr, u32 offset) |
| { |
| return readl_relaxed(cpr->base + offset); |
| } |
| |
| static |
| void cpr_modify_reg(struct msm_cpr *cpr, u32 offset, u32 mask, u32 value) |
| { |
| u32 reg_val; |
| |
| reg_val = readl_relaxed(cpr->base + offset); |
| reg_val &= ~mask; |
| reg_val |= value; |
| writel_relaxed(reg_val, cpr->base + offset); |
| } |
| |
| #ifdef DEBUG |
| static void cpr_regs_dump_all(struct msm_cpr *cpr) |
| { |
| pr_debug("RBCPR_GCNT_TARGET(%d): 0x%x\n", |
| cpr->curr_osc, readl_relaxed(cpr->base + |
| RBCPR_GCNT_TARGET(cpr->curr_osc))); |
| pr_debug("RBCPR_TIMER_INTERVAL: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_TIMER_INTERVAL)); |
| pr_debug("RBIF_TIMER_ADJUST: 0x%x\n", |
| readl_relaxed(cpr->base + RBIF_TIMER_ADJUST)); |
| pr_debug("RBIF_LIMIT: 0x%x\n", |
| readl_relaxed(cpr->base + RBIF_LIMIT)); |
| pr_debug("RBCPR_STEP_QUOT: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_STEP_QUOT)); |
| pr_debug("RBIF_SW_VLEVEL: 0x%x\n", |
| readl_relaxed(cpr->base + RBIF_SW_VLEVEL)); |
| pr_debug("RBCPR_DEBUG1: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_DEBUG1)); |
| pr_debug("RBCPR_RESULT_0: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_RESULT_0)); |
| pr_debug("RBCPR_RESULT_1: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_RESULT_1)); |
| pr_debug("RBCPR_QUOT_AVG: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_QUOT_AVG)); |
| pr_debug("RBCPR_CTL: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_CTL)); |
| pr_debug("RBIF_IRQ_EN(0): 0x%x\n", |
| cpr_read_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line))); |
| pr_debug("RBIF_IRQ_STATUS: 0x%x\n", |
| cpr_read_reg(cpr, RBIF_IRQ_STATUS)); |
| } |
| #endif |
| |
| /* Enable the CPR H/W Block */ |
| static void cpr_enable(struct msm_cpr *cpr) |
| { |
| mutex_lock(&cpr->cpr_mutex); |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, ENABLE_CPR); |
| mutex_unlock(&cpr->cpr_mutex); |
| } |
| |
| /* Disable the CPR H/W Block */ |
| static void cpr_disable(struct msm_cpr *cpr) |
| { |
| mutex_lock(&cpr->cpr_mutex); |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, DISABLE_CPR); |
| mutex_unlock(&cpr->cpr_mutex); |
| } |
| |
| static int32_t cpr_poll_result(struct msm_cpr *cpr) |
| { |
| uint32_t val = 0; |
| int8_t rc = 0; |
| |
| rc = readl_poll_timeout(cpr->base + RBCPR_RESULT_0, val, ~val & BUSY_M, |
| 10, 1000); |
| if (rc) |
| pr_info("%s: RBCPR_RESULT_0 read error: %d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| static int32_t cpr_poll_result_done(struct msm_cpr *cpr) |
| { |
| uint32_t val = 0; |
| int8_t rc = 0; |
| |
| rc = readl_poll_timeout(cpr->base + RBIF_IRQ_STATUS, val, val & 0x1, |
| 10, 1000); |
| if (rc) |
| pr_info("%s: RBCPR_IRQ_STATUS read error: %d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| static void |
| cpr_2pt_kv_analysis(struct msm_cpr *cpr, struct msm_cpr_mode *chip_data) |
| { |
| int32_t level_uV = 0, rc; |
| uint32_t quot1, quot2; |
| |
| /** |
| * 2 Point KV Analysis to calculate Step Quot |
| * STEP_QUOT is number of QUOT units per PMIC step |
| * STEP_QUOT = (quot1 - quot2) / 4 |
| * |
| * The step quot is calculated once for every mode and stored for |
| * later use. |
| */ |
| if (chip_data->step_quot != ~0) |
| goto out_2pt_kv; |
| |
| /** |
| * Using the value from chip_data->tgt_volt_offset |
| * calculate the new PMIC adjusted voltages and set |
| * the PMIC to provide this value. |
| * |
| * Assuming default voltage is the highest value of safe boot up |
| * voltage, offset is always subtracted from it. |
| * |
| */ |
| level_uV = chip_data->turbo_Vmax - |
| (chip_data->tgt_volt_offset * cpr->vp->step_size); |
| pr_debug("tgt_volt_uV = %d\n", level_uV); |
| |
| /* Call the PMIC specific routine to set the voltage */ |
| rc = regulator_set_voltage(cpr->vreg_cx, level_uV, level_uV); |
| if (rc) { |
| pr_err("%s: Initial voltage set at %duV failed. %d\n", |
| __func__, level_uV, rc); |
| return; |
| } |
| rc = regulator_enable(cpr->vreg_cx); |
| if (rc) { |
| pr_err("failed to enable %s, rc=%d\n", "vdd_cx", rc); |
| return; |
| } |
| |
| /* First CPR measurement at a higher voltage to get QUOT1 */ |
| |
| /* Enable the Software mode of operation */ |
| cpr_modify_reg(cpr, RBCPR_CTL, HW_TO_PMIC_EN_M, SW_MODE); |
| |
| /* Enable the cpr measurement */ |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, ENABLE_CPR); |
| |
| /* IRQ is already disabled */ |
| rc = cpr_poll_result_done(cpr); |
| if (rc) { |
| pr_err("%s: Quot1: Exiting due to INT_DONE poll timeout\n", |
| __func__); |
| return; |
| } |
| |
| rc = cpr_poll_result(cpr); |
| if (rc) { |
| pr_err("%s: Quot1: Exiting due to BUSY poll timeout\n", |
| __func__); |
| return; |
| } |
| |
| quot1 = (cpr_read_reg(cpr, RBCPR_DEBUG1) & QUOT_SLOW_M) >> 12; |
| |
| /* Take second CPR measurement at a lower voltage to get QUOT2 */ |
| level_uV -= 4 * cpr->vp->step_size; |
| pr_debug("tgt_volt_uV = %d\n", level_uV); |
| |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, DISABLE_CPR); |
| /* Call the PMIC specific routine to set the voltage */ |
| rc = regulator_set_voltage(cpr->vreg_cx, level_uV, level_uV); |
| if (rc) { |
| pr_err("%s: Voltage set at %duV failed. %d\n", |
| __func__, level_uV, rc); |
| return; |
| } |
| |
| cpr_modify_reg(cpr, RBCPR_CTL, HW_TO_PMIC_EN_M, SW_MODE); |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, ENABLE_CPR); |
| |
| /* cpr_write_reg(cpr, RBIF_CONT_NACK_CMD, 0x1); */ |
| rc = cpr_poll_result_done(cpr); |
| if (rc) { |
| pr_err("%s: Quot2: Exiting due to INT_DONE poll timeout\n", |
| __func__); |
| goto err_poll_result_done; |
| } |
| /* IRQ is already disabled */ |
| rc = cpr_poll_result(cpr); |
| if (rc) { |
| pr_err("%s: Quot2: Exiting due to BUSY poll timeout\n", |
| __func__); |
| goto err_poll_result; |
| } |
| quot2 = (cpr_read_reg(cpr, RBCPR_DEBUG1) & QUOT_SLOW_M) >> 12; |
| /* |
| * Based on chip characterization data, it is good to add some |
| * margin on top of calculated step quot to help reduce the |
| * number of CPR interrupts. The present value suggested is 3. |
| * Further, if the step quot is outside range, clamp it to the |
| * maximum permitted value. |
| */ |
| chip_data->step_quot = ((quot1 - quot2) / 4) + 3; |
| if (chip_data->step_quot < STEP_QUOT_MIN || |
| chip_data->step_quot > STEP_QUOT_MAX) |
| chip_data->step_quot = STEP_QUOT_MAX; |
| |
| pr_info("%s: Step Quot is %d\n", |
| __func__, chip_data->step_quot); |
| /* Disable the cpr */ |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, DISABLE_CPR); |
| |
| out_2pt_kv: |
| /* Program the step quot */ |
| cpr_write_reg(cpr, RBCPR_STEP_QUOT, (chip_data->step_quot & 0xFF)); |
| return; |
| err_poll_result: |
| err_poll_result_done: |
| regulator_disable(cpr->vreg_cx); |
| } |
| |
| static inline |
| void cpr_irq_clr_and_ack(struct msm_cpr *cpr, uint32_t mask) |
| { |
| /* Clear the interrupt */ |
| cpr_write_reg(cpr, RBIF_IRQ_CLEAR, ALL_CPR_IRQ); |
| /* Acknowledge the Recommendation */ |
| cpr_write_reg(cpr, RBIF_CONT_ACK_CMD, 0x1); |
| } |
| |
| static inline |
| void cpr_irq_clr_and_nack(struct msm_cpr *cpr, uint32_t mask) |
| { |
| cpr_write_reg(cpr, RBIF_IRQ_CLEAR, ALL_CPR_IRQ); |
| cpr_write_reg(cpr, RBIF_CONT_NACK_CMD, 0x1); |
| } |
| |
| static void cpr_irq_set(struct msm_cpr *cpr, uint32_t irq, bool enable) |
| { |
| uint32_t irq_enabled; |
| |
| irq_enabled = cpr_read_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line)); |
| if (enable == 1) |
| irq_enabled |= irq; |
| else |
| irq_enabled &= ~irq; |
| cpr_modify_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line), |
| INT_MASK, irq_enabled); |
| } |
| |
| static void |
| cpr_up_event_handler(struct msm_cpr *cpr, uint32_t new_volt) |
| { |
| int rc, set_volt_uV; |
| struct msm_cpr_mode *chip_data; |
| |
| chip_data = &cpr->config->cpr_mode_data[cpr->cpr_mode]; |
| |
| /** |
| * FIXME: Need to handle a potential race condition between |
| * freq switch handler and CPR interrupt handler here |
| */ |
| /* Set New PMIC voltage */ |
| set_volt_uV = (new_volt < cpr->cur_Vmax ? new_volt |
| : cpr->cur_Vmax); |
| rc = regulator_set_voltage(cpr->vreg_cx, set_volt_uV, |
| set_volt_uV); |
| if (rc) { |
| pr_err("%s: Voltage set at %duV failed. %d\n", |
| __func__, set_volt_uV, rc); |
| cpr_irq_clr_and_nack(cpr, BIT(4) | BIT(0)); |
| return; |
| } |
| pr_info("(railway_voltage: %d uV)\n", set_volt_uV); |
| |
| cpr->max_volt_set = (set_volt_uV == cpr->cur_Vmax) ? 1 : 0; |
| |
| /* Clear all the interrupts */ |
| cpr_write_reg(cpr, RBIF_IRQ_CLEAR, ALL_CPR_IRQ); |
| |
| /* Disable Auto ACK for Down interrupts */ |
| cpr_modify_reg(cpr, RBCPR_CTL, SW_AUTO_CONT_NACK_DN_EN_M, 0); |
| |
| /* Enable down interrupts to App as it might have got disabled if CPR |
| * hit Vmin earlier. Voltage set is above Vmin now. |
| */ |
| cpr_irq_set(cpr, DOWN_INT, 1); |
| |
| /* Acknowledge the Recommendation */ |
| cpr_write_reg(cpr, RBIF_CONT_ACK_CMD, 0x1); |
| } |
| |
| static void |
| cpr_dn_event_handler(struct msm_cpr *cpr, uint32_t new_volt) |
| { |
| int rc, set_volt_uV; |
| struct msm_cpr_mode *chip_data; |
| |
| chip_data = &cpr->config->cpr_mode_data[cpr->cpr_mode]; |
| |
| /** |
| * FIXME: Need to handle a potential race condition between |
| * freq switch handler and CPR interrupt handler here |
| */ |
| /* Set New PMIC volt */ |
| set_volt_uV = (new_volt > cpr->cur_Vmin ? new_volt |
| : cpr->cur_Vmin); |
| rc = regulator_set_voltage(cpr->vreg_cx, set_volt_uV, |
| set_volt_uV); |
| if (rc) { |
| pr_err("%s: Voltage at %duV failed %d\n", |
| __func__, set_volt_uV, rc); |
| cpr_irq_clr_and_nack(cpr, BIT(2) | BIT(0)); |
| return; |
| } |
| pr_info("(railway_voltage: %d uV)\n", set_volt_uV); |
| |
| cpr->max_volt_set = 0; |
| |
| /* Clear all the interrupts */ |
| cpr_write_reg(cpr, RBIF_IRQ_CLEAR, ALL_CPR_IRQ); |
| |
| if (new_volt <= cpr->cur_Vmin) { |
| /* |
| * Disable down interrupt to App after we hit Vmin |
| * It shall be enabled after we service an up interrupt |
| * |
| * A race condition between freq switch handler and CPR |
| * interrupt handler is possible. So, do not disable |
| * interrupt if a freq switch already caused a mode |
| * change since we need this interrupt in the new mode. |
| */ |
| if (cpr->cpr_mode == cpr->prev_mode) { |
| /* Enable Auto ACK for CPR Down Flags |
| * while DOWN_INT to App is disabled */ |
| cpr_modify_reg(cpr, RBCPR_CTL, |
| SW_AUTO_CONT_NACK_DN_EN_M, |
| SW_AUTO_CONT_NACK_DN_EN); |
| cpr_irq_set(cpr, DOWN_INT, 0); |
| pr_debug("%s: DOWN_INT disabled\n", __func__); |
| } |
| } |
| /* Acknowledge the Recommendation */ |
| cpr_write_reg(cpr, RBIF_CONT_ACK_CMD, 0x1); |
| } |
| |
| static void cpr_set_vdd(struct msm_cpr *cpr, enum cpr_action action) |
| { |
| uint32_t curr_volt, new_volt, error_step; |
| struct msm_cpr_mode *chip_data; |
| |
| chip_data = &cpr->config->cpr_mode_data[cpr->cpr_mode]; |
| error_step = cpr_read_reg(cpr, RBCPR_RESULT_0) >> 2; |
| error_step &= 0xF; |
| |
| curr_volt = regulator_get_voltage(cpr->vreg_cx); |
| |
| if (action == UP) { |
| /* Clear IRQ, ACK and return if Vdd already at Vmax */ |
| if (cpr->max_volt_set == 1) { |
| cpr_write_reg(cpr, RBIF_IRQ_CLEAR, ALL_CPR_IRQ); |
| cpr_write_reg(cpr, RBIF_CONT_NACK_CMD, 0x1); |
| return; |
| } |
| |
| /** |
| * Using up margin in the comparison helps avoid having to |
| * change up threshold values in chip register. |
| */ |
| if (error_step < (cpr->config->up_threshold + |
| cpr->config->up_margin)) { |
| pr_debug("UP_INT error step too small to set\n"); |
| cpr_irq_clr_and_nack(cpr, BIT(4) | BIT(0)); |
| return; |
| } |
| |
| /* Calculte new PMIC voltage */ |
| new_volt = curr_volt + (error_step * cpr->vp->step_size); |
| pr_debug("UP_INT: new_volt: %d\n", new_volt); |
| pr_info("(UP Voltage recommended by CPR: %d uV)\n", new_volt); |
| cpr_up_event_handler(cpr, new_volt); |
| |
| } else if (action == DOWN) { |
| /** |
| * Using down margin in the comparison helps avoid having to |
| * change down threshold values in chip register. |
| */ |
| if (error_step < (cpr->config->dn_threshold + |
| cpr->config->dn_margin)) { |
| pr_debug("DOWN_INT error_step too small to set\n"); |
| cpr_irq_clr_and_nack(cpr, BIT(2) | BIT(0)); |
| return; |
| } |
| |
| /* Calculte new PMIC voltage */ |
| new_volt = curr_volt - (error_step * cpr->vp->step_size); |
| pr_debug("DOWN_INT: new_volt: %d\n", new_volt); |
| pr_info("(DN Voltage recommended by CPR: %d uV)\n", new_volt); |
| cpr_dn_event_handler(cpr, new_volt); |
| } |
| } |
| |
| static irqreturn_t cpr_irq0_handler(int irq, void *dev_id) |
| { |
| struct msm_cpr *cpr = dev_id; |
| uint32_t reg_val, ctl_reg; |
| |
| reg_val = cpr_read_reg(cpr, RBIF_IRQ_STATUS); |
| ctl_reg = cpr_read_reg(cpr, RBCPR_CTL); |
| |
| /* Following sequence of handling is as per each IRQ's priority */ |
| if (reg_val & BIT(4)) { |
| pr_debug(" CPR:IRQ %d occured for UP Flag\n", irq); |
| cpr_set_vdd(cpr, UP); |
| |
| } else if ((reg_val & BIT(2)) && !(ctl_reg & SW_AUTO_CONT_NACK_DN_EN)) { |
| pr_debug(" CPR:IRQ %d occured for Down Flag\n", irq); |
| cpr_set_vdd(cpr, DOWN); |
| |
| } else if (reg_val & BIT(1)) { |
| pr_debug(" CPR:IRQ %d occured for Min Flag\n", irq); |
| cpr_irq_clr_and_nack(cpr, BIT(1) | BIT(0)); |
| |
| } else if (reg_val & BIT(5)) { |
| pr_debug(" CPR:IRQ %d occured for MAX Flag\n", irq); |
| cpr_irq_clr_and_nack(cpr, BIT(5) | BIT(0)); |
| |
| } else if (reg_val & BIT(3)) { |
| /* SW_AUTO_CONT_ACK_EN is enabled */ |
| pr_debug(" CPR:IRQ %d occured for Mid Flag\n", irq); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static void cpr_config(struct msm_cpr *cpr) |
| { |
| uint32_t delay_count, cnt = 0, rc, tmp_uV; |
| struct msm_cpr_mode *chip_data; |
| |
| chip_data = &cpr->config->cpr_mode_data[cpr->cpr_mode]; |
| |
| /* Program the SW vlevel */ |
| cpr_modify_reg(cpr, RBIF_SW_VLEVEL, SW_VLEVEL_M, |
| cpr->config->sw_vlevel); |
| |
| /* Set the floor and ceiling values */ |
| cpr->floor = cpr->config->floor; |
| cpr->ceiling = cpr->config->ceiling; |
| |
| /* Program the Ceiling & Floor values */ |
| cpr_modify_reg(cpr, RBIF_LIMIT, (CEILING_M | FLOOR_M), |
| ((cpr->ceiling << 6) | cpr->floor)); |
| |
| /* Program the Up and Down Threshold values */ |
| cpr_modify_reg(cpr, RBCPR_CTL, UP_THRESHOLD_M | DN_THRESHOLD_M, |
| cpr->config->up_threshold << 24 | |
| cpr->config->dn_threshold << 28); |
| |
| cpr->curr_osc = chip_data->ring_osc; |
| chip_data->ring_osc_data[cpr->curr_osc].quot = |
| cpr->config->max_quot; |
| |
| /** |
| * Program the gate count and target values |
| * for all the ring oscilators |
| */ |
| while (cnt < NUM_OSC) { |
| cpr_modify_reg(cpr, RBCPR_GCNT_TARGET(cnt), |
| (GCNT_M | TARGET_M), |
| (chip_data->ring_osc_data[cnt].gcnt << 12 | |
| chip_data->ring_osc_data[cnt].quot)); |
| pr_debug("RBCPR_GCNT_TARGET(%d): = 0x%x\n", cnt, |
| readl_relaxed(cpr->base + RBCPR_GCNT_TARGET(cnt))); |
| cnt++; |
| } |
| |
| /* Configure the step quot */ |
| cpr_2pt_kv_analysis(cpr, chip_data); |
| |
| /** |
| * Call the PMIC specific routine to set the voltage |
| * Set with an extra step since it helps as per |
| * characterization data. |
| */ |
| chip_data->calibrated_uV += cpr->vp->step_size; |
| tmp_uV = chip_data->calibrated_uV; |
| rc = regulator_set_voltage(cpr->vreg_cx, tmp_uV, tmp_uV); |
| if (rc) |
| pr_err("%s: Voltage set failed %d\n", __func__, rc); |
| |
| /* |
| * Program the Timer Register for delay between CPR measurements |
| * This is required to allow the device sufficient time for idle |
| * power collapse. |
| */ |
| delay_count = TIMER_COUNT(cpr->config->ref_clk_khz, |
| cpr->config->delay_us); |
| cpr_write_reg(cpr, RBCPR_TIMER_INTERVAL, delay_count); |
| |
| /* Enable the Timer */ |
| cpr_modify_reg(cpr, RBCPR_CTL, TIMER_M, ENABLE_TIMER); |
| |
| /* Enable Auto ACK for Mid interrupts */ |
| cpr_modify_reg(cpr, RBCPR_CTL, SW_AUTO_CONT_ACK_EN_M, |
| SW_AUTO_CONT_ACK_EN); |
| } |
| |
| static int |
| cpr_freq_transition(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct msm_cpr *cpr = container_of(nb, struct msm_cpr, freq_transition); |
| struct cpufreq_freqs *freqs = data; |
| uint32_t quot, new_freq, ctl_reg; |
| |
| switch (val) { |
| case CPUFREQ_PRECHANGE: |
| pr_debug("pre freq change notification to cpr\n"); |
| |
| /* Disable Measurement to stop generation of CPR IRQs */ |
| cpr_disable(cpr); |
| /* Disable routing of IRQ to App */ |
| cpr_irq_set(cpr, INT_MASK & ~MID_INT, 0); |
| disable_irq(cpr->irq); |
| cpr_write_reg(cpr, RBIF_IRQ_CLEAR, ALL_CPR_IRQ); |
| pr_debug("RBCPR_CTL: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_CTL)); |
| pr_debug("RBIF_IRQ_STATUS: 0x%x\n", |
| cpr_read_reg(cpr, RBIF_IRQ_STATUS)); |
| pr_debug("RBIF_IRQ_EN(0): 0x%x\n", |
| cpr_read_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line))); |
| |
| cpr->prev_mode = cpr->cpr_mode; |
| break; |
| |
| case CPUFREQ_POSTCHANGE: |
| pr_debug("post freq change notification to cpr\n"); |
| ctl_reg = cpr_read_reg(cpr, RBCPR_CTL); |
| /** |
| * As per chip characterization data, use max nominal freq |
| * to calculate quot for all lower frequencies too |
| */ |
| if (freqs->new > cpr->config->max_nom_freq) { |
| new_freq = freqs->new; |
| cpr->cur_Vmin = cpr->config->cpr_mode_data[1].turbo_Vmin; |
| cpr->cur_Vmax = cpr->config->cpr_mode_data[1].turbo_Vmax; |
| } else { |
| new_freq = cpr->config->max_nom_freq; |
| cpr->cur_Vmin = cpr->config->cpr_mode_data[1].nom_Vmin; |
| cpr->cur_Vmax = cpr->config->cpr_mode_data[1].nom_Vmax; |
| } |
| |
| /* Configure CPR for the new frequency */ |
| quot = cpr->config->get_quot(cpr->config->max_quot, |
| cpr->config->max_freq / 1000, |
| new_freq / 1000); |
| cpr_modify_reg(cpr, RBCPR_GCNT_TARGET(cpr->curr_osc), TARGET_M, |
| quot); |
| pr_debug("RBCPR_GCNT_TARGET(%d): = 0x%x\n", cpr->curr_osc, |
| readl_relaxed(cpr->base + |
| RBCPR_GCNT_TARGET(cpr->curr_osc))); |
| pr_debug("%s: new_freq: %d, set_freq: %d, quot: %d\n", __func__, |
| freqs->new, new_freq, quot); |
| pr_info("%s: PVS Voltage setting is: %d\n", __func__, |
| regulator_get_voltage(cpr->vreg_cx)); |
| |
| enable_irq(cpr->irq); |
| /** |
| * Enable all interrupts. One of them could be in a disabled |
| * state if vdd had hit Vmax / Vmin earlier |
| */ |
| cpr_irq_set(cpr, INT_MASK & ~MID_INT, 1); |
| |
| /** |
| * Clear the auto NACK down bit if enabled in the freq. |
| * transition phase. |
| */ |
| if (ctl_reg & SW_AUTO_CONT_NACK_DN_EN) |
| cpr_modify_reg(cpr, RBCPR_CTL, |
| SW_AUTO_CONT_NACK_DN_EN_M, 0); |
| pr_debug("RBIF_IRQ_EN(0): 0x%x\n", |
| cpr_read_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line))); |
| pr_debug("RBCPR_CTL: 0x%x\n", |
| readl_relaxed(cpr->base + RBCPR_CTL)); |
| pr_debug("RBIF_IRQ_STATUS: 0x%x\n", |
| cpr_read_reg(cpr, RBIF_IRQ_STATUS)); |
| cpr_enable(cpr); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int msm_cpr_resume(struct device *dev) |
| { |
| struct msm_cpr *cpr = dev_get_drvdata(dev); |
| int osc_num = cpr->config->cpr_mode_data->ring_osc; |
| |
| cpr->config->clk_enable(); |
| |
| cpr_write_reg(cpr, RBCPR_TIMER_INTERVAL, |
| cpr_save_state.rbif_timer_interval); |
| cpr_write_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line), |
| cpr_save_state.rbif_int_en); |
| cpr_write_reg(cpr, RBIF_LIMIT, |
| cpr_save_state.rbif_limit); |
| cpr_write_reg(cpr, RBIF_TIMER_ADJUST, |
| cpr_save_state.rbif_timer_adjust); |
| cpr_write_reg(cpr, RBCPR_GCNT_TARGET(osc_num), |
| cpr_save_state.rbcpr_gcnt_target); |
| cpr_write_reg(cpr, RBCPR_STEP_QUOT, |
| cpr_save_state.rbcpr_step_quot); |
| cpr_write_reg(cpr, RBIF_SW_VLEVEL, |
| cpr_save_state.rbif_sw_level); |
| cpr_write_reg(cpr, RBCPR_CTL, |
| cpr_save_state.rbcpr_ctl); |
| |
| enable_irq(cpr->irq); |
| cpr_enable(cpr); |
| |
| return 0; |
| } |
| |
| static int msm_cpr_suspend(struct device *dev) |
| |
| { |
| struct msm_cpr *cpr = dev_get_drvdata(dev); |
| int osc_num = cpr->config->cpr_mode_data->ring_osc; |
| |
| /* Disable CPR measurement before IRQ to avoid pending interrupts */ |
| cpr_disable(cpr); |
| disable_irq(cpr->irq); |
| |
| cpr_save_state.rbif_timer_interval = |
| cpr_read_reg(cpr, RBCPR_TIMER_INTERVAL); |
| cpr_save_state.rbif_int_en = |
| cpr_read_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line)); |
| cpr_save_state.rbif_limit = |
| cpr_read_reg(cpr, RBIF_LIMIT); |
| cpr_save_state.rbif_timer_adjust = |
| cpr_read_reg(cpr, RBIF_TIMER_ADJUST); |
| cpr_save_state.rbcpr_gcnt_target = |
| cpr_read_reg(cpr, RBCPR_GCNT_TARGET(osc_num)); |
| cpr_save_state.rbcpr_step_quot = |
| cpr_read_reg(cpr, RBCPR_STEP_QUOT); |
| cpr_save_state.rbif_sw_level = |
| cpr_read_reg(cpr, RBIF_SW_VLEVEL); |
| cpr_save_state.rbcpr_ctl = |
| cpr_read_reg(cpr, RBCPR_CTL); |
| |
| return 0; |
| } |
| |
| void msm_cpr_pm_resume(void) |
| { |
| msm_cpr_resume(&cpr_pdev->dev); |
| } |
| EXPORT_SYMBOL(msm_cpr_pm_resume); |
| |
| void msm_cpr_pm_suspend(void) |
| { |
| msm_cpr_suspend(&cpr_pdev->dev); |
| } |
| EXPORT_SYMBOL(msm_cpr_pm_suspend); |
| #endif |
| |
| void msm_cpr_disable(void) |
| { |
| struct msm_cpr *cpr = platform_get_drvdata(cpr_pdev); |
| cpr_disable(cpr); |
| } |
| EXPORT_SYMBOL(msm_cpr_disable); |
| |
| void msm_cpr_enable(void) |
| { |
| struct msm_cpr *cpr = platform_get_drvdata(cpr_pdev); |
| cpr_enable(cpr); |
| } |
| EXPORT_SYMBOL(msm_cpr_enable); |
| |
| static int __devinit msm_cpr_probe(struct platform_device *pdev) |
| { |
| int res, irqn, irq_enabled; |
| struct msm_cpr *cpr; |
| const struct msm_cpr_config *pdata = pdev->dev.platform_data; |
| void __iomem *base; |
| struct resource *mem; |
| struct msm_cpr_mode *chip_data; |
| |
| if (!enable) |
| return -EPERM; |
| |
| if (!pdata) { |
| pr_err("CPR: Platform data is not available\n"); |
| return -EIO; |
| } |
| |
| cpr = devm_kzalloc(&pdev->dev, sizeof(struct msm_cpr), GFP_KERNEL); |
| if (!cpr) |
| return -ENOMEM; |
| |
| /* Initialize platform_data */ |
| cpr->config = pdata; |
| |
| /* Set initial Vmin,Vmax equal to turbo */ |
| cpr->cur_Vmin = cpr->config->cpr_mode_data[1].turbo_Vmin; |
| cpr->cur_Vmax = cpr->config->cpr_mode_data[1].turbo_Vmax; |
| |
| cpr_pdev = pdev; |
| |
| mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!mem || !mem->start) { |
| pr_err("CPR: get resource failed\n"); |
| res = -ENXIO; |
| goto out; |
| } |
| |
| base = ioremap_nocache(mem->start, resource_size(mem)); |
| if (!base) { |
| pr_err("CPR: ioremap failed\n"); |
| res = -ENOMEM; |
| goto out; |
| } |
| |
| if (cpr->config->irq_line < 0) { |
| pr_err("CPR: Invalid IRQ line specified\n"); |
| res = -ENXIO; |
| goto err_ioremap; |
| } |
| irqn = platform_get_irq(pdev, cpr->config->irq_line); |
| if (irqn < 0) { |
| pr_err("CPR: Unable to get irq\n"); |
| res = -ENXIO; |
| goto err_ioremap; |
| } |
| |
| cpr->irq = irqn; |
| |
| cpr->base = base; |
| |
| cpr->vp = pdata->vp_data; |
| |
| mutex_init(&cpr->cpr_mutex); |
| |
| /* Initialize the Voltage domain for CPR */ |
| cpr->vreg_cx = regulator_get(&pdev->dev, "vddx_cx"); |
| if (IS_ERR(cpr->vreg_cx)) { |
| res = PTR_ERR(cpr->vreg_cx); |
| pr_err("could not get regulator: %d\n", res); |
| goto err_reg_get; |
| } |
| |
| /* Assume current mode is TURBO Mode */ |
| cpr->cpr_mode = TURBO_MODE; |
| cpr->prev_mode = TURBO_MODE; |
| |
| /* Initial configuration of CPR */ |
| cpr_config(cpr); |
| |
| platform_set_drvdata(pdev, cpr); |
| |
| chip_data = &cpr->config->cpr_mode_data[cpr->cpr_mode]; |
| pr_info("CPR Platform Data (upside_steps: %d) (downside_steps: %d) ", |
| cpr->config->up_threshold, cpr->config->dn_threshold); |
| pr_info("(nominal_voltage: %duV) (turbo_voltage: %duV)\n", |
| cpr->config->cpr_mode_data[NORMAL_MODE].calibrated_uV, |
| cpr->config->cpr_mode_data[TURBO_MODE].calibrated_uV); |
| pr_info("(Current corner: TURBO) (gcnt_target: %d) (quot: %d)\n", |
| chip_data->ring_osc_data[chip_data->ring_osc].gcnt, |
| chip_data->ring_osc_data[chip_data->ring_osc].quot); |
| |
| /* Initialze the Debugfs Entry for cpr */ |
| res = msm_cpr_debug_init(cpr->base); |
| if (res) { |
| pr_err("CPR: Debugfs Creation Failed\n"); |
| goto err_ioremap; |
| } |
| |
| /* Register the interrupt handler for IRQ 0 */ |
| res = request_threaded_irq(irqn, NULL, cpr_irq0_handler, |
| IRQF_TRIGGER_RISING, "msm-cpr-irq0", cpr); |
| if (res) { |
| pr_err("CPR: request irq failed for IRQ %d\n", irqn); |
| goto err_ioremap; |
| } |
| |
| /** |
| * Enable the requested interrupt lines. |
| * Do not enable MID_INT since we shall use |
| * SW_AUTO_CONT_ACK_EN bit. |
| */ |
| irq_enabled = INT_MASK & ~MID_INT; |
| cpr_modify_reg(cpr, RBIF_IRQ_EN(cpr->config->irq_line), |
| INT_MASK, irq_enabled); |
| |
| /* Enable the cpr */ |
| cpr_modify_reg(cpr, RBCPR_CTL, LOOP_EN_M, ENABLE_CPR); |
| |
| cpr->freq_transition.notifier_call = cpr_freq_transition; |
| cpufreq_register_notifier(&cpr->freq_transition, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| |
| return res; |
| |
| err_reg_get: |
| free_irq(irqn, cpr); |
| err_ioremap: |
| iounmap(base); |
| out: |
| return res; |
| } |
| |
| static int __devexit msm_cpr_remove(struct platform_device *pdev) |
| { |
| struct msm_cpr *cpr = platform_get_drvdata(pdev); |
| |
| cpufreq_unregister_notifier(&cpr->freq_transition, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| |
| regulator_disable(cpr->vreg_cx); |
| regulator_put(cpr->vreg_cx); |
| free_irq(cpr->irq, cpr); |
| iounmap(cpr->base); |
| mutex_destroy(&cpr->cpr_mutex); |
| platform_set_drvdata(pdev, NULL); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops msm_cpr_dev_pm_ops = { |
| .suspend = msm_cpr_suspend, |
| .resume = msm_cpr_resume, |
| }; |
| |
| static struct platform_driver msm_cpr_driver = { |
| .probe = msm_cpr_probe, |
| .remove = __devexit_p(msm_cpr_remove), |
| .driver = { |
| .name = MODULE_NAME, |
| .owner = THIS_MODULE, |
| #ifdef CONFIG_PM |
| .pm = &msm_cpr_dev_pm_ops, |
| #endif |
| }, |
| }; |
| |
| static int __init msm_init_cpr(void) |
| { |
| return platform_driver_register(&msm_cpr_driver); |
| } |
| |
| module_init(msm_init_cpr); |
| |
| static void __exit msm_exit_cpr(void) |
| { |
| platform_driver_unregister(&msm_cpr_driver); |
| } |
| |
| module_exit(msm_exit_cpr); |
| |
| MODULE_DESCRIPTION("MSM CPR Driver"); |
| MODULE_VERSION("1.0"); |
| MODULE_LICENSE("GPL v2"); |