blob: fb2bb35c62cbfc0a56260d0e2a2ee3b135ff461e [file] [log] [blame]
/*
* scsi_lib.c Copyright (C) 1999 Eric Youngdale
*
* SCSI queueing library.
* Initial versions: Eric Youngdale (eric@andante.org).
* Based upon conversations with large numbers
* of people at Linux Expo.
*/
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/scatterlist.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include "scsi_priv.h"
#include "scsi_logging.h"
#define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
#define SG_MEMPOOL_SIZE 2
struct scsi_host_sg_pool {
size_t size;
char *name;
struct kmem_cache *slab;
mempool_t *pool;
};
#define SP(x) { x, "sgpool-" __stringify(x) }
#if (SCSI_MAX_SG_SEGMENTS < 32)
#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
#endif
static struct scsi_host_sg_pool scsi_sg_pools[] = {
SP(8),
SP(16),
#if (SCSI_MAX_SG_SEGMENTS > 32)
SP(32),
#if (SCSI_MAX_SG_SEGMENTS > 64)
SP(64),
#if (SCSI_MAX_SG_SEGMENTS > 128)
SP(128),
#if (SCSI_MAX_SG_SEGMENTS > 256)
#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
#endif
#endif
#endif
#endif
SP(SCSI_MAX_SG_SEGMENTS)
};
#undef SP
struct kmem_cache *scsi_sdb_cache;
static void scsi_run_queue(struct request_queue *q);
/*
* Function: scsi_unprep_request()
*
* Purpose: Remove all preparation done for a request, including its
* associated scsi_cmnd, so that it can be requeued.
*
* Arguments: req - request to unprepare
*
* Lock status: Assumed that no locks are held upon entry.
*
* Returns: Nothing.
*/
static void scsi_unprep_request(struct request *req)
{
struct scsi_cmnd *cmd = req->special;
blk_unprep_request(req);
req->special = NULL;
scsi_put_command(cmd);
}
/**
* __scsi_queue_insert - private queue insertion
* @cmd: The SCSI command being requeued
* @reason: The reason for the requeue
* @unbusy: Whether the queue should be unbusied
*
* This is a private queue insertion. The public interface
* scsi_queue_insert() always assumes the queue should be unbusied
* because it's always called before the completion. This function is
* for a requeue after completion, which should only occur in this
* file.
*/
static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
{
struct Scsi_Host *host = cmd->device->host;
struct scsi_device *device = cmd->device;
struct scsi_target *starget = scsi_target(device);
struct request_queue *q = device->request_queue;
unsigned long flags;
SCSI_LOG_MLQUEUE(1,
printk("Inserting command %p into mlqueue\n", cmd));
/*
* Set the appropriate busy bit for the device/host.
*
* If the host/device isn't busy, assume that something actually
* completed, and that we should be able to queue a command now.
*
* Note that the prior mid-layer assumption that any host could
* always queue at least one command is now broken. The mid-layer
* will implement a user specifiable stall (see
* scsi_host.max_host_blocked and scsi_device.max_device_blocked)
* if a command is requeued with no other commands outstanding
* either for the device or for the host.
*/
switch (reason) {
case SCSI_MLQUEUE_HOST_BUSY:
host->host_blocked = host->max_host_blocked;
break;
case SCSI_MLQUEUE_DEVICE_BUSY:
device->device_blocked = device->max_device_blocked;
break;
case SCSI_MLQUEUE_TARGET_BUSY:
starget->target_blocked = starget->max_target_blocked;
break;
}
/*
* Decrement the counters, since these commands are no longer
* active on the host/device.
*/
if (unbusy)
scsi_device_unbusy(device);
/*
* Requeue this command. It will go before all other commands
* that are already in the queue.
*
* NOTE: there is magic here about the way the queue is plugged if
* we have no outstanding commands.
*
* Although we *don't* plug the queue, we call the request
* function. The SCSI request function detects the blocked condition
* and plugs the queue appropriately.
*/
spin_lock_irqsave(q->queue_lock, flags);
blk_requeue_request(q, cmd->request);
spin_unlock_irqrestore(q->queue_lock, flags);
scsi_run_queue(q);
return 0;
}
/*
* Function: scsi_queue_insert()
*
* Purpose: Insert a command in the midlevel queue.
*
* Arguments: cmd - command that we are adding to queue.
* reason - why we are inserting command to queue.
*
* Lock status: Assumed that lock is not held upon entry.
*
* Returns: Nothing.
*
* Notes: We do this for one of two cases. Either the host is busy
* and it cannot accept any more commands for the time being,
* or the device returned QUEUE_FULL and can accept no more
* commands.
* Notes: This could be called either from an interrupt context or a
* normal process context.
*/
int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
{
return __scsi_queue_insert(cmd, reason, 1);
}
/**
* scsi_execute - insert request and wait for the result
* @sdev: scsi device
* @cmd: scsi command
* @data_direction: data direction
* @buffer: data buffer
* @bufflen: len of buffer
* @sense: optional sense buffer
* @timeout: request timeout in seconds
* @retries: number of times to retry request
* @flags: or into request flags;
* @resid: optional residual length
*
* returns the req->errors value which is the scsi_cmnd result
* field.
*/
int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
int data_direction, void *buffer, unsigned bufflen,
unsigned char *sense, int timeout, int retries, int flags,
int *resid)
{
struct request *req;
int write = (data_direction == DMA_TO_DEVICE);
int ret = DRIVER_ERROR << 24;
req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
buffer, bufflen, __GFP_WAIT))
goto out;
req->cmd_len = COMMAND_SIZE(cmd[0]);
memcpy(req->cmd, cmd, req->cmd_len);
req->sense = sense;
req->sense_len = 0;
req->retries = retries;
req->timeout = timeout;
req->cmd_type = REQ_TYPE_BLOCK_PC;
req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
/*
* head injection *required* here otherwise quiesce won't work
*/
blk_execute_rq(req->q, NULL, req, 1);
/*
* Some devices (USB mass-storage in particular) may transfer
* garbage data together with a residue indicating that the data
* is invalid. Prevent the garbage from being misinterpreted
* and prevent security leaks by zeroing out the excess data.
*/
if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
if (resid)
*resid = req->resid_len;
ret = req->errors;
out:
blk_put_request(req);
return ret;
}
EXPORT_SYMBOL(scsi_execute);
int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
int data_direction, void *buffer, unsigned bufflen,
struct scsi_sense_hdr *sshdr, int timeout, int retries,
int *resid)
{
char *sense = NULL;
int result;
if (sshdr) {
sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
if (!sense)
return DRIVER_ERROR << 24;
}
result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
sense, timeout, retries, 0, resid);
if (sshdr)
scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
kfree(sense);
return result;
}
EXPORT_SYMBOL(scsi_execute_req);
/*
* Function: scsi_init_cmd_errh()
*
* Purpose: Initialize cmd fields related to error handling.
*
* Arguments: cmd - command that is ready to be queued.
*
* Notes: This function has the job of initializing a number of
* fields related to error handling. Typically this will
* be called once for each command, as required.
*/
static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
{
cmd->serial_number = 0;
scsi_set_resid(cmd, 0);
memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
if (cmd->cmd_len == 0)
cmd->cmd_len = scsi_command_size(cmd->cmnd);
}
void scsi_device_unbusy(struct scsi_device *sdev)
{
struct Scsi_Host *shost = sdev->host;
struct scsi_target *starget = scsi_target(sdev);
unsigned long flags;
spin_lock_irqsave(shost->host_lock, flags);
shost->host_busy--;
starget->target_busy--;
if (unlikely(scsi_host_in_recovery(shost) &&
(shost->host_failed || shost->host_eh_scheduled)))
scsi_eh_wakeup(shost);
spin_unlock(shost->host_lock);
spin_lock(sdev->request_queue->queue_lock);
sdev->device_busy--;
spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
}
/*
* Called for single_lun devices on IO completion. Clear starget_sdev_user,
* and call blk_run_queue for all the scsi_devices on the target -
* including current_sdev first.
*
* Called with *no* scsi locks held.
*/
static void scsi_single_lun_run(struct scsi_device *current_sdev)
{
struct Scsi_Host *shost = current_sdev->host;
struct scsi_device *sdev, *tmp;
struct scsi_target *starget = scsi_target(current_sdev);
unsigned long flags;
spin_lock_irqsave(shost->host_lock, flags);
starget->starget_sdev_user = NULL;
spin_unlock_irqrestore(shost->host_lock, flags);
/*
* Call blk_run_queue for all LUNs on the target, starting with
* current_sdev. We race with others (to set starget_sdev_user),
* but in most cases, we will be first. Ideally, each LU on the
* target would get some limited time or requests on the target.
*/
blk_run_queue(current_sdev->request_queue);
spin_lock_irqsave(shost->host_lock, flags);
if (starget->starget_sdev_user)
goto out;
list_for_each_entry_safe(sdev, tmp, &starget->devices,
same_target_siblings) {
if (sdev == current_sdev)
continue;
if (scsi_device_get(sdev))
continue;
spin_unlock_irqrestore(shost->host_lock, flags);
blk_run_queue(sdev->request_queue);
spin_lock_irqsave(shost->host_lock, flags);
scsi_device_put(sdev);
}
out:
spin_unlock_irqrestore(shost->host_lock, flags);
}
static inline int scsi_device_is_busy(struct scsi_device *sdev)
{
if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
return 1;
return 0;
}
static inline int scsi_target_is_busy(struct scsi_target *starget)
{
return ((starget->can_queue > 0 &&
starget->target_busy >= starget->can_queue) ||
starget->target_blocked);
}
static inline int scsi_host_is_busy(struct Scsi_Host *shost)
{
if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
shost->host_blocked || shost->host_self_blocked)
return 1;
return 0;
}
/*
* Function: scsi_run_queue()
*
* Purpose: Select a proper request queue to serve next
*
* Arguments: q - last request's queue
*
* Returns: Nothing
*
* Notes: The previous command was completely finished, start
* a new one if possible.
*/
static void scsi_run_queue(struct request_queue *q)
{
struct scsi_device *sdev = q->queuedata;
struct Scsi_Host *shost = sdev->host;
LIST_HEAD(starved_list);
unsigned long flags;
if (scsi_target(sdev)->single_lun)
scsi_single_lun_run(sdev);
spin_lock_irqsave(shost->host_lock, flags);
list_splice_init(&shost->starved_list, &starved_list);
while (!list_empty(&starved_list)) {
int flagset;
/*
* As long as shost is accepting commands and we have
* starved queues, call blk_run_queue. scsi_request_fn
* drops the queue_lock and can add us back to the
* starved_list.
*
* host_lock protects the starved_list and starved_entry.
* scsi_request_fn must get the host_lock before checking
* or modifying starved_list or starved_entry.
*/
if (scsi_host_is_busy(shost))
break;
sdev = list_entry(starved_list.next,
struct scsi_device, starved_entry);
list_del_init(&sdev->starved_entry);
if (scsi_target_is_busy(scsi_target(sdev))) {
list_move_tail(&sdev->starved_entry,
&shost->starved_list);
continue;
}
spin_unlock(shost->host_lock);
spin_lock(sdev->request_queue->queue_lock);
flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
!test_bit(QUEUE_FLAG_REENTER,
&sdev->request_queue->queue_flags);
if (flagset)
queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
__blk_run_queue(sdev->request_queue, false);
if (flagset)
queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
spin_unlock(sdev->request_queue->queue_lock);
spin_lock(shost->host_lock);
}
/* put any unprocessed entries back */
list_splice(&starved_list, &shost->starved_list);
spin_unlock_irqrestore(shost->host_lock, flags);
blk_run_queue(q);
}
/*
* Function: scsi_requeue_command()
*
* Purpose: Handle post-processing of completed commands.
*
* Arguments: q - queue to operate on
* cmd - command that may need to be requeued.
*
* Returns: Nothing
*
* Notes: After command completion, there may be blocks left
* over which weren't finished by the previous command
* this can be for a number of reasons - the main one is
* I/O errors in the middle of the request, in which case
* we need to request the blocks that come after the bad
* sector.
* Notes: Upon return, cmd is a stale pointer.
*/
static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
{
struct request *req = cmd->request;
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
scsi_unprep_request(req);
blk_requeue_request(q, req);
spin_unlock_irqrestore(q->queue_lock, flags);
scsi_run_queue(q);
}
void scsi_next_command(struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct request_queue *q = sdev->request_queue;
/* need to hold a reference on the device before we let go of the cmd */
get_device(&sdev->sdev_gendev);
scsi_put_command(cmd);
scsi_run_queue(q);
/* ok to remove device now */
put_device(&sdev->sdev_gendev);
}
void scsi_run_host_queues(struct Scsi_Host *shost)
{
struct scsi_device *sdev;
shost_for_each_device(sdev, shost)
scsi_run_queue(sdev->request_queue);
}
static void __scsi_release_buffers(struct scsi_cmnd *, int);
/*
* Function: scsi_end_request()
*
* Purpose: Post-processing of completed commands (usually invoked at end
* of upper level post-processing and scsi_io_completion).
*
* Arguments: cmd - command that is complete.
* error - 0 if I/O indicates success, < 0 for I/O error.
* bytes - number of bytes of completed I/O
* requeue - indicates whether we should requeue leftovers.
*
* Lock status: Assumed that lock is not held upon entry.
*
* Returns: cmd if requeue required, NULL otherwise.
*
* Notes: This is called for block device requests in order to
* mark some number of sectors as complete.
*
* We are guaranteeing that the request queue will be goosed
* at some point during this call.
* Notes: If cmd was requeued, upon return it will be a stale pointer.
*/
static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
int bytes, int requeue)
{
struct request_queue *q = cmd->device->request_queue;
struct request *req = cmd->request;
/*
* If there are blocks left over at the end, set up the command
* to queue the remainder of them.
*/
if (blk_end_request(req, error, bytes)) {
/* kill remainder if no retrys */
if (error && scsi_noretry_cmd(cmd))
blk_end_request_all(req, error);
else {
if (requeue) {
/*
* Bleah. Leftovers again. Stick the
* leftovers in the front of the
* queue, and goose the queue again.
*/
scsi_release_buffers(cmd);
scsi_requeue_command(q, cmd);
cmd = NULL;
}
return cmd;
}
}
/*
* This will goose the queue request function at the end, so we don't
* need to worry about launching another command.
*/
__scsi_release_buffers(cmd, 0);
scsi_next_command(cmd);
return NULL;
}
static inline unsigned int scsi_sgtable_index(unsigned short nents)
{
unsigned int index;
BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
if (nents <= 8)
index = 0;
else
index = get_count_order(nents) - 3;
return index;
}
static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
{
struct scsi_host_sg_pool *sgp;
sgp = scsi_sg_pools + scsi_sgtable_index(nents);
mempool_free(sgl, sgp->pool);
}
static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
{
struct scsi_host_sg_pool *sgp;
sgp = scsi_sg_pools + scsi_sgtable_index(nents);
return mempool_alloc(sgp->pool, gfp_mask);
}
static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
gfp_t gfp_mask)
{
int ret;
BUG_ON(!nents);
ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
gfp_mask, scsi_sg_alloc);
if (unlikely(ret))
__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
scsi_sg_free);
return ret;
}
static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
{
__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
}
static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
{
if (cmd->sdb.table.nents)
scsi_free_sgtable(&cmd->sdb);
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
struct scsi_data_buffer *bidi_sdb =
cmd->request->next_rq->special;
scsi_free_sgtable(bidi_sdb);
kmem_cache_free(scsi_sdb_cache, bidi_sdb);
cmd->request->next_rq->special = NULL;
}
if (scsi_prot_sg_count(cmd))
scsi_free_sgtable(cmd->prot_sdb);
}
/*
* Function: scsi_release_buffers()
*
* Purpose: Completion processing for block device I/O requests.
*
* Arguments: cmd - command that we are bailing.
*
* Lock status: Assumed that no lock is held upon entry.
*
* Returns: Nothing
*
* Notes: In the event that an upper level driver rejects a
* command, we must release resources allocated during
* the __init_io() function. Primarily this would involve
* the scatter-gather table, and potentially any bounce
* buffers.
*/
void scsi_release_buffers(struct scsi_cmnd *cmd)
{
__scsi_release_buffers(cmd, 1);
}
EXPORT_SYMBOL(scsi_release_buffers);
/*
* Function: scsi_io_completion()
*
* Purpose: Completion processing for block device I/O requests.
*
* Arguments: cmd - command that is finished.
*
* Lock status: Assumed that no lock is held upon entry.
*
* Returns: Nothing
*
* Notes: This function is matched in terms of capabilities to
* the function that created the scatter-gather list.
* In other words, if there are no bounce buffers
* (the normal case for most drivers), we don't need
* the logic to deal with cleaning up afterwards.
*
* We must call scsi_end_request(). This will finish off
* the specified number of sectors. If we are done, the
* command block will be released and the queue function
* will be goosed. If we are not done then we have to
* figure out what to do next:
*
* a) We can call scsi_requeue_command(). The request
* will be unprepared and put back on the queue. Then
* a new command will be created for it. This should
* be used if we made forward progress, or if we want
* to switch from READ(10) to READ(6) for example.
*
* b) We can call scsi_queue_insert(). The request will
* be put back on the queue and retried using the same
* command as before, possibly after a delay.
*
* c) We can call blk_end_request() with -EIO to fail
* the remainder of the request.
*/
void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
{
int result = cmd->result;
struct request_queue *q = cmd->device->request_queue;
struct request *req = cmd->request;
int error = 0;
struct scsi_sense_hdr sshdr;
int sense_valid = 0;
int sense_deferred = 0;
enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
ACTION_DELAYED_RETRY} action;
char *description = NULL;
if (result) {
sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
if (sense_valid)
sense_deferred = scsi_sense_is_deferred(&sshdr);
}
if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
req->errors = result;
if (result) {
if (sense_valid && req->sense) {
/*
* SG_IO wants current and deferred errors
*/
int len = 8 + cmd->sense_buffer[7];
if (len > SCSI_SENSE_BUFFERSIZE)
len = SCSI_SENSE_BUFFERSIZE;
memcpy(req->sense, cmd->sense_buffer, len);
req->sense_len = len;
}
if (!sense_deferred)
error = -EIO;
}
req->resid_len = scsi_get_resid(cmd);
if (scsi_bidi_cmnd(cmd)) {
/*
* Bidi commands Must be complete as a whole,
* both sides at once.
*/
req->next_rq->resid_len = scsi_in(cmd)->resid;
scsi_release_buffers(cmd);
blk_end_request_all(req, 0);
scsi_next_command(cmd);
return;
}
}
/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
BUG_ON(blk_bidi_rq(req));
/*
* Next deal with any sectors which we were able to correctly
* handle.
*/
SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
"%d bytes done.\n",
blk_rq_sectors(req), good_bytes));
/*
* Recovered errors need reporting, but they're always treated
* as success, so fiddle the result code here. For BLOCK_PC
* we already took a copy of the original into rq->errors which
* is what gets returned to the user
*/
if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
* print since caller wants ATA registers. Only occurs on
* SCSI ATA PASS_THROUGH commands when CK_COND=1
*/
if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
;
else if (!(req->cmd_flags & REQ_QUIET))
scsi_print_sense("", cmd);
result = 0;
/* BLOCK_PC may have set error */
error = 0;
}
/*
* A number of bytes were successfully read. If there
* are leftovers and there is some kind of error
* (result != 0), retry the rest.
*/
if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
return;
error = -EIO;
if (host_byte(result) == DID_RESET) {
/* Third party bus reset or reset for error recovery
* reasons. Just retry the command and see what
* happens.
*/
action = ACTION_RETRY;
} else if (sense_valid && !sense_deferred) {
switch (sshdr.sense_key) {
case UNIT_ATTENTION:
if (cmd->device->removable) {
/* Detected disc change. Set a bit
* and quietly refuse further access.
*/
cmd->device->changed = 1;
description = "Media Changed";
action = ACTION_FAIL;
} else {
/* Must have been a power glitch, or a
* bus reset. Could not have been a
* media change, so we just retry the
* command and see what happens.
*/
action = ACTION_RETRY;
}
break;
case ILLEGAL_REQUEST:
/* If we had an ILLEGAL REQUEST returned, then
* we may have performed an unsupported
* command. The only thing this should be
* would be a ten byte read where only a six
* byte read was supported. Also, on a system
* where READ CAPACITY failed, we may have
* read past the end of the disk.
*/
if ((cmd->device->use_10_for_rw &&
sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
(cmd->cmnd[0] == READ_10 ||
cmd->cmnd[0] == WRITE_10)) {
/* This will issue a new 6-byte command. */
cmd->device->use_10_for_rw = 0;
action = ACTION_REPREP;
} else if (sshdr.asc == 0x10) /* DIX */ {
description = "Host Data Integrity Failure";
action = ACTION_FAIL;
error = -EILSEQ;
} else
action = ACTION_FAIL;
break;
case ABORTED_COMMAND:
action = ACTION_FAIL;
if (sshdr.asc == 0x10) { /* DIF */
description = "Target Data Integrity Failure";
error = -EILSEQ;
}
break;
case NOT_READY:
/* If the device is in the process of becoming
* ready, or has a temporary blockage, retry.
*/
if (sshdr.asc == 0x04) {
switch (sshdr.ascq) {
case 0x01: /* becoming ready */
case 0x04: /* format in progress */
case 0x05: /* rebuild in progress */
case 0x06: /* recalculation in progress */
case 0x07: /* operation in progress */
case 0x08: /* Long write in progress */
case 0x09: /* self test in progress */
case 0x14: /* space allocation in progress */
action = ACTION_DELAYED_RETRY;
break;
default:
description = "Device not ready";
action = ACTION_FAIL;
break;
}
} else {
description = "Device not ready";
action = ACTION_FAIL;
}
break;
case VOLUME_OVERFLOW:
/* See SSC3rXX or current. */
action = ACTION_FAIL;
break;
default:
description = "Unhandled sense code";
action = ACTION_FAIL;
break;
}
} else {
description = "Unhandled error code";
action = ACTION_FAIL;
}
switch (action) {
case ACTION_FAIL:
/* Give up and fail the remainder of the request */
scsi_release_buffers(cmd);
if (!(req->cmd_flags & REQ_QUIET)) {
if (description)
scmd_printk(KERN_INFO, cmd, "%s\n",
description);
scsi_print_result(cmd);
if (driver_byte(result) & DRIVER_SENSE)
scsi_print_sense("", cmd);
scsi_print_command(cmd);
}
if (blk_end_request_err(req, error))
scsi_requeue_command(q, cmd);
else
scsi_next_command(cmd);
break;
case ACTION_REPREP:
/* Unprep the request and put it back at the head of the queue.
* A new command will be prepared and issued.
*/
scsi_release_buffers(cmd);
scsi_requeue_command(q, cmd);
break;
case ACTION_RETRY:
/* Retry the same command immediately */
__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
break;
case ACTION_DELAYED_RETRY:
/* Retry the same command after a delay */
__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
break;
}
}
static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
gfp_t gfp_mask)
{
int count;
/*
* If sg table allocation fails, requeue request later.
*/
if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
gfp_mask))) {
return BLKPREP_DEFER;
}
req->buffer = NULL;
/*
* Next, walk the list, and fill in the addresses and sizes of
* each segment.
*/
count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
BUG_ON(count > sdb->table.nents);
sdb->table.nents = count;
sdb->length = blk_rq_bytes(req);
return BLKPREP_OK;
}
/*
* Function: scsi_init_io()
*
* Purpose: SCSI I/O initialize function.
*
* Arguments: cmd - Command descriptor we wish to initialize
*
* Returns: 0 on success
* BLKPREP_DEFER if the failure is retryable
* BLKPREP_KILL if the failure is fatal
*/
int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
{
struct request *rq = cmd->request;
int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
if (error)
goto err_exit;
if (blk_bidi_rq(rq)) {
struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
scsi_sdb_cache, GFP_ATOMIC);
if (!bidi_sdb) {
error = BLKPREP_DEFER;
goto err_exit;
}
rq->next_rq->special = bidi_sdb;
error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
if (error)
goto err_exit;
}
if (blk_integrity_rq(rq)) {
struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
int ivecs, count;
BUG_ON(prot_sdb == NULL);
ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
error = BLKPREP_DEFER;
goto err_exit;
}
count = blk_rq_map_integrity_sg(rq->q, rq->bio,
prot_sdb->table.sgl);
BUG_ON(unlikely(count > ivecs));
BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
cmd->prot_sdb = prot_sdb;
cmd->prot_sdb->table.nents = count;
}
return BLKPREP_OK ;
err_exit:
scsi_release_buffers(cmd);
cmd->request->special = NULL;
scsi_put_command(cmd);
return error;
}
EXPORT_SYMBOL(scsi_init_io);
static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
struct request *req)
{
struct scsi_cmnd *cmd;
if (!req->special) {
cmd = scsi_get_command(sdev, GFP_ATOMIC);
if (unlikely(!cmd))
return NULL;
req->special = cmd;
} else {
cmd = req->special;
}
/* pull a tag out of the request if we have one */
cmd->tag = req->tag;
cmd->request = req;
cmd->cmnd = req->cmd;
return cmd;
}
int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
{
struct scsi_cmnd *cmd;
int ret = scsi_prep_state_check(sdev, req);
if (ret != BLKPREP_OK)
return ret;
cmd = scsi_get_cmd_from_req(sdev, req);
if (unlikely(!cmd))
return BLKPREP_DEFER;
/*
* BLOCK_PC requests may transfer data, in which case they must
* a bio attached to them. Or they might contain a SCSI command
* that does not transfer data, in which case they may optionally
* submit a request without an attached bio.
*/
if (req->bio) {
int ret;
BUG_ON(!req->nr_phys_segments);
ret = scsi_init_io(cmd, GFP_ATOMIC);
if (unlikely(ret))
return ret;
} else {
BUG_ON(blk_rq_bytes(req));
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
req->buffer = NULL;
}
cmd->cmd_len = req->cmd_len;
if (!blk_rq_bytes(req))
cmd->sc_data_direction = DMA_NONE;
else if (rq_data_dir(req) == WRITE)
cmd->sc_data_direction = DMA_TO_DEVICE;
else
cmd->sc_data_direction = DMA_FROM_DEVICE;
cmd->transfersize = blk_rq_bytes(req);
cmd->allowed = req->retries;
return BLKPREP_OK;
}
EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
/*
* Setup a REQ_TYPE_FS command. These are simple read/write request
* from filesystems that still need to be translated to SCSI CDBs from
* the ULD.
*/
int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
{
struct scsi_cmnd *cmd;
int ret = scsi_prep_state_check(sdev, req);
if (ret != BLKPREP_OK)
return ret;
if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
&& sdev->scsi_dh_data->scsi_dh->prep_fn)) {
ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
if (ret != BLKPREP_OK)
return ret;
}
/*
* Filesystem requests must transfer data.
*/
BUG_ON(!req->nr_phys_segments);
cmd = scsi_get_cmd_from_req(sdev, req);
if (unlikely(!cmd))
return BLKPREP_DEFER;
memset(cmd->cmnd, 0, BLK_MAX_CDB);
return scsi_init_io(cmd, GFP_ATOMIC);
}
EXPORT_SYMBOL(scsi_setup_fs_cmnd);
int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
{
int ret = BLKPREP_OK;
/*
* If the device is not in running state we will reject some
* or all commands.
*/
if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
switch (sdev->sdev_state) {
case SDEV_OFFLINE:
/*
* If the device is offline we refuse to process any
* commands. The device must be brought online
* before trying any recovery commands.
*/
sdev_printk(KERN_ERR, sdev,
"rejecting I/O to offline device\n");
ret = BLKPREP_KILL;
break;
case SDEV_DEL:
/*
* If the device is fully deleted, we refuse to
* process any commands as well.
*/
sdev_printk(KERN_ERR, sdev,
"rejecting I/O to dead device\n");
ret = BLKPREP_KILL;
break;
case SDEV_QUIESCE:
case SDEV_BLOCK:
case SDEV_CREATED_BLOCK:
/*
* If the devices is blocked we defer normal commands.
*/
if (!(req->cmd_flags & REQ_PREEMPT))
ret = BLKPREP_DEFER;
break;
default:
/*
* For any other not fully online state we only allow
* special commands. In particular any user initiated
* command is not allowed.
*/
if (!(req->cmd_flags & REQ_PREEMPT))
ret = BLKPREP_KILL;
break;
}
}
return ret;
}
EXPORT_SYMBOL(scsi_prep_state_check);
int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
{
struct scsi_device *sdev = q->queuedata;
switch (ret) {
case BLKPREP_KILL:
req->errors = DID_NO_CONNECT << 16;
/* release the command and kill it */
if (req->special) {
struct scsi_cmnd *cmd = req->special;
scsi_release_buffers(cmd);
scsi_put_command(cmd);
req->special = NULL;
}
break;
case BLKPREP_DEFER:
/*
* If we defer, the blk_peek_request() returns NULL, but the
* queue must be restarted, so we plug here if no returning
* command will automatically do that.
*/
if (sdev->device_busy == 0)
blk_plug_device(q);
break;
default:
req->cmd_flags |= REQ_DONTPREP;
}
return ret;
}
EXPORT_SYMBOL(scsi_prep_return);
int scsi_prep_fn(struct request_queue *q, struct request *req)
{
struct scsi_device *sdev = q->queuedata;
int ret = BLKPREP_KILL;
if (req->cmd_type == REQ_TYPE_BLOCK_PC)
ret = scsi_setup_blk_pc_cmnd(sdev, req);
return scsi_prep_return(q, req, ret);
}
EXPORT_SYMBOL(scsi_prep_fn);
/*
* scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
* return 0.
*
* Called with the queue_lock held.
*/
static inline int scsi_dev_queue_ready(struct request_queue *q,
struct scsi_device *sdev)
{
if (sdev->device_busy == 0 && sdev->device_blocked) {
/*
* unblock after device_blocked iterates to zero
*/
if (--sdev->device_blocked == 0) {
SCSI_LOG_MLQUEUE(3,
sdev_printk(KERN_INFO, sdev,
"unblocking device at zero depth\n"));
} else {
blk_plug_device(q);
return 0;
}
}
if (scsi_device_is_busy(sdev))
return 0;
return 1;
}
/*
* scsi_target_queue_ready: checks if there we can send commands to target
* @sdev: scsi device on starget to check.
*
* Called with the host lock held.
*/
static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
struct scsi_device *sdev)
{
struct scsi_target *starget = scsi_target(sdev);
if (starget->single_lun) {
if (starget->starget_sdev_user &&
starget->starget_sdev_user != sdev)
return 0;
starget->starget_sdev_user = sdev;
}
if (starget->target_busy == 0 && starget->target_blocked) {
/*
* unblock after target_blocked iterates to zero
*/
if (--starget->target_blocked == 0) {
SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
"unblocking target at zero depth\n"));
} else
return 0;
}
if (scsi_target_is_busy(starget)) {
if (list_empty(&sdev->starved_entry))
list_add_tail(&sdev->starved_entry,
&shost->starved_list);
return 0;
}
/* We're OK to process the command, so we can't be starved */
if (!list_empty(&sdev->starved_entry))
list_del_init(&sdev->starved_entry);
return 1;
}
/*
* scsi_host_queue_ready: if we can send requests to shost, return 1 else
* return 0. We must end up running the queue again whenever 0 is
* returned, else IO can hang.
*
* Called with host_lock held.
*/
static inline int scsi_host_queue_ready(struct request_queue *q,
struct Scsi_Host *shost,
struct scsi_device *sdev)
{
if (scsi_host_in_recovery(shost))
return 0;
if (shost->host_busy == 0 && shost->host_blocked) {
/*
* unblock after host_blocked iterates to zero
*/
if (--shost->host_blocked == 0) {
SCSI_LOG_MLQUEUE(3,
printk("scsi%d unblocking host at zero depth\n",
shost->host_no));
} else {
return 0;
}
}
if (scsi_host_is_busy(shost)) {
if (list_empty(&sdev->starved_entry))
list_add_tail(&sdev->starved_entry, &shost->starved_list);
return 0;
}
/* We're OK to process the command, so we can't be starved */
if (!list_empty(&sdev->starved_entry))
list_del_init(&sdev->starved_entry);
return 1;
}
/*
* Busy state exporting function for request stacking drivers.
*
* For efficiency, no lock is taken to check the busy state of
* shost/starget/sdev, since the returned value is not guaranteed and
* may be changed after request stacking drivers call the function,
* regardless of taking lock or not.
*
* When scsi can't dispatch I/Os anymore and needs to kill I/Os
* (e.g. !sdev), scsi needs to return 'not busy'.
* Otherwise, request stacking drivers may hold requests forever.
*/
static int scsi_lld_busy(struct request_queue *q)
{
struct scsi_device *sdev = q->queuedata;
struct Scsi_Host *shost;
struct scsi_target *starget;
if (!sdev)
return 0;
shost = sdev->host;
starget = scsi_target(sdev);
if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
return 1;
return 0;
}
/*
* Kill a request for a dead device
*/
static void scsi_kill_request(struct request *req, struct request_queue *q)
{
struct scsi_cmnd *cmd = req->special;
struct scsi_device *sdev;
struct scsi_target *starget;
struct Scsi_Host *shost;
blk_start_request(req);
sdev = cmd->device;
starget = scsi_target(sdev);
shost = sdev->host;
scsi_init_cmd_errh(cmd);
cmd->result = DID_NO_CONNECT << 16;
atomic_inc(&cmd->device->iorequest_cnt);
/*
* SCSI request completion path will do scsi_device_unbusy(),
* bump busy counts. To bump the counters, we need to dance
* with the locks as normal issue path does.
*/
sdev->device_busy++;
spin_unlock(sdev->request_queue->queue_lock);
spin_lock(shost->host_lock);
shost->host_busy++;
starget->target_busy++;
spin_unlock(shost->host_lock);
spin_lock(sdev->request_queue->queue_lock);
blk_complete_request(req);
}
static void scsi_softirq_done(struct request *rq)
{
struct scsi_cmnd *cmd = rq->special;
unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
int disposition;
INIT_LIST_HEAD(&cmd->eh_entry);
atomic_inc(&cmd->device->iodone_cnt);
if (cmd->result)
atomic_inc(&cmd->device->ioerr_cnt);
disposition = scsi_decide_disposition(cmd);
if (disposition != SUCCESS &&
time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
sdev_printk(KERN_ERR, cmd->device,
"timing out command, waited %lus\n",
wait_for/HZ);
disposition = SUCCESS;
}
scsi_log_completion(cmd, disposition);
switch (disposition) {
case SUCCESS:
scsi_finish_command(cmd);
break;
case NEEDS_RETRY:
scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
break;
case ADD_TO_MLQUEUE:
scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
break;
default:
if (!scsi_eh_scmd_add(cmd, 0))
scsi_finish_command(cmd);
}
}
/*
* Function: scsi_request_fn()
*
* Purpose: Main strategy routine for SCSI.
*
* Arguments: q - Pointer to actual queue.
*
* Returns: Nothing
*
* Lock status: IO request lock assumed to be held when called.
*/
static void scsi_request_fn(struct request_queue *q)
{
struct scsi_device *sdev = q->queuedata;
struct Scsi_Host *shost;
struct scsi_cmnd *cmd;
struct request *req;
if (!sdev) {
printk("scsi: killing requests for dead queue\n");
while ((req = blk_peek_request(q)) != NULL)
scsi_kill_request(req, q);
return;
}
if(!get_device(&sdev->sdev_gendev))
/* We must be tearing the block queue down already */
return;
/*
* To start with, we keep looping until the queue is empty, or until
* the host is no longer able to accept any more requests.
*/
shost = sdev->host;
while (!blk_queue_plugged(q)) {
int rtn;
/*
* get next queueable request. We do this early to make sure
* that the request is fully prepared even if we cannot
* accept it.
*/
req = blk_peek_request(q);
if (!req || !scsi_dev_queue_ready(q, sdev))
break;
if (unlikely(!scsi_device_online(sdev))) {
sdev_printk(KERN_ERR, sdev,
"rejecting I/O to offline device\n");
scsi_kill_request(req, q);
continue;
}
/*
* Remove the request from the request list.
*/
if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
blk_start_request(req);
sdev->device_busy++;
spin_unlock(q->queue_lock);
cmd = req->special;
if (unlikely(cmd == NULL)) {
printk(KERN_CRIT "impossible request in %s.\n"
"please mail a stack trace to "
"linux-scsi@vger.kernel.org\n",
__func__);
blk_dump_rq_flags(req, "foo");
BUG();
}
spin_lock(shost->host_lock);
/*
* We hit this when the driver is using a host wide
* tag map. For device level tag maps the queue_depth check
* in the device ready fn would prevent us from trying
* to allocate a tag. Since the map is a shared host resource
* we add the dev to the starved list so it eventually gets
* a run when a tag is freed.
*/
if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
if (list_empty(&sdev->starved_entry))
list_add_tail(&sdev->starved_entry,
&shost->starved_list);
goto not_ready;
}
if (!scsi_target_queue_ready(shost, sdev))
goto not_ready;
if (!scsi_host_queue_ready(q, shost, sdev))
goto not_ready;
scsi_target(sdev)->target_busy++;
shost->host_busy++;
/*
* XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
* take the lock again.
*/
spin_unlock_irq(shost->host_lock);
/*
* Finally, initialize any error handling parameters, and set up
* the timers for timeouts.
*/
scsi_init_cmd_errh(cmd);
/*
* Dispatch the command to the low-level driver.
*/
rtn = scsi_dispatch_cmd(cmd);
spin_lock_irq(q->queue_lock);
if(rtn) {
/* we're refusing the command; because of
* the way locks get dropped, we need to
* check here if plugging is required */
if(sdev->device_busy == 0)
blk_plug_device(q);
break;
}
}
goto out;
not_ready:
spin_unlock_irq(shost->host_lock);
/*
* lock q, handle tag, requeue req, and decrement device_busy. We
* must return with queue_lock held.
*
* Decrementing device_busy without checking it is OK, as all such
* cases (host limits or settings) should run the queue at some
* later time.
*/
spin_lock_irq(q->queue_lock);
blk_requeue_request(q, req);
sdev->device_busy--;
if(sdev->device_busy == 0)
blk_plug_device(q);
out:
/* must be careful here...if we trigger the ->remove() function
* we cannot be holding the q lock */
spin_unlock_irq(q->queue_lock);
put_device(&sdev->sdev_gendev);
spin_lock_irq(q->queue_lock);
}
u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
{
struct device *host_dev;
u64 bounce_limit = 0xffffffff;
if (shost->unchecked_isa_dma)
return BLK_BOUNCE_ISA;
/*
* Platforms with virtual-DMA translation
* hardware have no practical limit.
*/
if (!PCI_DMA_BUS_IS_PHYS)
return BLK_BOUNCE_ANY;
host_dev = scsi_get_device(shost);
if (host_dev && host_dev->dma_mask)
bounce_limit = *host_dev->dma_mask;
return bounce_limit;
}
EXPORT_SYMBOL(scsi_calculate_bounce_limit);
struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
request_fn_proc *request_fn)
{
struct request_queue *q;
struct device *dev = shost->shost_gendev.parent;
q = blk_init_queue(request_fn, NULL);
if (!q)
return NULL;
/*
* this limit is imposed by hardware restrictions
*/
blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
SCSI_MAX_SG_CHAIN_SEGMENTS));
if (scsi_host_prot_dma(shost)) {
shost->sg_prot_tablesize =
min_not_zero(shost->sg_prot_tablesize,
(unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
}
blk_queue_max_hw_sectors(q, shost->max_sectors);
blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
blk_queue_segment_boundary(q, shost->dma_boundary);
dma_set_seg_boundary(dev, shost->dma_boundary);
blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
if (!shost->use_clustering)
q->limits.cluster = 0;
/*
* set a reasonable default alignment on word boundaries: the
* host and device may alter it using
* blk_queue_update_dma_alignment() later.
*/
blk_queue_dma_alignment(q, 0x03);
return q;
}
EXPORT_SYMBOL(__scsi_alloc_queue);
struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
{
struct request_queue *q;
q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
if (!q)
return NULL;
blk_queue_prep_rq(q, scsi_prep_fn);
blk_queue_softirq_done(q, scsi_softirq_done);
blk_queue_rq_timed_out(q, scsi_times_out);
blk_queue_lld_busy(q, scsi_lld_busy);
return q;
}
void scsi_free_queue(struct request_queue *q)
{
blk_cleanup_queue(q);
}
/*
* Function: scsi_block_requests()
*
* Purpose: Utility function used by low-level drivers to prevent further
* commands from being queued to the device.
*
* Arguments: shost - Host in question
*
* Returns: Nothing
*
* Lock status: No locks are assumed held.
*
* Notes: There is no timer nor any other means by which the requests
* get unblocked other than the low-level driver calling
* scsi_unblock_requests().
*/
void scsi_block_requests(struct Scsi_Host *shost)
{
shost->host_self_blocked = 1;
}
EXPORT_SYMBOL(scsi_block_requests);
/*
* Function: scsi_unblock_requests()
*
* Purpose: Utility function used by low-level drivers to allow further
* commands from being queued to the device.
*
* Arguments: shost - Host in question
*
* Returns: Nothing
*
* Lock status: No locks are assumed held.
*
* Notes: There is no timer nor any other means by which the requests
* get unblocked other than the low-level driver calling
* scsi_unblock_requests().
*
* This is done as an API function so that changes to the
* internals of the scsi mid-layer won't require wholesale
* changes to drivers that use this feature.
*/
void scsi_unblock_requests(struct Scsi_Host *shost)
{
shost->host_self_blocked = 0;
scsi_run_host_queues(shost);
}
EXPORT_SYMBOL(scsi_unblock_requests);
int __init scsi_init_queue(void)
{
int i;
scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
sizeof(struct scsi_data_buffer),
0, 0, NULL);
if (!scsi_sdb_cache) {
printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
return -ENOMEM;
}
for (i = 0; i < SG_MEMPOOL_NR; i++) {
struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
int size = sgp->size * sizeof(struct scatterlist);
sgp->slab = kmem_cache_create(sgp->name, size, 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!sgp->slab) {
printk(KERN_ERR "SCSI: can't init sg slab %s\n",
sgp->name);
goto cleanup_sdb;
}
sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
sgp->slab);
if (!sgp->pool) {
printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
sgp->name);
goto cleanup_sdb;
}
}
return 0;
cleanup_sdb:
for (i = 0; i < SG_MEMPOOL_NR; i++) {
struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
if (sgp->pool)
mempool_destroy(sgp->pool);
if (sgp->slab)
kmem_cache_destroy(sgp->slab);
}
kmem_cache_destroy(scsi_sdb_cache);
return -ENOMEM;
}
void scsi_exit_queue(void)
{
int i;
kmem_cache_destroy(scsi_sdb_cache);
for (i = 0; i < SG_MEMPOOL_NR; i++) {
struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
mempool_destroy(sgp->pool);
kmem_cache_destroy(sgp->slab);
}
}
/**
* scsi_mode_select - issue a mode select
* @sdev: SCSI device to be queried
* @pf: Page format bit (1 == standard, 0 == vendor specific)
* @sp: Save page bit (0 == don't save, 1 == save)
* @modepage: mode page being requested
* @buffer: request buffer (may not be smaller than eight bytes)
* @len: length of request buffer.
* @timeout: command timeout
* @retries: number of retries before failing
* @data: returns a structure abstracting the mode header data
* @sshdr: place to put sense data (or NULL if no sense to be collected).
* must be SCSI_SENSE_BUFFERSIZE big.
*
* Returns zero if successful; negative error number or scsi
* status on error
*
*/
int
scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
unsigned char *buffer, int len, int timeout, int retries,
struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
{
unsigned char cmd[10];
unsigned char *real_buffer;
int ret;
memset(cmd, 0, sizeof(cmd));
cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
if (sdev->use_10_for_ms) {
if (len > 65535)
return -EINVAL;
real_buffer = kmalloc(8 + len, GFP_KERNEL);
if (!real_buffer)
return -ENOMEM;
memcpy(real_buffer + 8, buffer, len);
len += 8;
real_buffer[0] = 0;
real_buffer[1] = 0;
real_buffer[2] = data->medium_type;
real_buffer[3] = data->device_specific;
real_buffer[4] = data->longlba ? 0x01 : 0;
real_buffer[5] = 0;
real_buffer[6] = data->block_descriptor_length >> 8;
real_buffer[7] = data->block_descriptor_length;
cmd[0] = MODE_SELECT_10;
cmd[7] = len >> 8;
cmd[8] = len;
} else {
if (len > 255 || data->block_descriptor_length > 255 ||
data->longlba)
return -EINVAL;
real_buffer = kmalloc(4 + len, GFP_KERNEL);
if (!real_buffer)
return -ENOMEM;
memcpy(real_buffer + 4, buffer, len);
len += 4;
real_buffer[0] = 0;
real_buffer[1] = data->medium_type;
real_buffer[2] = data->device_specific;
real_buffer[3] = data->block_descriptor_length;
cmd[0] = MODE_SELECT;
cmd[4] = len;
}
ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
sshdr, timeout, retries, NULL);
kfree(real_buffer);
return ret;
}
EXPORT_SYMBOL_GPL(scsi_mode_select);
/**
* scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
* @sdev: SCSI device to be queried
* @dbd: set if mode sense will allow block descriptors to be returned
* @modepage: mode page being requested
* @buffer: request buffer (may not be smaller than eight bytes)
* @len: length of request buffer.
* @timeout: command timeout
* @retries: number of retries before failing
* @data: returns a structure abstracting the mode header data
* @sshdr: place to put sense data (or NULL if no sense to be collected).
* must be SCSI_SENSE_BUFFERSIZE big.
*
* Returns zero if unsuccessful, or the header offset (either 4
* or 8 depending on whether a six or ten byte command was
* issued) if successful.
*/
int
scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
unsigned char *buffer, int len, int timeout, int retries,
struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
{
unsigned char cmd[12];
int use_10_for_ms;
int header_length;
int result;
struct scsi_sense_hdr my_sshdr;
memset(data, 0, sizeof(*data));
memset(&cmd[0], 0, 12);
cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
cmd[2] = modepage;
/* caller might not be interested in sense, but we need it */
if (!sshdr)
sshdr = &my_sshdr;
retry:
use_10_for_ms = sdev->use_10_for_ms;
if (use_10_for_ms) {
if (len < 8)
len = 8;
cmd[0] = MODE_SENSE_10;
cmd[8] = len;
header_length = 8;
} else {
if (len < 4)
len = 4;
cmd[0] = MODE_SENSE;
cmd[4] = len;
header_length = 4;
}
memset(buffer, 0, len);
result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
sshdr, timeout, retries, NULL);
/* This code looks awful: what it's doing is making sure an
* ILLEGAL REQUEST sense return identifies the actual command
* byte as the problem. MODE_SENSE commands can return
* ILLEGAL REQUEST if the code page isn't supported */
if (use_10_for_ms && !scsi_status_is_good(result) &&
(driver_byte(result) & DRIVER_SENSE)) {
if (scsi_sense_valid(sshdr)) {
if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
(sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
/*
* Invalid command operation code
*/
sdev->use_10_for_ms = 0;
goto retry;
}
}
}
if(scsi_status_is_good(result)) {
if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
(modepage == 6 || modepage == 8))) {
/* Initio breakage? */
header_length = 0;
data->length = 13;
data->medium_type = 0;
data->device_specific = 0;
data->longlba = 0;
data->block_descriptor_length = 0;
} else if(use_10_for_ms) {
data->length = buffer[0]*256 + buffer[1] + 2;
data->medium_type = buffer[2];
data->device_specific = buffer[3];
data->longlba = buffer[4] & 0x01;
data->block_descriptor_length = buffer[6]*256
+ buffer[7];
} else {
data->length = buffer[0] + 1;
data->medium_type = buffer[1];
data->device_specific = buffer[2];
data->block_descriptor_length = buffer[3];
}
data->header_length = header_length;
}
return result;
}
EXPORT_SYMBOL(scsi_mode_sense);
/**
* scsi_test_unit_ready - test if unit is ready
* @sdev: scsi device to change the state of.
* @timeout: command timeout
* @retries: number of retries before failing
* @sshdr_external: Optional pointer to struct scsi_sense_hdr for
* returning sense. Make sure that this is cleared before passing
* in.
*
* Returns zero if unsuccessful or an error if TUR failed. For
* removable media, UNIT_ATTENTION sets ->changed flag.
**/
int
scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
struct scsi_sense_hdr *sshdr_external)
{
char cmd[] = {
TEST_UNIT_READY, 0, 0, 0, 0, 0,
};
struct scsi_sense_hdr *sshdr;
int result;
if (!sshdr_external)
sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
else
sshdr = sshdr_external;
/* try to eat the UNIT_ATTENTION if there are enough retries */
do {
result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
timeout, retries, NULL);
if (sdev->removable && scsi_sense_valid(sshdr) &&
sshdr->sense_key == UNIT_ATTENTION)
sdev->changed = 1;
} while (scsi_sense_valid(sshdr) &&
sshdr->sense_key == UNIT_ATTENTION && --retries);
if (!sshdr_external)
kfree(sshdr);
return result;
}
EXPORT_SYMBOL(scsi_test_unit_ready);
/**
* scsi_device_set_state - Take the given device through the device state model.
* @sdev: scsi device to change the state of.
* @state: state to change to.
*
* Returns zero if unsuccessful or an error if the requested
* transition is illegal.
*/
int
scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
{
enum scsi_device_state oldstate = sdev->sdev_state;
if (state == oldstate)
return 0;
switch (state) {
case SDEV_CREATED:
switch (oldstate) {
case SDEV_CREATED_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_RUNNING:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_OFFLINE:
case SDEV_QUIESCE:
case SDEV_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_QUIESCE:
switch (oldstate) {
case SDEV_RUNNING:
case SDEV_OFFLINE:
break;
default:
goto illegal;
}
break;
case SDEV_OFFLINE:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_RUNNING:
case SDEV_QUIESCE:
case SDEV_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_BLOCK:
switch (oldstate) {
case SDEV_RUNNING:
case SDEV_CREATED_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_CREATED_BLOCK:
switch (oldstate) {
case SDEV_CREATED:
break;
default:
goto illegal;
}
break;
case SDEV_CANCEL:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_RUNNING:
case SDEV_QUIESCE:
case SDEV_OFFLINE:
case SDEV_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_DEL:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_RUNNING:
case SDEV_OFFLINE:
case SDEV_CANCEL:
break;
default:
goto illegal;
}
break;
}
sdev->sdev_state = state;
return 0;
illegal:
SCSI_LOG_ERROR_RECOVERY(1,
sdev_printk(KERN_ERR, sdev,
"Illegal state transition %s->%s\n",
scsi_device_state_name(oldstate),
scsi_device_state_name(state))
);
return -EINVAL;
}
EXPORT_SYMBOL(scsi_device_set_state);
/**
* sdev_evt_emit - emit a single SCSI device uevent
* @sdev: associated SCSI device
* @evt: event to emit
*
* Send a single uevent (scsi_event) to the associated scsi_device.
*/
static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
{
int idx = 0;
char *envp[3];
switch (evt->evt_type) {
case SDEV_EVT_MEDIA_CHANGE:
envp[idx++] = "SDEV_MEDIA_CHANGE=1";
break;
default:
/* do nothing */
break;
}
envp[idx++] = NULL;
kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
}
/**
* sdev_evt_thread - send a uevent for each scsi event
* @work: work struct for scsi_device
*
* Dispatch queued events to their associated scsi_device kobjects
* as uevents.
*/
void scsi_evt_thread(struct work_struct *work)
{
struct scsi_device *sdev;
LIST_HEAD(event_list);
sdev = container_of(work, struct scsi_device, event_work);
while (1) {
struct scsi_event *evt;
struct list_head *this, *tmp;
unsigned long flags;
spin_lock_irqsave(&sdev->list_lock, flags);
list_splice_init(&sdev->event_list, &event_list);
spin_unlock_irqrestore(&sdev->list_lock, flags);
if (list_empty(&event_list))
break;
list_for_each_safe(this, tmp, &event_list) {
evt = list_entry(this, struct scsi_event, node);
list_del(&evt->node);
scsi_evt_emit(sdev, evt);
kfree(evt);
}
}
}
/**
* sdev_evt_send - send asserted event to uevent thread
* @sdev: scsi_device event occurred on
* @evt: event to send
*
* Assert scsi device event asynchronously.
*/
void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
{
unsigned long flags;
#if 0
/* FIXME: currently this check eliminates all media change events
* for polled devices. Need to update to discriminate between AN
* and polled events */
if (!test_bit(evt->evt_type, sdev->supported_events)) {
kfree(evt);
return;
}
#endif
spin_lock_irqsave(&sdev->list_lock, flags);
list_add_tail(&evt->node, &sdev->event_list);
schedule_work(&sdev->event_work);
spin_unlock_irqrestore(&sdev->list_lock, flags);
}
EXPORT_SYMBOL_GPL(sdev_evt_send);
/**
* sdev_evt_alloc - allocate a new scsi event
* @evt_type: type of event to allocate
* @gfpflags: GFP flags for allocation
*
* Allocates and returns a new scsi_event.
*/
struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
gfp_t gfpflags)
{
struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
if (!evt)
return NULL;
evt->evt_type = evt_type;
INIT_LIST_HEAD(&evt->node);
/* evt_type-specific initialization, if any */
switch (evt_type) {
case SDEV_EVT_MEDIA_CHANGE:
default:
/* do nothing */
break;
}
return evt;
}
EXPORT_SYMBOL_GPL(sdev_evt_alloc);
/**
* sdev_evt_send_simple - send asserted event to uevent thread
* @sdev: scsi_device event occurred on
* @evt_type: type of event to send
* @gfpflags: GFP flags for allocation
*
* Assert scsi device event asynchronously, given an event type.
*/
void sdev_evt_send_simple(struct scsi_device *sdev,
enum scsi_device_event evt_type, gfp_t gfpflags)
{
struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
if (!evt) {
sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
evt_type);
return;
}
sdev_evt_send(sdev, evt);
}
EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
/**
* scsi_device_quiesce - Block user issued commands.
* @sdev: scsi device to quiesce.
*
* This works by trying to transition to the SDEV_QUIESCE state
* (which must be a legal transition). When the device is in this
* state, only special requests will be accepted, all others will
* be deferred. Since special requests may also be requeued requests,
* a successful return doesn't guarantee the device will be
* totally quiescent.
*
* Must be called with user context, may sleep.
*
* Returns zero if unsuccessful or an error if not.
*/
int
scsi_device_quiesce(struct scsi_device *sdev)
{
int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
if (err)
return err;
scsi_run_queue(sdev->request_queue);
while (sdev->device_busy) {
msleep_interruptible(200);
scsi_run_queue(sdev->request_queue);
}
return 0;
}
EXPORT_SYMBOL(scsi_device_quiesce);
/**
* scsi_device_resume - Restart user issued commands to a quiesced device.
* @sdev: scsi device to resume.
*
* Moves the device from quiesced back to running and restarts the
* queues.
*
* Must be called with user context, may sleep.
*/
void
scsi_device_resume(struct scsi_device *sdev)
{
if(scsi_device_set_state(sdev, SDEV_RUNNING))
return;
scsi_run_queue(sdev->request_queue);
}
EXPORT_SYMBOL(scsi_device_resume);
static void
device_quiesce_fn(struct scsi_device *sdev, void *data)
{
scsi_device_quiesce(sdev);
}
void
scsi_target_quiesce(struct scsi_target *starget)
{
starget_for_each_device(starget, NULL, device_quiesce_fn);
}
EXPORT_SYMBOL(scsi_target_quiesce);
static void
device_resume_fn(struct scsi_device *sdev, void *data)
{
scsi_device_resume(sdev);
}
void
scsi_target_resume(struct scsi_target *starget)
{
starget_for_each_device(starget, NULL, device_resume_fn);
}
EXPORT_SYMBOL(scsi_target_resume);
/**
* scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
* @sdev: device to block
*
* Block request made by scsi lld's to temporarily stop all
* scsi commands on the specified device. Called from interrupt
* or normal process context.
*
* Returns zero if successful or error if not
*
* Notes:
* This routine transitions the device to the SDEV_BLOCK state
* (which must be a legal transition). When the device is in this
* state, all commands are deferred until the scsi lld reenables
* the device with scsi_device_unblock or device_block_tmo fires.
* This routine assumes the host_lock is held on entry.
*/
int
scsi_internal_device_block(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
unsigned long flags;
int err = 0;
err = scsi_device_set_state(sdev, SDEV_BLOCK);
if (err) {
err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
if (err)
return err;
}
/*
* The device has transitioned to SDEV_BLOCK. Stop the
* block layer from calling the midlayer with this device's
* request queue.
*/
spin_lock_irqsave(q->queue_lock, flags);
blk_stop_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(scsi_internal_device_block);
/**
* scsi_internal_device_unblock - resume a device after a block request
* @sdev: device to resume
*
* Called by scsi lld's or the midlayer to restart the device queue
* for the previously suspended scsi device. Called from interrupt or
* normal process context.
*
* Returns zero if successful or error if not.
*
* Notes:
* This routine transitions the device to the SDEV_RUNNING state
* (which must be a legal transition) allowing the midlayer to
* goose the queue for this device. This routine assumes the
* host_lock is held upon entry.
*/
int
scsi_internal_device_unblock(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
unsigned long flags;
/*
* Try to transition the scsi device to SDEV_RUNNING
* and goose the device queue if successful.
*/
if (sdev->sdev_state == SDEV_BLOCK)
sdev->sdev_state = SDEV_RUNNING;
else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
sdev->sdev_state = SDEV_CREATED;
else if (sdev->sdev_state != SDEV_CANCEL &&
sdev->sdev_state != SDEV_OFFLINE)
return -EINVAL;
spin_lock_irqsave(q->queue_lock, flags);
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
static void
device_block(struct scsi_device *sdev, void *data)
{
scsi_internal_device_block(sdev);
}
static int
target_block(struct device *dev, void *data)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), NULL,
device_block);
return 0;
}
void
scsi_target_block(struct device *dev)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), NULL,
device_block);
else
device_for_each_child(dev, NULL, target_block);
}
EXPORT_SYMBOL_GPL(scsi_target_block);
static void
device_unblock(struct scsi_device *sdev, void *data)
{
scsi_internal_device_unblock(sdev);
}
static int
target_unblock(struct device *dev, void *data)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), NULL,
device_unblock);
return 0;
}
void
scsi_target_unblock(struct device *dev)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), NULL,
device_unblock);
else
device_for_each_child(dev, NULL, target_unblock);
}
EXPORT_SYMBOL_GPL(scsi_target_unblock);
/**
* scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
* @sgl: scatter-gather list
* @sg_count: number of segments in sg
* @offset: offset in bytes into sg, on return offset into the mapped area
* @len: bytes to map, on return number of bytes mapped
*
* Returns virtual address of the start of the mapped page
*/
void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
size_t *offset, size_t *len)
{
int i;
size_t sg_len = 0, len_complete = 0;
struct scatterlist *sg;
struct page *page;
WARN_ON(!irqs_disabled());
for_each_sg(sgl, sg, sg_count, i) {
len_complete = sg_len; /* Complete sg-entries */
sg_len += sg->length;
if (sg_len > *offset)
break;
}
if (unlikely(i == sg_count)) {
printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
"elements %d\n",
__func__, sg_len, *offset, sg_count);
WARN_ON(1);
return NULL;
}
/* Offset starting from the beginning of first page in this sg-entry */
*offset = *offset - len_complete + sg->offset;
/* Assumption: contiguous pages can be accessed as "page + i" */
page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
*offset &= ~PAGE_MASK;
/* Bytes in this sg-entry from *offset to the end of the page */
sg_len = PAGE_SIZE - *offset;
if (*len > sg_len)
*len = sg_len;
return kmap_atomic(page, KM_BIO_SRC_IRQ);
}
EXPORT_SYMBOL(scsi_kmap_atomic_sg);
/**
* scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
* @virt: virtual address to be unmapped
*/
void scsi_kunmap_atomic_sg(void *virt)
{
kunmap_atomic(virt, KM_BIO_SRC_IRQ);
}
EXPORT_SYMBOL(scsi_kunmap_atomic_sg);