blob: 424a4fe2da8c3cf216bd8b05fea27b742dd922ee [file] [log] [blame]
/*
* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/platform_device.h>
#include <linux/wakelock.h>
#include <linux/workqueue.h>
#include <linux/regulator/driver.h>
#include <mach/rpm.h>
#include <mach/rpm-regulator.h>
#include <mach/rpm-regulator-smd.h>
#include <mach/socinfo.h>
#include "rpm_resources.h"
#include "rpm-regulator-private.h"
/* Debug Definitions */
enum {
MSM_RPM_VREG_DEBUG_REQUEST = BIT(0),
MSM_RPM_VREG_DEBUG_VOTE = BIT(1),
MSM_RPM_VREG_DEBUG_DUPLICATE = BIT(2),
MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG = BIT(3),
};
static int msm_rpm_vreg_debug_mask;
module_param_named(
debug_mask, msm_rpm_vreg_debug_mask, int, S_IRUSR | S_IWUSR
);
/* Used for access via the rpm_regulator_* API. */
struct rpm_regulator {
int vreg_id;
enum rpm_vreg_voter voter;
int sleep_also;
int min_uV;
int max_uV;
};
struct vreg_config *(*get_config[])(void) = {
[RPM_VREG_VERSION_8660] = get_config_8660,
[RPM_VREG_VERSION_8960] = get_config_8960,
[RPM_VREG_VERSION_9615] = get_config_9615,
[RPM_VREG_VERSION_8930] = get_config_8930,
[RPM_VREG_VERSION_8930_PM8917] = get_config_8930_pm8917,
};
static struct rpm_regulator_consumer_mapping *consumer_map;
static int consumer_map_len;
#define SET_PART(_vreg, _part, _val) \
_vreg->req[_vreg->part->_part.word].value \
= (_vreg->req[_vreg->part->_part.word].value \
& ~_vreg->part->_part.mask) \
| (((_val) << _vreg->part->_part.shift) \
& _vreg->part->_part.mask)
#define GET_PART(_vreg, _part) \
((_vreg->req[_vreg->part->_part.word].value & _vreg->part->_part.mask) \
>> _vreg->part->_part.shift)
#define GET_PART_PREV_ACT(_vreg, _part) \
((_vreg->prev_active_req[_vreg->part->_part.word].value \
& _vreg->part->_part.mask) \
>> _vreg->part->_part.shift)
#define USES_PART(_vreg, _part) (_vreg->part->_part.mask)
#define vreg_err(vreg, fmt, ...) \
pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__)
#define RPM_VREG_PIN_CTRL_EN0 0x01
#define RPM_VREG_PIN_CTRL_EN1 0x02
#define RPM_VREG_PIN_CTRL_EN2 0x04
#define RPM_VREG_PIN_CTRL_EN3 0x08
#define RPM_VREG_PIN_CTRL_ALL 0x0F
static const char *label_freq[] = {
[RPM_VREG_FREQ_NONE] = " N/A",
[RPM_VREG_FREQ_19p20] = "19.2",
[RPM_VREG_FREQ_9p60] = "9.60",
[RPM_VREG_FREQ_6p40] = "6.40",
[RPM_VREG_FREQ_4p80] = "4.80",
[RPM_VREG_FREQ_3p84] = "3.84",
[RPM_VREG_FREQ_3p20] = "3.20",
[RPM_VREG_FREQ_2p74] = "2.74",
[RPM_VREG_FREQ_2p40] = "2.40",
[RPM_VREG_FREQ_2p13] = "2.13",
[RPM_VREG_FREQ_1p92] = "1.92",
[RPM_VREG_FREQ_1p75] = "1.75",
[RPM_VREG_FREQ_1p60] = "1.60",
[RPM_VREG_FREQ_1p48] = "1.48",
[RPM_VREG_FREQ_1p37] = "1.37",
[RPM_VREG_FREQ_1p28] = "1.28",
[RPM_VREG_FREQ_1p20] = "1.20",
};
static const char *label_corner[] = {
[RPM_VREG_CORNER_NONE] = "NONE",
[RPM_VREG_CORNER_LOW] = "LOW",
[RPM_VREG_CORNER_NOMINAL] = "NOM",
[RPM_VREG_CORNER_HIGH] = "HIGH",
};
/*
* This is used when voting for LPM or HPM by subtracting or adding to the
* hpm_min_load of a regulator. It has units of uA.
*/
#define LOAD_THRESHOLD_STEP 1000
/* rpm_version keeps track of the version for the currently running driver. */
enum rpm_vreg_version rpm_version = -1;
/* config holds all configuration data of the currently running driver. */
static struct vreg_config *config;
/* These regulator ID values are specified in the board file. */
static int vreg_id_vdd_mem, vreg_id_vdd_dig;
static inline int vreg_id_is_vdd_mem_or_dig(int id)
{
return id == vreg_id_vdd_mem || id == vreg_id_vdd_dig;
}
#define DEBUG_PRINT_BUFFER_SIZE 512
static void rpm_regulator_req(struct vreg *vreg, int set)
{
int uV, mV, fm, pm, pc, pf, pd, freq, state, i;
const char *pf_label = "", *fm_label = "", *pc_total = "";
const char *pc_en[4] = {"", "", "", ""};
const char *pm_label = "", *freq_label = "", *corner_label = "";
char buf[DEBUG_PRINT_BUFFER_SIZE];
size_t buflen = DEBUG_PRINT_BUFFER_SIZE;
int pos = 0;
/* Suppress VDD_MEM and VDD_DIG printing. */
if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
&& vreg_id_is_vdd_mem_or_dig(vreg->id))
return;
uV = GET_PART(vreg, uV);
mV = GET_PART(vreg, mV);
if (vreg->type == RPM_REGULATOR_TYPE_NCP) {
uV = -uV;
mV = -mV;
}
fm = GET_PART(vreg, fm);
pm = GET_PART(vreg, pm);
pc = GET_PART(vreg, pc);
pf = GET_PART(vreg, pf);
pd = GET_PART(vreg, pd);
freq = GET_PART(vreg, freq);
state = GET_PART(vreg, enable_state);
if (pf >= 0 && pf < config->label_pin_func_len)
pf_label = config->label_pin_func[pf];
if (fm >= 0 && fm < config->label_force_mode_len)
fm_label = config->label_force_mode[fm];
if (pm >= 0 && pm < config->label_power_mode_len)
pm_label = config->label_power_mode[pm];
if (freq >= 0 && freq < ARRAY_SIZE(label_freq))
freq_label = label_freq[freq];
for (i = 0; i < config->label_pin_ctrl_len; i++)
if (pc & (1 << i))
pc_en[i] = config->label_pin_ctrl[i];
if (pc == RPM_VREG_PIN_CTRL_NONE)
pc_total = " none";
pos += scnprintf(buf + pos, buflen - pos, "%s%s: ",
KERN_INFO, __func__);
pos += scnprintf(buf + pos, buflen - pos, "%s %-9s: s=%c",
(set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"),
vreg->rdesc.name,
(set == MSM_RPM_CTX_SET_0 ? 'A' : 'S'));
if (USES_PART(vreg, uV) && vreg->type != RPM_REGULATOR_TYPE_CORNER)
pos += scnprintf(buf + pos, buflen - pos, ", v=%7d uV", uV);
if (USES_PART(vreg, mV))
pos += scnprintf(buf + pos, buflen - pos, ", v=%4d mV", mV);
if (USES_PART(vreg, enable_state))
pos += scnprintf(buf + pos, buflen - pos, ", state=%s (%d)",
(state == 1 ? "on" : "off"), state);
if (USES_PART(vreg, ip))
pos += scnprintf(buf + pos, buflen - pos,
", ip=%4d mA", GET_PART(vreg, ip));
if (USES_PART(vreg, fm))
pos += scnprintf(buf + pos, buflen - pos,
", fm=%s (%d)", fm_label, fm);
if (USES_PART(vreg, pc))
pos += scnprintf(buf + pos, buflen - pos,
", pc=%s%s%s%s%s (%X)", pc_en[0], pc_en[1],
pc_en[2], pc_en[3], pc_total, pc);
if (USES_PART(vreg, pf))
pos += scnprintf(buf + pos, buflen - pos,
", pf=%s (%d)", pf_label, pf);
if (USES_PART(vreg, pd))
pos += scnprintf(buf + pos, buflen - pos,
", pd=%s (%d)", (pd == 1 ? "Y" : "N"), pd);
if (USES_PART(vreg, ia))
pos += scnprintf(buf + pos, buflen - pos,
", ia=%4d mA", GET_PART(vreg, ia));
if (USES_PART(vreg, freq)) {
if (vreg->type == RPM_REGULATOR_TYPE_NCP)
pos += scnprintf(buf + pos, buflen - pos,
", freq=%2d", freq);
else
pos += scnprintf(buf + pos, buflen - pos,
", freq=%s MHz (%2d)", freq_label, freq);
}
if (USES_PART(vreg, pm))
pos += scnprintf(buf + pos, buflen - pos,
", pm=%s (%d)", pm_label, pm);
if (USES_PART(vreg, freq_clk_src))
pos += scnprintf(buf + pos, buflen - pos,
", clk_src=%d", GET_PART(vreg, freq_clk_src));
if (USES_PART(vreg, comp_mode))
pos += scnprintf(buf + pos, buflen - pos,
", comp=%d", GET_PART(vreg, comp_mode));
if (USES_PART(vreg, hpm))
pos += scnprintf(buf + pos, buflen - pos,
", hpm=%d", GET_PART(vreg, hpm));
if (USES_PART(vreg, uV) && vreg->type == RPM_REGULATOR_TYPE_CORNER) {
if (uV >= 0 && uV < (ARRAY_SIZE(label_corner) - 1))
corner_label = label_corner[uV+1];
pos += scnprintf(buf + pos, buflen - pos, ", corner=%s (%d)",
corner_label, uV);
}
pos += scnprintf(buf + pos, buflen - pos, "; req[0]={%d, 0x%08X}",
vreg->req[0].id, vreg->req[0].value);
if (vreg->part->request_len > 1)
pos += scnprintf(buf + pos, buflen - pos,
", req[1]={%d, 0x%08X}", vreg->req[1].id,
vreg->req[1].value);
pos += scnprintf(buf + pos, buflen - pos, "\n");
printk(buf);
}
static void rpm_regulator_vote(struct vreg *vreg, enum rpm_vreg_voter voter,
int set, int voter_uV, int aggregate_uV)
{
/* Suppress VDD_MEM and VDD_DIG printing. */
if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
&& vreg_id_is_vdd_mem_or_dig(vreg->id))
return;
pr_info("vote received %-9s: voter=%d, set=%c, v_voter=%7d uV, "
"v_aggregate=%7d uV\n", vreg->rdesc.name, voter,
(set == 0 ? 'A' : 'S'), voter_uV, aggregate_uV);
}
static void rpm_regulator_duplicate(struct vreg *vreg, int set, int cnt)
{
/* Suppress VDD_MEM and VDD_DIG printing. */
if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG)
&& vreg_id_is_vdd_mem_or_dig(vreg->id))
return;
if (cnt == 2)
pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}, "
"req[1]={%d, 0x%08X}\n", vreg->rdesc.name,
(set == 0 ? 'A' : 'S'),
vreg->req[0].id, vreg->req[0].value,
vreg->req[1].id, vreg->req[1].value);
else if (cnt == 1)
pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}\n",
vreg->rdesc.name, (set == 0 ? 'A' : 'S'),
vreg->req[0].id, vreg->req[0].value);
}
static bool requires_tcxo_workaround;
static bool tcxo_workaround_noirq;
static struct clk *tcxo_handle;
static struct wake_lock tcxo_wake_lock;
static DEFINE_MUTEX(tcxo_mutex);
/* Spin lock needed for sleep-selectable regulators. */
static DEFINE_SPINLOCK(tcxo_noirq_lock);
static bool tcxo_is_enabled;
/*
* TCXO must be kept on for at least the duration of its warmup (4 ms);
* otherwise, it will stay on when hardware disabling is attempted.
*/
#define TCXO_WARMUP_TIME_MS 4
static void tcxo_get_handle(void)
{
int rc;
if (!tcxo_handle) {
tcxo_handle = clk_get_sys("rpm-regulator", "vref_buff");
if (IS_ERR(tcxo_handle)) {
tcxo_handle = NULL;
} else {
rc = clk_prepare(tcxo_handle);
if (rc) {
clk_put(tcxo_handle);
tcxo_handle = NULL;
}
}
}
}
/*
* Perform best effort enable of CXO. Since the MSM clock drivers depend upon
* the rpm-regulator driver, any rpm-regulator devices that are configured with
* always_on == 1 will not be able to enable CXO during probe. This does not
* cause a problem though since CXO will be enabled by the boot loaders before
* Apps boots up.
*/
static bool tcxo_enable(void)
{
int rc;
if (tcxo_handle && !tcxo_is_enabled) {
rc = clk_enable(tcxo_handle);
if (!rc) {
tcxo_is_enabled = true;
wake_lock(&tcxo_wake_lock);
return true;
}
}
return false;
}
static void tcxo_delayed_disable_work(struct work_struct *work)
{
unsigned long flags = 0;
if (tcxo_workaround_noirq)
spin_lock_irqsave(&tcxo_noirq_lock, flags);
else
mutex_lock(&tcxo_mutex);
clk_disable(tcxo_handle);
tcxo_is_enabled = false;
wake_unlock(&tcxo_wake_lock);
if (tcxo_workaround_noirq)
spin_unlock_irqrestore(&tcxo_noirq_lock, flags);
else
mutex_unlock(&tcxo_mutex);
}
static DECLARE_DELAYED_WORK(tcxo_disable_work, tcxo_delayed_disable_work);
static void tcxo_delayed_disable(void)
{
/*
* The delay in jiffies has 1 added to it to ensure that at least
* one jiffy takes place before the work is enqueued. Without this,
* the work would be scheduled to run in the very next jiffy which could
* result in too little delay and TCXO being stuck on.
*/
if (tcxo_handle)
schedule_delayed_work(&tcxo_disable_work,
msecs_to_jiffies(TCXO_WARMUP_TIME_MS) + 1);
}
/* Spin lock needed for sleep-selectable regulators. */
static DEFINE_SPINLOCK(rpm_noirq_lock);
static int voltage_from_req(struct vreg *vreg)
{
int uV = 0;
if (vreg->part->uV.mask)
uV = GET_PART(vreg, uV);
else if (vreg->part->mV.mask)
uV = MILLI_TO_MICRO(GET_PART(vreg, mV));
else if (vreg->part->enable_state.mask)
uV = GET_PART(vreg, enable_state);
return uV;
}
static void voltage_to_req(int uV, struct vreg *vreg)
{
if (vreg->part->uV.mask)
SET_PART(vreg, uV, uV);
else if (vreg->part->mV.mask)
SET_PART(vreg, mV, MICRO_TO_MILLI(uV));
else if (vreg->part->enable_state.mask)
SET_PART(vreg, enable_state, uV);
}
static int vreg_send_request(struct vreg *vreg, enum rpm_vreg_voter voter,
int set, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1, unsigned cnt,
int update_voltage)
{
struct msm_rpm_iv_pair *prev_req;
int rc = 0, max_uV_vote = 0;
unsigned long flags = 0;
bool tcxo_enabled = false;
bool voltage_increased = false;
unsigned prev0, prev1;
int *min_uV_vote;
int i;
if (set == MSM_RPM_CTX_SET_0) {
min_uV_vote = vreg->active_min_uV_vote;
prev_req = vreg->prev_active_req;
} else {
min_uV_vote = vreg->sleep_min_uV_vote;
prev_req = vreg->prev_sleep_req;
}
prev0 = vreg->req[0].value;
vreg->req[0].value &= ~mask0;
vreg->req[0].value |= val0 & mask0;
prev1 = vreg->req[1].value;
vreg->req[1].value &= ~mask1;
vreg->req[1].value |= val1 & mask1;
/* Set the force mode field based on which set is being requested. */
if (set == MSM_RPM_CTX_SET_0)
SET_PART(vreg, fm, vreg->pdata.force_mode);
else
SET_PART(vreg, fm, vreg->pdata.sleep_set_force_mode);
if (update_voltage)
min_uV_vote[voter] = voltage_from_req(vreg);
/* Find the highest voltage voted for and use it. */
for (i = 0; i < RPM_VREG_VOTER_COUNT; i++)
max_uV_vote = max(max_uV_vote, min_uV_vote[i]);
voltage_to_req(max_uV_vote, vreg);
if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_VOTE)
rpm_regulator_vote(vreg, voter, set, min_uV_vote[voter],
max_uV_vote);
/* Ignore duplicate requests */
if (vreg->req[0].value != prev_req[0].value ||
vreg->req[1].value != prev_req[1].value) {
/* Enable CXO clock if necessary for TCXO workaround. */
if (requires_tcxo_workaround && vreg->requires_cxo
&& (set == MSM_RPM_CTX_SET_0)
&& (GET_PART(vreg, uV) > GET_PART_PREV_ACT(vreg, uV))) {
voltage_increased = true;
spin_lock_irqsave(&tcxo_noirq_lock, flags);
tcxo_enabled = tcxo_enable();
}
rc = msm_rpmrs_set_noirq(set, vreg->req, cnt);
if (rc) {
vreg->req[0].value = prev0;
vreg->req[1].value = prev1;
vreg_err(vreg, "msm_rpmrs_set_noirq failed - "
"set=%s, id=%d, rc=%d\n",
(set == MSM_RPM_CTX_SET_0 ? "active" : "sleep"),
vreg->req[0].id, rc);
} else {
/* Only save if nonzero and active set. */
if (max_uV_vote && (set == MSM_RPM_CTX_SET_0))
vreg->save_uV = max_uV_vote;
if (msm_rpm_vreg_debug_mask
& MSM_RPM_VREG_DEBUG_REQUEST)
rpm_regulator_req(vreg, set);
prev_req[0].value = vreg->req[0].value;
prev_req[1].value = vreg->req[1].value;
}
/*
* Schedule CXO clock to be disabled after TCXO warmup time if
* TCXO workaround is applicable for this regulator.
*/
if (voltage_increased) {
if (tcxo_enabled)
tcxo_delayed_disable();
spin_unlock_irqrestore(&tcxo_noirq_lock, flags);
}
} else if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) {
rpm_regulator_duplicate(vreg, set, cnt);
}
return rc;
}
static int vreg_set_noirq(struct vreg *vreg, enum rpm_vreg_voter voter,
int sleep, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1, unsigned cnt,
int update_voltage)
{
unsigned int s_mask[2] = {mask0, mask1}, s_val[2] = {val0, val1};
unsigned long flags;
int rc;
if (voter < 0 || voter >= RPM_VREG_VOTER_COUNT)
return -EINVAL;
spin_lock_irqsave(&rpm_noirq_lock, flags);
/*
* Send sleep set request first so that subsequent set_mode, etc calls
* use the voltage from the active set.
*/
if (sleep)
rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP,
mask0, val0, mask1, val1, cnt, update_voltage);
else {
/*
* Vote for 0 V in the sleep set when active set-only is
* specified. This ensures that a disable vote will be issued
* at some point for the sleep set of the regulator.
*/
if (vreg->part->uV.mask) {
s_val[vreg->part->uV.word] = 0 << vreg->part->uV.shift;
s_mask[vreg->part->uV.word] = vreg->part->uV.mask;
} else if (vreg->part->mV.mask) {
s_val[vreg->part->mV.word] = 0 << vreg->part->mV.shift;
s_mask[vreg->part->mV.word] = vreg->part->mV.mask;
} else if (vreg->part->enable_state.mask) {
s_val[vreg->part->enable_state.word]
= 0 << vreg->part->enable_state.shift;
s_mask[vreg->part->enable_state.word]
= vreg->part->enable_state.mask;
}
rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP,
s_mask[0], s_val[0], s_mask[1], s_val[1],
cnt, update_voltage);
}
rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_0, mask0, val0,
mask1, val1, cnt, update_voltage);
spin_unlock_irqrestore(&rpm_noirq_lock, flags);
return rc;
}
/**
* rpm_vreg_set_voltage - vote for a min_uV value of specified regualtor
* @vreg: ID for regulator
* @voter: ID for the voter
* @min_uV: minimum acceptable voltage (in uV) that is voted for
* @max_uV: maximum acceptable voltage (in uV) that is voted for
* @sleep_also: 0 for active set only, non-0 for active set and sleep set
*
* Returns 0 on success or errno.
*
* This function is used to vote for the voltage of a regulator without
* using the regulator framework. It is needed by consumers which hold spin
* locks or have interrupts disabled because the regulator framework can sleep.
* It is also needed by consumers which wish to only vote for active set
* regulator voltage.
*
* If sleep_also == 0, then a sleep-set value of 0V will be voted for.
*
* This function may only be called for regulators which have the sleep flag
* specified in their private data.
*
* Consumers can vote to disable a regulator with this function by passing
* min_uV = 0 and max_uV = 0.
*
* Voltage switch type regulators may be controlled via rpm_vreg_set_voltage
* as well. For this type of regulator, max_uV > 0 is treated as an enable
* request and max_uV == 0 is treated as a disable request.
*/
int rpm_vreg_set_voltage(int vreg_id, enum rpm_vreg_voter voter, int min_uV,
int max_uV, int sleep_also)
{
unsigned int mask[2] = {0}, val[2] = {0};
struct vreg_range *range;
struct vreg *vreg;
int uV = min_uV;
int lim_min_uV, lim_max_uV, i, rc;
if (!config) {
pr_err("rpm-regulator driver has not probed yet.\n");
return -ENODEV;
}
if (vreg_id < config->vreg_id_min || vreg_id > config->vreg_id_max) {
pr_err("invalid regulator id=%d\n", vreg_id);
return -EINVAL;
}
vreg = &config->vregs[vreg_id];
if (!vreg->pdata.sleep_selectable) {
vreg_err(vreg, "regulator is not marked sleep selectable\n");
return -EINVAL;
}
/* Allow min_uV == max_uV == 0 to represent a disable request. */
if ((min_uV != 0 || max_uV != 0)
&& (vreg->part->uV.mask || vreg->part->mV.mask)) {
/*
* Check if request voltage is outside of allowed range. The
* regulator core has already checked that constraint range
* is inside of the physically allowed range.
*/
lim_min_uV = vreg->pdata.init_data.constraints.min_uV;
lim_max_uV = vreg->pdata.init_data.constraints.max_uV;
if (uV < lim_min_uV && max_uV >= lim_min_uV)
uV = lim_min_uV;
if (uV < lim_min_uV || uV > lim_max_uV) {
vreg_err(vreg, "request v=[%d, %d] is outside allowed "
"v=[%d, %d]\n", min_uV, max_uV, lim_min_uV,
lim_max_uV);
return -EINVAL;
}
range = &vreg->set_points->range[0];
/* Find the range which uV is inside of. */
for (i = vreg->set_points->count - 1; i > 0; i--) {
if (uV > vreg->set_points->range[i - 1].max_uV) {
range = &vreg->set_points->range[i];
break;
}
}
/*
* Force uV to be an allowed set point and apply a ceiling
* function to non-set point values.
*/
uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV;
uV = uV * range->step_uV + range->min_uV;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point; "
"next set point: %d\n",
min_uV, max_uV, uV);
return -EINVAL;
}
}
if (vreg->type == RPM_REGULATOR_TYPE_CORNER) {
/*
* Translate from enum values which work as inputs in the
* rpm_vreg_set_voltage function to the actual corner values
* sent to the RPM.
*/
if (uV > 0)
uV -= RPM_VREG_CORNER_NONE;
}
if (vreg->part->uV.mask) {
val[vreg->part->uV.word] = uV << vreg->part->uV.shift;
mask[vreg->part->uV.word] = vreg->part->uV.mask;
} else if (vreg->part->mV.mask) {
val[vreg->part->mV.word]
= MICRO_TO_MILLI(uV) << vreg->part->mV.shift;
mask[vreg->part->mV.word] = vreg->part->mV.mask;
} else if (vreg->part->enable_state.mask) {
/*
* Translate max_uV > 0 into an enable request for regulator
* types which to not support voltage setting, e.g. voltage
* switches.
*/
val[vreg->part->enable_state.word]
= (max_uV > 0 ? 1 : 0) << vreg->part->enable_state.shift;
mask[vreg->part->enable_state.word]
= vreg->part->enable_state.mask;
}
rc = vreg_set_noirq(vreg, voter, sleep_also, mask[0], val[0], mask[1],
val[1], vreg->part->request_len, 1);
if (rc)
vreg_err(vreg, "vreg_set_noirq failed, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(rpm_vreg_set_voltage);
/**
* rpm_vreg_set_frequency - sets the frequency of a switching regulator
* @vreg: ID for regulator
* @freq: enum corresponding to desired frequency
*
* Returns 0 on success or errno.
*/
int rpm_vreg_set_frequency(int vreg_id, enum rpm_vreg_freq freq)
{
unsigned int mask[2] = {0}, val[2] = {0};
struct vreg *vreg;
int rc;
if (!config) {
pr_err("rpm-regulator driver has not probed yet.\n");
return -ENODEV;
}
if (vreg_id < config->vreg_id_min || vreg_id > config->vreg_id_max) {
pr_err("invalid regulator id=%d\n", vreg_id);
return -EINVAL;
}
vreg = &config->vregs[vreg_id];
if (freq < 0 || freq > RPM_VREG_FREQ_1p20) {
vreg_err(vreg, "invalid frequency=%d\n", freq);
return -EINVAL;
}
if (!vreg->pdata.sleep_selectable) {
vreg_err(vreg, "regulator is not marked sleep selectable\n");
return -EINVAL;
}
if (!vreg->part->freq.mask) {
vreg_err(vreg, "frequency not supported\n");
return -EINVAL;
}
val[vreg->part->freq.word] = freq << vreg->part->freq.shift;
mask[vreg->part->freq.word] = vreg->part->freq.mask;
rc = vreg_set_noirq(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, mask[0],
val[0], mask[1], val[1], vreg->part->request_len, 0);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(rpm_vreg_set_frequency);
#define MAX_NAME_LEN 64
/**
* rpm_regulator_get() - lookup and obtain a handle to an RPM regulator
* @dev: device for regulator consumer
* @supply: supply name
*
* Returns a struct rpm_regulator corresponding to the regulator producer,
* or ERR_PTR() containing errno.
*
* This function may only be called from nonatomic context. The mapping between
* <dev, supply> tuples and rpm_regulators struct pointers is specified via
* rpm-regulator platform data.
*/
struct rpm_regulator *rpm_regulator_get(struct device *dev, const char *supply)
{
struct rpm_regulator_consumer_mapping *mapping = NULL;
const char *devname = NULL;
struct rpm_regulator *regulator;
int i;
if (!config) {
pr_err("rpm-regulator driver has not probed yet.\n");
return ERR_PTR(-ENODEV);
}
if (consumer_map == NULL || consumer_map_len == 0) {
pr_err("No private consumer mapping has been specified.\n");
return ERR_PTR(-ENODEV);
}
if (supply == NULL) {
pr_err("supply name must be specified\n");
return ERR_PTR(-EINVAL);
}
if (dev)
devname = dev_name(dev);
for (i = 0; i < consumer_map_len; i++) {
/* If the mapping has a device set up it must match */
if (consumer_map[i].dev_name &&
(!devname || strncmp(consumer_map[i].dev_name, devname,
MAX_NAME_LEN)))
continue;
if (strncmp(consumer_map[i].supply, supply, MAX_NAME_LEN)
== 0) {
mapping = &consumer_map[i];
break;
}
}
if (mapping == NULL) {
pr_err("could not find mapping for dev=%s, supply=%s\n",
(devname ? devname : "(null)"), supply);
return ERR_PTR(-ENODEV);
}
regulator = kzalloc(sizeof(struct rpm_regulator), GFP_KERNEL);
if (regulator == NULL) {
pr_err("could not allocate memory for regulator\n");
return ERR_PTR(-ENOMEM);
}
regulator->vreg_id = mapping->vreg_id;
regulator->voter = mapping->voter;
regulator->sleep_also = mapping->sleep_also;
return regulator;
}
EXPORT_SYMBOL_GPL(rpm_regulator_get);
static int rpm_regulator_check_input(struct rpm_regulator *regulator)
{
int rc = 0;
if (regulator == NULL) {
rc = -EINVAL;
pr_err("invalid (null) rpm_regulator pointer\n");
} else if (IS_ERR(regulator)) {
rc = PTR_ERR(regulator);
pr_err("invalid rpm_regulator pointer, rc=%d\n", rc);
}
return rc;
}
/**
* rpm_regulator_put() - free the RPM regulator handle
* @regulator: RPM regulator handle
*
* Parameter reaggregation does not take place when rpm_regulator_put is called.
* Therefore, regulator enable state and voltage must be configured
* appropriately before calling rpm_regulator_put.
*
* This function may be called from either atomic or nonatomic context.
*/
void rpm_regulator_put(struct rpm_regulator *regulator)
{
kfree(regulator);
}
EXPORT_SYMBOL_GPL(rpm_regulator_put);
/**
* rpm_regulator_enable() - enable regulator output
* @regulator: RPM regulator handle
*
* Returns 0 on success or errno on failure.
*
* This function may be called from either atomic or nonatomic context. This
* function may only be called for regulators which have the sleep_selectable
* flag set in their configuration data.
*
* rpm_regulator_set_voltage must be called before rpm_regulator_enable because
* enabling is defined by the RPM interface to be requesting the desired
* non-zero regulator output voltage.
*/
int rpm_regulator_enable(struct rpm_regulator *regulator)
{
int rc = rpm_regulator_check_input(regulator);
struct vreg *vreg;
if (rc)
return rc;
if (regulator->vreg_id < config->vreg_id_min
|| regulator->vreg_id > config->vreg_id_max) {
pr_err("invalid regulator id=%d\n", regulator->vreg_id);
return -EINVAL;
}
vreg = &config->vregs[regulator->vreg_id];
/*
* Handle voltage switches which can be enabled without
* rpm_regulator_set_voltage ever being called.
*/
if (regulator->min_uV == 0 && regulator->max_uV == 0
&& vreg->part->uV.mask == 0 && vreg->part->mV.mask == 0) {
regulator->min_uV = 1;
regulator->max_uV = 1;
}
if (regulator->min_uV == 0 && regulator->max_uV == 0) {
pr_err("Voltage must be set with rpm_regulator_set_voltage "
"before calling rpm_regulator_enable; vreg_id=%d, "
"voter=%d\n", regulator->vreg_id, regulator->voter);
return -EINVAL;
}
rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter,
regulator->min_uV, regulator->max_uV, regulator->sleep_also);
if (rc)
pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(rpm_regulator_enable);
/**
* rpm_regulator_disable() - disable regulator output
* @regulator: RPM regulator handle
*
* Returns 0 on success or errno on failure.
*
* The enable state of the regulator is determined by aggregating the requests
* of all consumers. Therefore, it is possible that the regulator will remain
* enabled even after rpm_regulator_disable is called.
*
* This function may be called from either atomic or nonatomic context. This
* function may only be called for regulators which have the sleep_selectable
* flag set in their configuration data.
*/
int rpm_regulator_disable(struct rpm_regulator *regulator)
{
int rc = rpm_regulator_check_input(regulator);
if (rc)
return rc;
rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, 0, 0,
regulator->sleep_also);
if (rc)
pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL_GPL(rpm_regulator_disable);
/**
* rpm_regulator_set_voltage() - set regulator output voltage
* @regulator: RPM regulator handle
* @min_uV: minimum required voltage in uV
* @max_uV: maximum acceptable voltage in uV
*
* Sets a voltage regulator to the desired output voltage. This can be set
* while the regulator is disabled or enabled. If the regulator is disabled,
* then rpm_regulator_set_voltage will both enable the regulator and set it to
* output at the requested voltage.
*
* The min_uV to max_uV voltage range requested must intersect with the
* voltage constraint range configured for the regulator.
*
* Returns 0 on success or errno on failure.
*
* The final voltage value that is sent to the RPM is aggregated based upon the
* values requested by all consumers of the regulator. This corresponds to the
* maximum min_uV value.
*
* This function may be called from either atomic or nonatomic context. This
* function may only be called for regulators which have the sleep_selectable
* flag set in their configuration data.
*/
int rpm_regulator_set_voltage(struct rpm_regulator *regulator, int min_uV,
int max_uV)
{
int rc = rpm_regulator_check_input(regulator);
if (rc)
return rc;
rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, min_uV,
max_uV, regulator->sleep_also);
if (rc) {
pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc);
} else {
regulator->min_uV = min_uV;
regulator->max_uV = max_uV;
}
return rc;
}
EXPORT_SYMBOL_GPL(rpm_regulator_set_voltage);
static inline int vreg_hpm_min_uA(struct vreg *vreg)
{
return vreg->hpm_min_load;
}
static inline int vreg_lpm_max_uA(struct vreg *vreg)
{
return vreg->hpm_min_load - LOAD_THRESHOLD_STEP;
}
static inline unsigned saturate_peak_load(struct vreg *vreg, unsigned load_uA)
{
unsigned load_max
= MILLI_TO_MICRO(vreg->part->ip.mask >> vreg->part->ip.shift);
return (load_uA > load_max ? load_max : load_uA);
}
static inline unsigned saturate_avg_load(struct vreg *vreg, unsigned load_uA)
{
unsigned load_max
= MILLI_TO_MICRO(vreg->part->ia.mask >> vreg->part->ia.shift);
return (load_uA > load_max ? load_max : load_uA);
}
/* Change vreg->req, but do not send it to the RPM. */
static int vreg_store(struct vreg *vreg, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1)
{
unsigned long flags = 0;
if (vreg->pdata.sleep_selectable)
spin_lock_irqsave(&rpm_noirq_lock, flags);
vreg->req[0].value &= ~mask0;
vreg->req[0].value |= val0 & mask0;
vreg->req[1].value &= ~mask1;
vreg->req[1].value |= val1 & mask1;
if (vreg->pdata.sleep_selectable)
spin_unlock_irqrestore(&rpm_noirq_lock, flags);
return 0;
}
static int vreg_set(struct vreg *vreg, unsigned mask0, unsigned val0,
unsigned mask1, unsigned val1, unsigned cnt)
{
unsigned prev0 = 0, prev1 = 0;
unsigned long flags = 0;
bool tcxo_enabled = false;
bool voltage_increased = false;
int rc;
/*
* Bypass the normal route for regulators that can be called to change
* just the active set values.
*/
if (vreg->pdata.sleep_selectable)
return vreg_set_noirq(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1,
mask0, val0, mask1, val1, cnt, 1);
prev0 = vreg->req[0].value;
vreg->req[0].value &= ~mask0;
vreg->req[0].value |= val0 & mask0;
prev1 = vreg->req[1].value;
vreg->req[1].value &= ~mask1;
vreg->req[1].value |= val1 & mask1;
/* Ignore duplicate requests */
if (vreg->req[0].value == vreg->prev_active_req[0].value &&
vreg->req[1].value == vreg->prev_active_req[1].value) {
if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE)
rpm_regulator_duplicate(vreg, MSM_RPM_CTX_SET_0, cnt);
return 0;
}
/* Enable CXO clock if necessary for TCXO workaround. */
if (requires_tcxo_workaround && vreg->requires_cxo
&& (GET_PART(vreg, uV) > GET_PART_PREV_ACT(vreg, uV))) {
if (!tcxo_handle)
tcxo_get_handle();
if (tcxo_workaround_noirq)
spin_lock_irqsave(&tcxo_noirq_lock, flags);
else
mutex_lock(&tcxo_mutex);
voltage_increased = true;
tcxo_enabled = tcxo_enable();
}
if (voltage_increased && tcxo_workaround_noirq)
rc = msm_rpmrs_set_noirq(MSM_RPM_CTX_SET_0, vreg->req, cnt);
else
rc = msm_rpm_set(MSM_RPM_CTX_SET_0, vreg->req, cnt);
if (rc) {
vreg->req[0].value = prev0;
vreg->req[1].value = prev1;
vreg_err(vreg, "msm_rpm_set failed, set=active, id=%d, rc=%d\n",
vreg->req[0].id, rc);
} else {
if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_REQUEST)
rpm_regulator_req(vreg, MSM_RPM_CTX_SET_0);
vreg->prev_active_req[0].value = vreg->req[0].value;
vreg->prev_active_req[1].value = vreg->req[1].value;
}
/*
* Schedule CXO clock to be disabled after TCXO warmup time if TCXO
* workaround is applicable for this regulator.
*/
if (voltage_increased) {
if (tcxo_enabled)
tcxo_delayed_disable();
if (tcxo_workaround_noirq)
spin_unlock_irqrestore(&tcxo_noirq_lock, flags);
else
mutex_unlock(&tcxo_mutex);
}
return rc;
}
static int vreg_is_enabled(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
int enabled;
mutex_lock(&vreg->pc_lock);
enabled = vreg->is_enabled;
mutex_unlock(&vreg->pc_lock);
return enabled;
}
static void set_enable(struct vreg *vreg, unsigned int *mask, unsigned int *val)
{
switch (vreg->type) {
case RPM_REGULATOR_TYPE_LDO:
case RPM_REGULATOR_TYPE_SMPS:
case RPM_REGULATOR_TYPE_CORNER:
/* Enable by setting a voltage. */
if (vreg->part->uV.mask) {
val[vreg->part->uV.word]
|= vreg->save_uV << vreg->part->uV.shift;
mask[vreg->part->uV.word] |= vreg->part->uV.mask;
} else {
val[vreg->part->mV.word]
|= MICRO_TO_MILLI(vreg->save_uV)
<< vreg->part->mV.shift;
mask[vreg->part->mV.word] |= vreg->part->mV.mask;
}
break;
case RPM_REGULATOR_TYPE_VS:
case RPM_REGULATOR_TYPE_NCP:
/* Enable by setting enable_state. */
val[vreg->part->enable_state.word]
|= RPM_VREG_STATE_ON << vreg->part->enable_state.shift;
mask[vreg->part->enable_state.word]
|= vreg->part->enable_state.mask;
}
}
static int rpm_vreg_enable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0;
set_enable(vreg, mask, val);
mutex_lock(&vreg->pc_lock);
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static void set_disable(struct vreg *vreg, unsigned int *mask,
unsigned int *val)
{
switch (vreg->type) {
case RPM_REGULATOR_TYPE_LDO:
case RPM_REGULATOR_TYPE_SMPS:
case RPM_REGULATOR_TYPE_CORNER:
/* Disable by setting a voltage of 0 uV. */
if (vreg->part->uV.mask) {
val[vreg->part->uV.word] |= 0 << vreg->part->uV.shift;
mask[vreg->part->uV.word] |= vreg->part->uV.mask;
} else {
val[vreg->part->mV.word] |= 0 << vreg->part->mV.shift;
mask[vreg->part->mV.word] |= vreg->part->mV.mask;
}
break;
case RPM_REGULATOR_TYPE_VS:
case RPM_REGULATOR_TYPE_NCP:
/* Disable by setting enable_state. */
val[vreg->part->enable_state.word]
|= RPM_VREG_STATE_OFF << vreg->part->enable_state.shift;
mask[vreg->part->enable_state.word]
|= vreg->part->enable_state.mask;
}
}
static int rpm_vreg_disable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0;
set_disable(vreg, mask, val);
mutex_lock(&vreg->pc_lock);
/* Only disable if pin control is not in use. */
if (!vreg->is_enabled_pc)
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static int vreg_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV,
unsigned *selector)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
struct vreg_range *range = &vreg->set_points->range[0];
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0, uV = min_uV;
int lim_min_uV, lim_max_uV, i;
/* Check if request voltage is outside of physically settable range. */
lim_min_uV = vreg->set_points->range[0].min_uV;
lim_max_uV =
vreg->set_points->range[vreg->set_points->count - 1].max_uV;
if (uV < lim_min_uV && max_uV >= lim_min_uV)
uV = lim_min_uV;
if (uV < lim_min_uV || uV > lim_max_uV) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, lim_min_uV, lim_max_uV);
return -EINVAL;
}
/* Find the range which uV is inside of. */
for (i = vreg->set_points->count - 1; i > 0; i--) {
if (uV > vreg->set_points->range[i - 1].max_uV) {
range = &vreg->set_points->range[i];
break;
}
}
/*
* Force uV to be an allowed set point and apply a ceiling function
* to non-set point values.
*/
uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV;
uV = uV * range->step_uV + range->min_uV;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point; "
"next set point: %d\n",
min_uV, max_uV, uV);
return -EINVAL;
}
if (vreg->type == RPM_REGULATOR_TYPE_CORNER) {
/*
* Translate from enum values which work as inputs in the
* regulator_set_voltage function to the actual corner values
* sent to the RPM.
*/
uV -= RPM_VREG_CORNER_NONE;
}
if (vreg->part->uV.mask) {
val[vreg->part->uV.word] = uV << vreg->part->uV.shift;
mask[vreg->part->uV.word] = vreg->part->uV.mask;
} else {
val[vreg->part->mV.word]
= MICRO_TO_MILLI(uV) << vreg->part->mV.shift;
mask[vreg->part->mV.word] = vreg->part->mV.mask;
}
mutex_lock(&vreg->pc_lock);
/*
* Only send a request for a new voltage if the regulator is currently
* enabled. This will ensure that LDO and SMPS regulators are not
* inadvertently turned on because voltage > 0 is equivalent to
* enabling. For NCP, this just removes unnecessary RPM requests.
*/
if (vreg->is_enabled) {
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
} else if (vreg->type == RPM_REGULATOR_TYPE_NCP) {
/* Regulator is disabled; store but don't send new request. */
rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]);
}
if (!rc && (!vreg->pdata.sleep_selectable || !vreg->is_enabled))
vreg->save_uV = uV;
mutex_unlock(&vreg->pc_lock);
return rc;
}
static int vreg_get_voltage(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->save_uV;
}
static int vreg_list_voltage(struct regulator_dev *rdev, unsigned selector)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
int uV = 0;
int i;
if (!vreg->set_points) {
vreg_err(vreg, "no voltages available\n");
return -EINVAL;
}
if (selector >= vreg->set_points->n_voltages)
return 0;
for (i = 0; i < vreg->set_points->count; i++) {
if (selector < vreg->set_points->range[i].n_voltages) {
uV = selector * vreg->set_points->range[i].step_uV
+ vreg->set_points->range[i].min_uV;
break;
} else {
selector -= vreg->set_points->range[i].n_voltages;
}
}
return uV;
}
static int vreg_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc = 0;
int peak_uA;
mutex_lock(&vreg->pc_lock);
peak_uA = MILLI_TO_MICRO((vreg->req[vreg->part->ip.word].value
& vreg->part->ip.mask) >> vreg->part->ip.shift);
if (mode == config->mode_hpm) {
/* Make sure that request currents are in HPM range. */
if (peak_uA < vreg_hpm_min_uA(vreg)) {
val[vreg->part->ip.word]
= MICRO_TO_MILLI(vreg_hpm_min_uA(vreg))
<< vreg->part->ip.shift;
mask[vreg->part->ip.word] = vreg->part->ip.mask;
if (config->ia_follows_ip) {
val[vreg->part->ia.word]
|= MICRO_TO_MILLI(vreg_hpm_min_uA(vreg))
<< vreg->part->ia.shift;
mask[vreg->part->ia.word]
|= vreg->part->ia.mask;
}
}
} else if (mode == config->mode_lpm) {
/* Make sure that request currents are in LPM range. */
if (peak_uA > vreg_lpm_max_uA(vreg)) {
val[vreg->part->ip.word]
= MICRO_TO_MILLI(vreg_lpm_max_uA(vreg))
<< vreg->part->ip.shift;
mask[vreg->part->ip.word] = vreg->part->ip.mask;
if (config->ia_follows_ip) {
val[vreg->part->ia.word]
|= MICRO_TO_MILLI(vreg_lpm_max_uA(vreg))
<< vreg->part->ia.shift;
mask[vreg->part->ia.word]
|= vreg->part->ia.mask;
}
}
} else {
vreg_err(vreg, "invalid mode: %u\n", mode);
mutex_unlock(&vreg->pc_lock);
return -EINVAL;
}
if (vreg->is_enabled) {
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
} else {
/* Regulator is disabled; store but don't send new request. */
rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]);
}
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
else
vreg->mode = mode;
mutex_unlock(&vreg->pc_lock);
return rc;
}
static unsigned int vreg_get_mode(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->mode;
}
static unsigned int vreg_get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV, int load_uA)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode;
load_uA += vreg->pdata.system_uA;
mutex_lock(&vreg->pc_lock);
SET_PART(vreg, ip, MICRO_TO_MILLI(saturate_peak_load(vreg, load_uA)));
if (config->ia_follows_ip)
SET_PART(vreg, ia,
MICRO_TO_MILLI(saturate_avg_load(vreg, load_uA)));
mutex_unlock(&vreg->pc_lock);
if (load_uA >= vreg->hpm_min_load)
mode = config->mode_hpm;
else
mode = config->mode_lpm;
return mode;
}
static unsigned int vreg_legacy_get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV, int load_uA)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
if (MICRO_TO_MILLI(load_uA) <= 0) {
/*
* vreg_legacy_get_optimum_mode is being called before consumers
* have specified their load currents via
* regulator_set_optimum_mode. Return whatever the existing mode
* is.
*/
return vreg->mode;
}
return vreg_get_optimum_mode(rdev, input_uV, output_uV, load_uA);
}
/*
* Returns the logical pin control enable state because the pin control options
* present in the hardware out of restart could be different from those desired
* by the consumer.
*/
static int vreg_pin_control_is_enabled(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->is_enabled_pc;
}
static int vreg_pin_control_enable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int rc;
mutex_lock(&vreg->pc_lock);
val[vreg->part->pc.word]
|= vreg->pdata.pin_ctrl << vreg->part->pc.shift;
mask[vreg->part->pc.word] |= vreg->part->pc.mask;
val[vreg->part->pf.word] |= vreg->pdata.pin_fn << vreg->part->pf.shift;
mask[vreg->part->pf.word] |= vreg->part->pf.mask;
if (!vreg->is_enabled)
set_enable(vreg, mask, val);
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled_pc = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static int vreg_pin_control_disable(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mask[2] = {0}, val[2] = {0};
int pin_fn, rc;
mutex_lock(&vreg->pc_lock);
val[vreg->part->pc.word]
|= RPM_VREG_PIN_CTRL_NONE << vreg->part->pc.shift;
mask[vreg->part->pc.word] |= vreg->part->pc.mask;
pin_fn = config->pin_func_none;
if (vreg->pdata.pin_fn == config->pin_func_sleep_b)
pin_fn = config->pin_func_sleep_b;
val[vreg->part->pf.word] |= pin_fn << vreg->part->pf.shift;
mask[vreg->part->pf.word] |= vreg->part->pf.mask;
if (!vreg->is_enabled)
set_disable(vreg, mask, val);
rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1],
vreg->part->request_len);
if (!rc)
vreg->is_enabled_pc = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "vreg_set failed, rc=%d\n", rc);
return rc;
}
static int vreg_enable_time(struct regulator_dev *rdev)
{
struct vreg *vreg = rdev_get_drvdata(rdev);
return vreg->pdata.enable_time;
}
/* Real regulator operations. */
static struct regulator_ops ldo_ops = {
.enable = rpm_vreg_enable,
.disable = rpm_vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
.set_mode = vreg_set_mode,
.get_mode = vreg_get_mode,
.get_optimum_mode = vreg_get_optimum_mode,
.enable_time = vreg_enable_time,
};
static struct regulator_ops smps_ops = {
.enable = rpm_vreg_enable,
.disable = rpm_vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
.set_mode = vreg_set_mode,
.get_mode = vreg_get_mode,
.get_optimum_mode = vreg_get_optimum_mode,
.enable_time = vreg_enable_time,
};
static struct regulator_ops switch_ops = {
.enable = rpm_vreg_enable,
.disable = rpm_vreg_disable,
.is_enabled = vreg_is_enabled,
.enable_time = vreg_enable_time,
};
static struct regulator_ops ncp_ops = {
.enable = rpm_vreg_enable,
.disable = rpm_vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
.enable_time = vreg_enable_time,
};
static struct regulator_ops corner_ops = {
.enable = rpm_vreg_enable,
.disable = rpm_vreg_disable,
.is_enabled = vreg_is_enabled,
.set_voltage = vreg_set_voltage,
.get_voltage = vreg_get_voltage,
.list_voltage = vreg_list_voltage,
.enable_time = vreg_enable_time,
};
/* Pin control regulator operations. */
static struct regulator_ops pin_control_ops = {
.enable = vreg_pin_control_enable,
.disable = vreg_pin_control_disable,
.is_enabled = vreg_pin_control_is_enabled,
};
struct regulator_ops *vreg_ops[] = {
[RPM_REGULATOR_TYPE_LDO] = &ldo_ops,
[RPM_REGULATOR_TYPE_SMPS] = &smps_ops,
[RPM_REGULATOR_TYPE_VS] = &switch_ops,
[RPM_REGULATOR_TYPE_NCP] = &ncp_ops,
[RPM_REGULATOR_TYPE_CORNER] = &corner_ops,
};
static struct vreg *rpm_vreg_get_vreg(int id)
{
struct vreg *vreg;
if (id < config->vreg_id_min || id > config->vreg_id_max)
return NULL;
if (!config->is_real_id(id))
id = config->pc_id_to_real_id(id);
vreg = &config->vregs[id];
return vreg;
}
static int __devinit
rpm_vreg_init_regulator(const struct rpm_regulator_init_data *pdata,
struct device *dev)
{
struct regulator_desc *rdesc = NULL;
struct regulator_dev *rdev;
struct vreg *vreg;
unsigned pin_ctrl;
int pin_fn;
int rc = 0;
if (!pdata) {
pr_err("platform data missing\n");
return -EINVAL;
}
vreg = rpm_vreg_get_vreg(pdata->id);
if (!vreg) {
pr_err("invalid regulator id: %d\n", pdata->id);
return -ENODEV;
}
if (config->is_real_id(pdata->id))
rdesc = &vreg->rdesc;
else
rdesc = &vreg->rdesc_pc;
if (vreg->type < 0 || vreg->type > RPM_REGULATOR_TYPE_MAX) {
pr_err("%s: invalid regulator type: %d\n",
vreg->rdesc.name, vreg->type);
return -EINVAL;
}
mutex_lock(&vreg->pc_lock);
if (vreg->set_points)
rdesc->n_voltages = vreg->set_points->n_voltages;
else
rdesc->n_voltages = 0;
rdesc->id = pdata->id;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
if (config->is_real_id(pdata->id)) {
/*
* Real regulator; do not modify pin control and pin function
* values.
*/
rdesc->ops = vreg_ops[vreg->type];
pin_ctrl = vreg->pdata.pin_ctrl;
pin_fn = vreg->pdata.pin_fn;
memcpy(&(vreg->pdata), pdata,
sizeof(struct rpm_regulator_init_data));
vreg->pdata.pin_ctrl = pin_ctrl;
vreg->pdata.pin_fn = pin_fn;
vreg->save_uV = vreg->pdata.default_uV;
if (vreg->pdata.peak_uA >= vreg->hpm_min_load)
vreg->mode = config->mode_hpm;
else
vreg->mode = config->mode_lpm;
/* Initialize the RPM request. */
SET_PART(vreg, ip,
MICRO_TO_MILLI(saturate_peak_load(vreg, vreg->pdata.peak_uA)));
SET_PART(vreg, fm, vreg->pdata.force_mode);
SET_PART(vreg, pm, vreg->pdata.power_mode);
SET_PART(vreg, pd, vreg->pdata.pull_down_enable);
SET_PART(vreg, ia,
MICRO_TO_MILLI(saturate_avg_load(vreg, vreg->pdata.avg_uA)));
SET_PART(vreg, freq, vreg->pdata.freq);
SET_PART(vreg, freq_clk_src, 0);
SET_PART(vreg, comp_mode, 0);
SET_PART(vreg, hpm, 0);
if (!vreg->is_enabled_pc) {
SET_PART(vreg, pf, config->pin_func_none);
SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE);
}
} else {
if ((pdata->pin_ctrl & RPM_VREG_PIN_CTRL_ALL)
== RPM_VREG_PIN_CTRL_NONE
&& pdata->pin_fn != config->pin_func_sleep_b) {
pr_err("%s: no pin control input specified\n",
vreg->rdesc.name);
mutex_unlock(&vreg->pc_lock);
return -EINVAL;
}
rdesc->ops = &pin_control_ops;
vreg->pdata.pin_ctrl = pdata->pin_ctrl;
vreg->pdata.pin_fn = pdata->pin_fn;
/* Initialize the RPM request. */
pin_fn = config->pin_func_none;
/* Allow pf=sleep_b to be specified by platform data. */
if (vreg->pdata.pin_fn == config->pin_func_sleep_b)
pin_fn = config->pin_func_sleep_b;
SET_PART(vreg, pf, pin_fn);
SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE);
}
mutex_unlock(&vreg->pc_lock);
if (rc)
goto bail;
rdev = regulator_register(rdesc, dev, &(pdata->init_data), vreg, NULL);
if (IS_ERR(rdev)) {
rc = PTR_ERR(rdev);
pr_err("regulator_register failed: %s, rc=%d\n",
vreg->rdesc.name, rc);
return rc;
} else {
if (config->is_real_id(pdata->id))
vreg->rdev = rdev;
else
vreg->rdev_pc = rdev;
}
bail:
if (rc)
pr_err("error for %s, rc=%d\n", vreg->rdesc.name, rc);
return rc;
}
static void rpm_vreg_set_point_init(void)
{
struct vreg_set_points **set_points;
int i, j, temp;
set_points = config->set_points;
/* Calculate the number of set points available for each regulator. */
for (i = 0; i < config->set_points_len; i++) {
temp = 0;
for (j = 0; j < set_points[i]->count; j++) {
set_points[i]->range[j].n_voltages
= (set_points[i]->range[j].max_uV
- set_points[i]->range[j].min_uV)
/ set_points[i]->range[j].step_uV + 1;
temp += set_points[i]->range[j].n_voltages;
}
set_points[i]->n_voltages = temp;
}
}
static int __devinit rpm_vreg_probe(struct platform_device *pdev)
{
struct rpm_regulator_platform_data *platform_data;
static struct rpm_regulator_consumer_mapping *prev_consumer_map;
static int prev_consumer_map_len;
struct vreg *vreg;
int rc = 0;
int i, id;
platform_data = pdev->dev.platform_data;
if (!platform_data) {
pr_err("rpm-regulator requires platform data\n");
return -EINVAL;
}
if (rpm_version >= 0 && rpm_version <= RPM_VREG_VERSION_MAX
&& platform_data->version != rpm_version) {
pr_err("rpm version %d does not match previous version %d\n",
platform_data->version, rpm_version);
return -EINVAL;
}
if (platform_data->version < 0
|| platform_data->version > RPM_VREG_VERSION_MAX) {
pr_err("rpm version %d is invalid\n", platform_data->version);
return -EINVAL;
}
if (rpm_version < 0 || rpm_version > RPM_VREG_VERSION_MAX) {
rpm_version = platform_data->version;
config = get_config[platform_data->version]();
vreg_id_vdd_mem = platform_data->vreg_id_vdd_mem;
vreg_id_vdd_dig = platform_data->vreg_id_vdd_dig;
if (!config) {
pr_err("rpm version %d is not available\n",
platform_data->version);
return -ENODEV;
}
if (config->use_legacy_optimum_mode)
for (i = 0; i < ARRAY_SIZE(vreg_ops); i++)
vreg_ops[i]->get_optimum_mode
= vreg_legacy_get_optimum_mode;
rpm_vreg_set_point_init();
/* First time probed; initialize pin control mutexes. */
for (i = 0; i < config->vregs_len; i++)
mutex_init(&config->vregs[i].pc_lock);
}
/* Copy the list of private API consumers. */
if (platform_data->consumer_map_len > 0) {
if (consumer_map_len == 0) {
consumer_map_len = platform_data->consumer_map_len;
consumer_map = kmemdup(platform_data->consumer_map,
sizeof(struct rpm_regulator_consumer_mapping)
* consumer_map_len, GFP_KERNEL);
if (consumer_map == NULL) {
pr_err("memory allocation failed\n");
consumer_map_len = 0;
return -ENOMEM;
}
} else {
/* Concatenate new map with the existing one. */
prev_consumer_map = consumer_map;
prev_consumer_map_len = consumer_map_len;
consumer_map_len += platform_data->consumer_map_len;
consumer_map = kmalloc(
sizeof(struct rpm_regulator_consumer_mapping)
* consumer_map_len, GFP_KERNEL);
if (consumer_map == NULL) {
pr_err("memory allocation failed\n");
consumer_map_len = 0;
return -ENOMEM;
}
memcpy(consumer_map, prev_consumer_map,
sizeof(struct rpm_regulator_consumer_mapping)
* prev_consumer_map_len);
memcpy(&consumer_map[prev_consumer_map_len],
platform_data->consumer_map,
sizeof(struct rpm_regulator_consumer_mapping)
* platform_data->consumer_map_len);
}
}
if (platform_data->requires_tcxo_workaround
&& !requires_tcxo_workaround) {
requires_tcxo_workaround = true;
wake_lock_init(&tcxo_wake_lock, WAKE_LOCK_SUSPEND,
"rpm_regulator_tcxo");
}
if (requires_tcxo_workaround && !tcxo_workaround_noirq) {
for (i = 0; i < platform_data->num_regulators; i++) {
vreg = rpm_vreg_get_vreg(
platform_data->init_data[i].id);
if (vreg && vreg->requires_cxo
&& platform_data->init_data[i].sleep_selectable) {
tcxo_workaround_noirq = true;
break;
}
}
}
/* Initialize all of the regulators listed in the platform data. */
for (i = 0; i < platform_data->num_regulators; i++) {
rc = rpm_vreg_init_regulator(&platform_data->init_data[i],
&pdev->dev);
if (rc) {
pr_err("rpm_vreg_init_regulator failed, rc=%d\n", rc);
goto remove_regulators;
}
}
platform_set_drvdata(pdev, platform_data);
return rc;
remove_regulators:
/* Unregister all regulators added before the erroring one. */
for (; i >= 0; i--) {
id = platform_data->init_data[i].id;
if (config->is_real_id(id)) {
regulator_unregister(config->vregs[id].rdev);
config->vregs[id].rdev = NULL;
} else {
regulator_unregister(config->vregs[
config->pc_id_to_real_id(id)].rdev_pc);
config->vregs[id].rdev_pc = NULL;
}
}
return rc;
}
static int __devexit rpm_vreg_remove(struct platform_device *pdev)
{
struct rpm_regulator_platform_data *platform_data;
int i, id;
platform_data = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (platform_data) {
for (i = 0; i < platform_data->num_regulators; i++) {
id = platform_data->init_data[i].id;
if (config->is_real_id(id)) {
regulator_unregister(config->vregs[id].rdev);
config->vregs[id].rdev = NULL;
} else {
regulator_unregister(config->vregs[
config->pc_id_to_real_id(id)].rdev_pc);
config->vregs[id].rdev_pc = NULL;
}
}
}
return 0;
}
static struct platform_driver rpm_vreg_driver = {
.probe = rpm_vreg_probe,
.remove = __devexit_p(rpm_vreg_remove),
.driver = {
.name = RPM_REGULATOR_DEV_NAME,
.owner = THIS_MODULE,
},
};
static int __init rpm_vreg_init(void)
{
return platform_driver_register(&rpm_vreg_driver);
}
static void __exit rpm_vreg_exit(void)
{
int i;
platform_driver_unregister(&rpm_vreg_driver);
kfree(consumer_map);
for (i = 0; i < config->vregs_len; i++)
mutex_destroy(&config->vregs[i].pc_lock);
if (tcxo_handle)
clk_put(tcxo_handle);
}
postcore_initcall(rpm_vreg_init);
module_exit(rpm_vreg_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM RPM regulator driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" RPM_REGULATOR_DEV_NAME);