| /* |
| * arch/ppc/mm/fault.c |
| * |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Derived from "arch/i386/mm/fault.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Modified by Cort Dougan and Paul Mackerras. |
| * |
| * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/kprobes.h> |
| |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/tlbflush.h> |
| #include <asm/kdebug.h> |
| #include <asm/siginfo.h> |
| |
| /* |
| * Check whether the instruction at regs->nip is a store using |
| * an update addressing form which will update r1. |
| */ |
| static int store_updates_sp(struct pt_regs *regs) |
| { |
| unsigned int inst; |
| |
| if (get_user(inst, (unsigned int __user *)regs->nip)) |
| return 0; |
| /* check for 1 in the rA field */ |
| if (((inst >> 16) & 0x1f) != 1) |
| return 0; |
| /* check major opcode */ |
| switch (inst >> 26) { |
| case 37: /* stwu */ |
| case 39: /* stbu */ |
| case 45: /* sthu */ |
| case 53: /* stfsu */ |
| case 55: /* stfdu */ |
| return 1; |
| case 62: /* std or stdu */ |
| return (inst & 3) == 1; |
| case 31: |
| /* check minor opcode */ |
| switch ((inst >> 1) & 0x3ff) { |
| case 181: /* stdux */ |
| case 183: /* stwux */ |
| case 247: /* stbux */ |
| case 439: /* sthux */ |
| case 695: /* stfsux */ |
| case 759: /* stfdux */ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) |
| static void do_dabr(struct pt_regs *regs, unsigned long error_code) |
| { |
| siginfo_t info; |
| |
| if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return; |
| |
| if (debugger_dabr_match(regs)) |
| return; |
| |
| /* Clear the DABR */ |
| set_dabr(0); |
| |
| /* Deliver the signal to userspace */ |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_HWBKPT; |
| info.si_addr = (void __user *)regs->nip; |
| force_sig_info(SIGTRAP, &info, current); |
| } |
| #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/ |
| |
| /* |
| * For 600- and 800-family processors, the error_code parameter is DSISR |
| * for a data fault, SRR1 for an instruction fault. For 400-family processors |
| * the error_code parameter is ESR for a data fault, 0 for an instruction |
| * fault. |
| * For 64-bit processors, the error_code parameter is |
| * - DSISR for a non-SLB data access fault, |
| * - SRR1 & 0x08000000 for a non-SLB instruction access fault |
| * - 0 any SLB fault. |
| * |
| * The return value is 0 if the fault was handled, or the signal |
| * number if this is a kernel fault that can't be handled here. |
| */ |
| int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, |
| unsigned long error_code) |
| { |
| struct vm_area_struct * vma; |
| struct mm_struct *mm = current->mm; |
| siginfo_t info; |
| int code = SEGV_MAPERR; |
| int is_write = 0; |
| int trap = TRAP(regs); |
| int is_exec = trap == 0x400; |
| |
| #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) |
| /* |
| * Fortunately the bit assignments in SRR1 for an instruction |
| * fault and DSISR for a data fault are mostly the same for the |
| * bits we are interested in. But there are some bits which |
| * indicate errors in DSISR but can validly be set in SRR1. |
| */ |
| if (trap == 0x400) |
| error_code &= 0x48200000; |
| else |
| is_write = error_code & DSISR_ISSTORE; |
| #else |
| is_write = error_code & ESR_DST; |
| #endif /* CONFIG_4xx || CONFIG_BOOKE */ |
| |
| if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code, |
| 11, SIGSEGV) == NOTIFY_STOP) |
| return 0; |
| |
| if (trap == 0x300) { |
| if (debugger_fault_handler(regs)) |
| return 0; |
| } |
| |
| /* On a kernel SLB miss we can only check for a valid exception entry */ |
| if (!user_mode(regs) && (address >= TASK_SIZE)) |
| return SIGSEGV; |
| |
| #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) |
| if (error_code & DSISR_DABRMATCH) { |
| /* DABR match */ |
| do_dabr(regs, error_code); |
| return 0; |
| } |
| #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/ |
| |
| if (in_atomic() || mm == NULL) { |
| if (!user_mode(regs)) |
| return SIGSEGV; |
| /* in_atomic() in user mode is really bad, |
| as is current->mm == NULL. */ |
| printk(KERN_EMERG "Page fault in user mode with" |
| "in_atomic() = %d mm = %p\n", in_atomic(), mm); |
| printk(KERN_EMERG "NIP = %lx MSR = %lx\n", |
| regs->nip, regs->msr); |
| die("Weird page fault", regs, SIGSEGV); |
| } |
| |
| /* When running in the kernel we expect faults to occur only to |
| * addresses in user space. All other faults represent errors in the |
| * kernel and should generate an OOPS. Unfortunatly, in the case of an |
| * erroneous fault occuring in a code path which already holds mmap_sem |
| * we will deadlock attempting to validate the fault against the |
| * address space. Luckily the kernel only validly references user |
| * space from well defined areas of code, which are listed in the |
| * exceptions table. |
| * |
| * As the vast majority of faults will be valid we will only perform |
| * the source reference check when there is a possibilty of a deadlock. |
| * Attempt to lock the address space, if we cannot we then validate the |
| * source. If this is invalid we can skip the address space check, |
| * thus avoiding the deadlock. |
| */ |
| if (!down_read_trylock(&mm->mmap_sem)) { |
| if (!user_mode(regs) && !search_exception_tables(regs->nip)) |
| goto bad_area_nosemaphore; |
| |
| down_read(&mm->mmap_sem); |
| } |
| |
| vma = find_vma(mm, address); |
| if (!vma) |
| goto bad_area; |
| if (vma->vm_start <= address) |
| goto good_area; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| |
| /* |
| * N.B. The POWER/Open ABI allows programs to access up to |
| * 288 bytes below the stack pointer. |
| * The kernel signal delivery code writes up to about 1.5kB |
| * below the stack pointer (r1) before decrementing it. |
| * The exec code can write slightly over 640kB to the stack |
| * before setting the user r1. Thus we allow the stack to |
| * expand to 1MB without further checks. |
| */ |
| if (address + 0x100000 < vma->vm_end) { |
| /* get user regs even if this fault is in kernel mode */ |
| struct pt_regs *uregs = current->thread.regs; |
| if (uregs == NULL) |
| goto bad_area; |
| |
| /* |
| * A user-mode access to an address a long way below |
| * the stack pointer is only valid if the instruction |
| * is one which would update the stack pointer to the |
| * address accessed if the instruction completed, |
| * i.e. either stwu rs,n(r1) or stwux rs,r1,rb |
| * (or the byte, halfword, float or double forms). |
| * |
| * If we don't check this then any write to the area |
| * between the last mapped region and the stack will |
| * expand the stack rather than segfaulting. |
| */ |
| if (address + 2048 < uregs->gpr[1] |
| && (!user_mode(regs) || !store_updates_sp(regs))) |
| goto bad_area; |
| } |
| if (expand_stack(vma, address)) |
| goto bad_area; |
| |
| good_area: |
| code = SEGV_ACCERR; |
| #if defined(CONFIG_6xx) |
| if (error_code & 0x95700000) |
| /* an error such as lwarx to I/O controller space, |
| address matching DABR, eciwx, etc. */ |
| goto bad_area; |
| #endif /* CONFIG_6xx */ |
| #if defined(CONFIG_8xx) |
| /* The MPC8xx seems to always set 0x80000000, which is |
| * "undefined". Of those that can be set, this is the only |
| * one which seems bad. |
| */ |
| if (error_code & 0x10000000) |
| /* Guarded storage error. */ |
| goto bad_area; |
| #endif /* CONFIG_8xx */ |
| |
| if (is_exec) { |
| #ifdef CONFIG_PPC64 |
| /* protection fault */ |
| if (error_code & DSISR_PROTFAULT) |
| goto bad_area; |
| if (!(vma->vm_flags & VM_EXEC)) |
| goto bad_area; |
| #endif |
| #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) |
| pte_t *ptep; |
| |
| /* Since 4xx/Book-E supports per-page execute permission, |
| * we lazily flush dcache to icache. */ |
| ptep = NULL; |
| if (get_pteptr(mm, address, &ptep) && pte_present(*ptep)) { |
| struct page *page = pte_page(*ptep); |
| |
| if (! test_bit(PG_arch_1, &page->flags)) { |
| flush_dcache_icache_page(page); |
| set_bit(PG_arch_1, &page->flags); |
| } |
| pte_update(ptep, 0, _PAGE_HWEXEC); |
| _tlbie(address); |
| pte_unmap(ptep); |
| up_read(&mm->mmap_sem); |
| return 0; |
| } |
| if (ptep != NULL) |
| pte_unmap(ptep); |
| #endif |
| /* a write */ |
| } else if (is_write) { |
| if (!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| /* a read */ |
| } else { |
| /* protection fault */ |
| if (error_code & 0x08000000) |
| goto bad_area; |
| if (!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| goto bad_area; |
| } |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| survive: |
| switch (handle_mm_fault(mm, vma, address, is_write)) { |
| |
| case VM_FAULT_MINOR: |
| current->min_flt++; |
| break; |
| case VM_FAULT_MAJOR: |
| current->maj_flt++; |
| break; |
| case VM_FAULT_SIGBUS: |
| goto do_sigbus; |
| case VM_FAULT_OOM: |
| goto out_of_memory; |
| default: |
| BUG(); |
| } |
| |
| up_read(&mm->mmap_sem); |
| return 0; |
| |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| bad_area_nosemaphore: |
| /* User mode accesses cause a SIGSEGV */ |
| if (user_mode(regs)) { |
| _exception(SIGSEGV, regs, code, address); |
| return 0; |
| } |
| |
| if (is_exec && (error_code & DSISR_PROTFAULT) |
| && printk_ratelimit()) |
| printk(KERN_CRIT "kernel tried to execute NX-protected" |
| " page (%lx) - exploit attempt? (uid: %d)\n", |
| address, current->uid); |
| |
| return SIGSEGV; |
| |
| /* |
| * We ran out of memory, or some other thing happened to us that made |
| * us unable to handle the page fault gracefully. |
| */ |
| out_of_memory: |
| up_read(&mm->mmap_sem); |
| if (current->pid == 1) { |
| yield(); |
| down_read(&mm->mmap_sem); |
| goto survive; |
| } |
| printk("VM: killing process %s\n", current->comm); |
| if (user_mode(regs)) |
| do_exit(SIGKILL); |
| return SIGKILL; |
| |
| do_sigbus: |
| up_read(&mm->mmap_sem); |
| if (user_mode(regs)) { |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGBUS, &info, current); |
| return 0; |
| } |
| return SIGBUS; |
| } |
| |
| /* |
| * bad_page_fault is called when we have a bad access from the kernel. |
| * It is called from the DSI and ISI handlers in head.S and from some |
| * of the procedures in traps.c. |
| */ |
| void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) |
| { |
| const struct exception_table_entry *entry; |
| |
| /* Are we prepared to handle this fault? */ |
| if ((entry = search_exception_tables(regs->nip)) != NULL) { |
| regs->nip = entry->fixup; |
| return; |
| } |
| |
| /* kernel has accessed a bad area */ |
| die("Kernel access of bad area", regs, sig); |
| } |