| /* Copyright(c) 2000, Compaq Computer Corporation |
| * Fibre Channel Host Bus Adapter |
| * 64-bit, 66MHz PCI |
| * Originally developed and tested on: |
| * (front): [chip] Tachyon TS HPFC-5166A/1.2 L2C1090 ... |
| * SP# P225CXCBFIEL6T, Rev XC |
| * SP# 161290-001, Rev XD |
| * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5 |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * Written by Don Zimmerman |
| * IOCTL and procfs added by Jouke Numan |
| * SMP testing by Chel Van Gennip |
| * |
| * portions copied from: |
| * QLogic CPQFCTS SCSI-FCP |
| * Written by Erik H. Moe, ehm@cris.com |
| * Copyright 1995, Erik H. Moe |
| * Renamed and updated to 1.3.x by Michael Griffith <grif@cs.ucr.edu> |
| * Chris Loveland <cwl@iol.unh.edu> to support the isp2100 and isp2200 |
| */ |
| |
| |
| #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) |
| |
| #include <linux/config.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/version.h> |
| #include <linux/blkdev.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/timer.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> // request_region() prototype |
| #include <linux/completion.h> |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> // ioctl related |
| #include <asm/irq.h> |
| #include <linux/spinlock.h> |
| #include "scsi.h" |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_ioctl.h> |
| #include "cpqfcTSchip.h" |
| #include "cpqfcTSstructs.h" |
| #include "cpqfcTStrigger.h" |
| |
| #include "cpqfcTS.h" |
| |
| /* Embedded module documentation macros - see module.h */ |
| MODULE_AUTHOR("Compaq Computer Corporation"); |
| MODULE_DESCRIPTION("Driver for Compaq 64-bit/66Mhz PCI Fibre Channel HBA v. 2.5.4"); |
| MODULE_LICENSE("GPL"); |
| |
| int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, unsigned int reset_flags); |
| |
| // This struct was originally defined in |
| // /usr/src/linux/include/linux/proc_fs.h |
| // since it's only partially implemented, we only use first |
| // few fields... |
| // NOTE: proc_fs changes in 2.4 kernel |
| |
| #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) |
| static struct proc_dir_entry proc_scsi_cpqfcTS = |
| { |
| PROC_SCSI_CPQFCTS, // ushort low_ino (enumerated list) |
| 7, // ushort namelen |
| DEV_NAME, // const char* name |
| S_IFDIR | S_IRUGO | S_IXUGO, // mode_t mode |
| 2 // nlink_t nlink |
| // etc. ... |
| }; |
| |
| |
| #endif |
| |
| #if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7) |
| # define CPQFC_DECLARE_COMPLETION(x) DECLARE_COMPLETION(x) |
| # define CPQFC_WAITING waiting |
| # define CPQFC_COMPLETE(x) complete(x) |
| # define CPQFC_WAIT_FOR_COMPLETION(x) wait_for_completion(x); |
| #else |
| # define CPQFC_DECLARE_COMPLETION(x) DECLARE_MUTEX_LOCKED(x) |
| # define CPQFC_WAITING sem |
| # define CPQFC_COMPLETE(x) up(x) |
| # define CPQFC_WAIT_FOR_COMPLETION(x) down(x) |
| #endif |
| |
| static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba); |
| |
| /* local function to load our per-HBA (local) data for chip |
| registers, FC link state, all FC exchanges, etc. |
| |
| We allocate space and compute address offsets for the |
| most frequently accessed addresses; others (like World Wide |
| Name) are not necessary. |
| */ |
| static void Cpqfc_initHBAdata(CPQFCHBA *cpqfcHBAdata, struct pci_dev *PciDev ) |
| { |
| |
| cpqfcHBAdata->PciDev = PciDev; // copy PCI info ptr |
| |
| // since x86 port space is 64k, we only need the lower 16 bits |
| cpqfcHBAdata->fcChip.Registers.IOBaseL = |
| PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK; |
| |
| cpqfcHBAdata->fcChip.Registers.IOBaseU = |
| PciDev->resource[2].start & PCI_BASE_ADDRESS_IO_MASK; |
| |
| // 32-bit memory addresses |
| cpqfcHBAdata->fcChip.Registers.MemBase = |
| PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK; |
| |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase = |
| ioremap( PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK, |
| 0x200); |
| |
| cpqfcHBAdata->fcChip.Registers.RAMBase = |
| PciDev->resource[4].start; |
| |
| cpqfcHBAdata->fcChip.Registers.SROMBase = // NULL for HP TS adapter |
| PciDev->resource[5].start; |
| |
| // now the Tachlite chip registers |
| // the REGISTER struct holds both the physical address & last |
| // written value (some TL registers are WRITE ONLY) |
| |
| cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_SFQ_CONSUMER_INDEX; |
| |
| cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX; |
| |
| // TL Frame Manager |
| cpqfcHBAdata->fcChip.Registers.FMconfig.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONFIG; |
| cpqfcHBAdata->fcChip.Registers.FMcontrol.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONTROL; |
| cpqfcHBAdata->fcChip.Registers.FMstatus.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_STATUS; |
| cpqfcHBAdata->fcChip.Registers.FMLinkStatus1.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT1; |
| cpqfcHBAdata->fcChip.Registers.FMLinkStatus2.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT2; |
| cpqfcHBAdata->fcChip.Registers.FMBB_CreditZero.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_BB_CREDIT0; |
| |
| // TL Control Regs |
| cpqfcHBAdata->fcChip.Registers.TYconfig.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONFIG; |
| cpqfcHBAdata->fcChip.Registers.TYcontrol.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONTROL; |
| cpqfcHBAdata->fcChip.Registers.TYstatus.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_STATUS; |
| cpqfcHBAdata->fcChip.Registers.rcv_al_pa.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_RCV_AL_PA; |
| cpqfcHBAdata->fcChip.Registers.ed_tov.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_ED_TOV; |
| |
| |
| cpqfcHBAdata->fcChip.Registers.INTEN.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTEN; |
| cpqfcHBAdata->fcChip.Registers.INTPEND.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTPEND; |
| cpqfcHBAdata->fcChip.Registers.INTSTAT.address = |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTSTAT; |
| |
| DEBUG_PCI(printk(" cpqfcHBAdata->fcChip.Registers. :\n")); |
| DEBUG_PCI(printk(" IOBaseL = %x\n", |
| cpqfcHBAdata->fcChip.Registers.IOBaseL)); |
| DEBUG_PCI(printk(" IOBaseU = %x\n", |
| cpqfcHBAdata->fcChip.Registers.IOBaseU)); |
| |
| /* printk(" ioremap'd Membase: %p\n", cpqfcHBAdata->fcChip.Registers.ReMapMemBase); */ |
| |
| DEBUG_PCI(printk(" SFQconsumerIndex.address = %p\n", |
| cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address)); |
| DEBUG_PCI(printk(" ERQproducerIndex.address = %p\n", |
| cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address)); |
| DEBUG_PCI(printk(" TYconfig.address = %p\n", |
| cpqfcHBAdata->fcChip.Registers.TYconfig.address)); |
| DEBUG_PCI(printk(" FMconfig.address = %p\n", |
| cpqfcHBAdata->fcChip.Registers.FMconfig.address)); |
| DEBUG_PCI(printk(" FMcontrol.address = %p\n", |
| cpqfcHBAdata->fcChip.Registers.FMcontrol.address)); |
| |
| // set default options for FC controller (chip) |
| cpqfcHBAdata->fcChip.Options.initiator = 1; // default: SCSI initiator |
| cpqfcHBAdata->fcChip.Options.target = 0; // default: SCSI target |
| cpqfcHBAdata->fcChip.Options.extLoopback = 0;// default: no loopback @GBIC |
| cpqfcHBAdata->fcChip.Options.intLoopback = 0;// default: no loopback inside chip |
| |
| // set highest and lowest FC-PH version the adapter/driver supports |
| // (NOT strict compliance) |
| cpqfcHBAdata->fcChip.highest_FCPH_ver = FC_PH3; |
| cpqfcHBAdata->fcChip.lowest_FCPH_ver = FC_PH43; |
| |
| // set function points for this controller / adapter |
| cpqfcHBAdata->fcChip.ResetTachyon = CpqTsResetTachLite; |
| cpqfcHBAdata->fcChip.FreezeTachyon = CpqTsFreezeTachlite; |
| cpqfcHBAdata->fcChip.UnFreezeTachyon = CpqTsUnFreezeTachlite; |
| cpqfcHBAdata->fcChip.CreateTachyonQues = CpqTsCreateTachLiteQues; |
| cpqfcHBAdata->fcChip.DestroyTachyonQues = CpqTsDestroyTachLiteQues; |
| cpqfcHBAdata->fcChip.InitializeTachyon = CpqTsInitializeTachLite; |
| cpqfcHBAdata->fcChip.LaserControl = CpqTsLaserControl; |
| cpqfcHBAdata->fcChip.ProcessIMQEntry = CpqTsProcessIMQEntry; |
| cpqfcHBAdata->fcChip.InitializeFrameManager = CpqTsInitializeFrameManager; |
| cpqfcHBAdata->fcChip.ReadWriteWWN = CpqTsReadWriteWWN; |
| cpqfcHBAdata->fcChip.ReadWriteNVRAM = CpqTsReadWriteNVRAM; |
| |
| if (cpqfc_alloc_private_data_pool(cpqfcHBAdata) != 0) { |
| printk(KERN_WARNING |
| "cpqfc: unable to allocate pool for passthru ioctls. " |
| "Passthru ioctls disabled.\n"); |
| } |
| } |
| |
| |
| /* (borrowed from linux/drivers/scsi/hosts.c) */ |
| static void launch_FCworker_thread(struct Scsi_Host *HostAdapter) |
| { |
| DECLARE_MUTEX_LOCKED(sem); |
| |
| CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| |
| ENTER("launch_FC_worker_thread"); |
| |
| cpqfcHBAdata->notify_wt = &sem; |
| |
| /* must unlock before kernel_thread(), for it may cause a reschedule. */ |
| spin_unlock_irq(HostAdapter->host_lock); |
| kernel_thread((int (*)(void *))cpqfcTSWorkerThread, |
| (void *) HostAdapter, 0); |
| /* |
| * Now wait for the kernel error thread to initialize itself |
| |
| */ |
| down (&sem); |
| spin_lock_irq(HostAdapter->host_lock); |
| cpqfcHBAdata->notify_wt = NULL; |
| |
| LEAVE("launch_FC_worker_thread"); |
| |
| } |
| |
| |
| /* "Entry" point to discover if any supported PCI |
| bus adapter can be found |
| */ |
| /* We're supporting: |
| * Compaq 64-bit, 66MHz HBA with Tachyon TS |
| * Agilent XL2 |
| * HP Tachyon |
| */ |
| #define HBA_TYPES 3 |
| |
| #ifndef PCI_DEVICE_ID_COMPAQ_ |
| #define PCI_DEVICE_ID_COMPAQ_TACHYON 0xa0fc |
| #endif |
| |
| static struct SupportedPCIcards cpqfc_boards[] __initdata = { |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_TACHYON}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHLITE}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHYON}, |
| }; |
| |
| |
| int cpqfcTS_detect(Scsi_Host_Template *ScsiHostTemplate) |
| { |
| int NumberOfAdapters=0; // how many of our PCI adapters are found? |
| struct pci_dev *PciDev = NULL; |
| struct Scsi_Host *HostAdapter = NULL; |
| CPQFCHBA *cpqfcHBAdata = NULL; |
| struct timer_list *cpqfcTStimer = NULL; |
| int i; |
| |
| ENTER("cpqfcTS_detect"); |
| |
| #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) |
| ScsiHostTemplate->proc_dir = &proc_scsi_cpqfcTS; |
| #else |
| ScsiHostTemplate->proc_name = "cpqfcTS"; |
| #endif |
| |
| for( i=0; i < HBA_TYPES; i++) |
| { |
| // look for all HBAs of each type |
| |
| while((PciDev = pci_find_device(cpqfc_boards[i].vendor_id, |
| cpqfc_boards[i].device_id, PciDev))) |
| { |
| |
| if (pci_enable_device(PciDev)) { |
| printk(KERN_ERR |
| "cpqfc: can't enable PCI device at %s\n", pci_name(PciDev)); |
| goto err_continue; |
| } |
| |
| if (pci_set_dma_mask(PciDev, CPQFCTS_DMA_MASK) != 0) { |
| printk(KERN_WARNING |
| "cpqfc: HBA cannot support required DMA mask, skipping.\n"); |
| goto err_disable_dev; |
| } |
| |
| // NOTE: (kernel 2.2.12-32) limits allocation to 128k bytes... |
| /* printk(" scsi_register allocating %d bytes for FC HBA\n", |
| (ULONG)sizeof(CPQFCHBA)); */ |
| |
| HostAdapter = scsi_register( ScsiHostTemplate, sizeof( CPQFCHBA ) ); |
| |
| if(HostAdapter == NULL) { |
| printk(KERN_WARNING |
| "cpqfc: can't register SCSI HBA, skipping.\n"); |
| goto err_disable_dev; |
| } |
| DEBUG_PCI( printk(" HBA found!\n")); |
| DEBUG_PCI( printk(" HostAdapter->PciDev->irq = %u\n", PciDev->irq) ); |
| DEBUG_PCI(printk(" PciDev->baseaddress[0]= %lx\n", |
| PciDev->resource[0].start)); |
| DEBUG_PCI(printk(" PciDev->baseaddress[1]= %lx\n", |
| PciDev->resource[1].start)); |
| DEBUG_PCI(printk(" PciDev->baseaddress[2]= %lx\n", |
| PciDev->resource[2].start)); |
| DEBUG_PCI(printk(" PciDev->baseaddress[3]= %lx\n", |
| PciDev->resource[3].start)); |
| |
| HostAdapter->irq = PciDev->irq; // copy for Scsi layers |
| |
| // HP Tachlite uses two (255-byte) ranges of Port I/O (lower & upper), |
| // for a total I/O port address space of 512 bytes. |
| // mask out the I/O port address (lower) & record |
| HostAdapter->io_port = (unsigned int) |
| PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK; |
| HostAdapter->n_io_port = 0xff; |
| |
| // i.e., expect 128 targets (arbitrary number), while the |
| // RA-4000 supports 32 LUNs |
| HostAdapter->max_id = 0; // incremented as devices log in |
| HostAdapter->max_lun = CPQFCTS_MAX_LUN; // LUNs per FC device |
| HostAdapter->max_channel = CPQFCTS_MAX_CHANNEL; // multiple busses? |
| |
| // get the pointer to our HBA specific data... (one for |
| // each HBA on the PCI bus(ses)). |
| cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| |
| // make certain our data struct is clear |
| memset( cpqfcHBAdata, 0, sizeof( CPQFCHBA ) ); |
| |
| |
| // initialize our HBA info |
| cpqfcHBAdata->HBAnum = NumberOfAdapters; |
| |
| cpqfcHBAdata->HostAdapter = HostAdapter; // back ptr |
| Cpqfc_initHBAdata( cpqfcHBAdata, PciDev ); // fill MOST fields |
| |
| cpqfcHBAdata->HBAnum = NumberOfAdapters; |
| spin_lock_init(&cpqfcHBAdata->hba_spinlock); |
| |
| // request necessary resources and check for conflicts |
| if( request_irq( HostAdapter->irq, |
| cpqfcTS_intr_handler, |
| SA_INTERRUPT | SA_SHIRQ, |
| DEV_NAME, |
| HostAdapter) ) |
| { |
| printk(KERN_WARNING "cpqfc: IRQ %u already used\n", HostAdapter->irq); |
| goto err_unregister; |
| } |
| |
| // Since we have two 256-byte I/O port ranges (upper |
| // and lower), check them both |
| if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, |
| 0xff, DEV_NAME ) ) |
| { |
| printk(KERN_WARNING "cpqfc: address in use: %x\n", |
| cpqfcHBAdata->fcChip.Registers.IOBaseU); |
| goto err_free_irq; |
| } |
| |
| if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, |
| 0xff, DEV_NAME ) ) |
| { |
| printk(KERN_WARNING "cpqfc: address in use: %x\n", |
| cpqfcHBAdata->fcChip.Registers.IOBaseL); |
| goto err_release_region_U; |
| } |
| |
| // OK, we have grabbed everything we need now. |
| DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n", |
| cpqfcHBAdata->fcChip.Registers.IOBaseL )); |
| DEBUG_PCI(printk(" Reserved 255 I/O addresses @ %x\n", |
| cpqfcHBAdata->fcChip.Registers.IOBaseU )); |
| |
| |
| |
| // start our kernel worker thread |
| |
| spin_lock_irq(HostAdapter->host_lock); |
| launch_FCworker_thread(HostAdapter); |
| |
| |
| // start our TimerTask... |
| |
| cpqfcTStimer = &cpqfcHBAdata->cpqfcTStimer; |
| |
| init_timer( cpqfcTStimer); // Linux clears next/prev values |
| cpqfcTStimer->expires = jiffies + HZ; // one second |
| cpqfcTStimer->data = (unsigned long)cpqfcHBAdata; // this adapter |
| cpqfcTStimer->function = cpqfcTSheartbeat; // handles timeouts, housekeeping |
| |
| add_timer( cpqfcTStimer); // give it to Linux |
| |
| |
| // now initialize our hardware... |
| if (cpqfcHBAdata->fcChip.InitializeTachyon( cpqfcHBAdata, 1,1)) { |
| printk(KERN_WARNING "cpqfc: initialization of HBA hardware failed.\n"); |
| goto err_release_region_L; |
| } |
| |
| cpqfcHBAdata->fcStatsTime = jiffies; // (for FC Statistics delta) |
| |
| // give our HBA time to initialize and login current devices... |
| { |
| // The Brocade switch (e.g. 2400, 2010, etc.) as of March 2000, |
| // has the following algorithm for FL_Port startup: |
| // Time(sec) Action |
| // 0: Device Plugin and LIP(F7,F7) transmission |
| // 1.0 LIP incoming |
| // 1.027 LISA incoming, no CLS! (link not up) |
| // 1.028 NOS incoming (switch test for N_Port) |
| // 1.577 ED_TOV expired, transmit LIPs again |
| // 3.0 LIP(F8,F7) incoming (switch passes Tach Prim.Sig) |
| // 3.028 LILP received, link up, FLOGI starts |
| // slowest(worst) case, measured on 1Gb Finisar GT analyzer |
| |
| unsigned long stop_time; |
| |
| spin_unlock_irq(HostAdapter->host_lock); |
| stop_time = jiffies + 4*HZ; |
| while ( time_before(jiffies, stop_time) ) |
| schedule(); // (our worker task needs to run) |
| |
| } |
| |
| spin_lock_irq(HostAdapter->host_lock); |
| NumberOfAdapters++; |
| spin_unlock_irq(HostAdapter->host_lock); |
| |
| continue; |
| |
| err_release_region_L: |
| release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff ); |
| err_release_region_U: |
| release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff ); |
| err_free_irq: |
| free_irq( HostAdapter->irq, HostAdapter); |
| err_unregister: |
| scsi_unregister( HostAdapter); |
| err_disable_dev: |
| pci_disable_device( PciDev ); |
| err_continue: |
| continue; |
| } // end of while() |
| } |
| |
| LEAVE("cpqfcTS_detect"); |
| |
| return NumberOfAdapters; |
| } |
| |
| #ifdef SUPPORT_RESET |
| static void my_ioctl_done (Scsi_Cmnd * SCpnt) |
| { |
| struct request * req; |
| |
| req = SCpnt->request; |
| req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */ |
| |
| if (req->CPQFC_WAITING != NULL) |
| CPQFC_COMPLETE(req->CPQFC_WAITING); |
| } |
| #endif |
| |
| static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba) |
| { |
| hba->private_data_bits = NULL; |
| hba->private_data_pool = NULL; |
| hba->private_data_bits = |
| kmalloc(((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) / |
| BITS_PER_LONG)*sizeof(unsigned long), |
| GFP_KERNEL); |
| if (hba->private_data_bits == NULL) |
| return -1; |
| memset(hba->private_data_bits, 0, |
| ((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) / |
| BITS_PER_LONG)*sizeof(unsigned long)); |
| hba->private_data_pool = kmalloc(sizeof(cpqfc_passthru_private_t) * |
| CPQFC_MAX_PASSTHRU_CMDS, GFP_KERNEL); |
| if (hba->private_data_pool == NULL) { |
| kfree(hba->private_data_bits); |
| hba->private_data_bits = NULL; |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void cpqfc_free_private_data_pool(CPQFCHBA *hba) |
| { |
| kfree(hba->private_data_bits); |
| kfree(hba->private_data_pool); |
| } |
| |
| int is_private_data_of_cpqfc(CPQFCHBA *hba, void *pointer) |
| { |
| /* Is pointer within our private data pool? |
| We use Scsi_Request->upper_private_data (normally |
| reserved for upper layer drivers, e.g. the sg driver) |
| We check to see if the pointer is ours by looking at |
| its address. Is this ok? Hmm, it occurs to me that |
| a user app might do something bad by using sg to send |
| a cpqfc passthrough ioctl with upper_data_private |
| forged to be somewhere in our pool..., though they'd |
| normally have to be root already to do this. */ |
| |
| return (pointer != NULL && |
| pointer >= (void *) hba->private_data_pool && |
| pointer < (void *) hba->private_data_pool + |
| sizeof(*hba->private_data_pool) * |
| CPQFC_MAX_PASSTHRU_CMDS); |
| } |
| |
| cpqfc_passthru_private_t *cpqfc_alloc_private_data(CPQFCHBA *hba) |
| { |
| int i; |
| |
| do { |
| i = find_first_zero_bit(hba->private_data_bits, |
| CPQFC_MAX_PASSTHRU_CMDS); |
| if (i == CPQFC_MAX_PASSTHRU_CMDS) |
| return NULL; |
| } while ( test_and_set_bit(i & (BITS_PER_LONG - 1), |
| hba->private_data_bits+(i/BITS_PER_LONG)) != 0); |
| return &hba->private_data_pool[i]; |
| } |
| |
| void cpqfc_free_private_data(CPQFCHBA *hba, cpqfc_passthru_private_t *data) |
| { |
| int i; |
| i = data - hba->private_data_pool; |
| clear_bit(i&(BITS_PER_LONG-1), |
| hba->private_data_bits+(i/BITS_PER_LONG)); |
| } |
| |
| int cpqfcTS_ioctl( struct scsi_device *ScsiDev, int Cmnd, void *arg) |
| { |
| int result = 0; |
| struct Scsi_Host *HostAdapter = ScsiDev->host; |
| CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| PTACHYON fcChip = &cpqfcHBAdata->fcChip; |
| PFC_LOGGEDIN_PORT pLoggedInPort = NULL; |
| struct scsi_cmnd *DumCmnd; |
| int i, j; |
| VENDOR_IOCTL_REQ ioc; |
| cpqfc_passthru_t *vendor_cmd; |
| Scsi_Device *SDpnt; |
| Scsi_Request *ScsiPassThruReq; |
| cpqfc_passthru_private_t *privatedata; |
| |
| ENTER("cpqfcTS_ioctl "); |
| |
| // printk("ioctl CMND %d", Cmnd); |
| switch (Cmnd) { |
| // Passthrough provides a mechanism to bypass the RAID |
| // or other controller and talk directly to the devices |
| // (e.g. physical disk drive) |
| // Passthrough commands, unfortunately, tend to be vendor |
| // specific; this is tailored to COMPAQ's RAID (RA4x00) |
| case CPQFCTS_SCSI_PASSTHRU: |
| { |
| void *buf = NULL; // for kernel space buffer for user data |
| |
| /* Check that our pool got allocated ok. */ |
| if (cpqfcHBAdata->private_data_pool == NULL) |
| return -ENOMEM; |
| |
| if( !arg) |
| return -EINVAL; |
| |
| // must be super user to send stuff directly to the |
| // controller and/or physical drives... |
| if( !capable(CAP_SYS_RAWIO) ) |
| return -EPERM; |
| |
| // copy the caller's struct to our space. |
| if( copy_from_user( &ioc, arg, sizeof( VENDOR_IOCTL_REQ))) |
| return( -EFAULT); |
| |
| vendor_cmd = ioc.argp; // i.e., CPQ specific command struct |
| |
| // If necessary, grab a kernel/DMA buffer |
| if( vendor_cmd->len) |
| { |
| buf = kmalloc( vendor_cmd->len, GFP_KERNEL); |
| if( !buf) |
| return -ENOMEM; |
| } |
| // Now build a Scsi_Request to pass down... |
| ScsiPassThruReq = scsi_allocate_request(ScsiDev, GFP_KERNEL); |
| if (ScsiPassThruReq == NULL) { |
| kfree(buf); |
| return -ENOMEM; |
| } |
| ScsiPassThruReq->upper_private_data = |
| cpqfc_alloc_private_data(cpqfcHBAdata); |
| if (ScsiPassThruReq->upper_private_data == NULL) { |
| kfree(buf); |
| scsi_release_request(ScsiPassThruReq); // "de-allocate" |
| return -ENOMEM; |
| } |
| |
| if (vendor_cmd->rw_flag == VENDOR_WRITE_OPCODE) { |
| if (vendor_cmd->len) { // Need data from user? |
| if (copy_from_user(buf, vendor_cmd->bufp, |
| vendor_cmd->len)) { |
| kfree(buf); |
| cpqfc_free_private_data(cpqfcHBAdata, |
| ScsiPassThruReq->upper_private_data); |
| scsi_release_request(ScsiPassThruReq); |
| return( -EFAULT); |
| } |
| } |
| ScsiPassThruReq->sr_data_direction = DMA_TO_DEVICE; |
| } else if (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) { |
| ScsiPassThruReq->sr_data_direction = DMA_FROM_DEVICE; |
| } else |
| // maybe this means a bug in the user app |
| ScsiPassThruReq->sr_data_direction = DMA_BIDIRECTIONAL; |
| |
| ScsiPassThruReq->sr_cmd_len = 0; // set correctly by scsi_do_req() |
| ScsiPassThruReq->sr_sense_buffer[0] = 0; |
| ScsiPassThruReq->sr_sense_buffer[2] = 0; |
| |
| // We copy the scheme used by sd.c:spinup_disk() to submit commands |
| // to our own HBA. We do this in order to stall the |
| // thread calling the IOCTL until it completes, and use |
| // the same "_quecommand" function for synchronizing |
| // FC Link events with our "worker thread". |
| |
| privatedata = ScsiPassThruReq->upper_private_data; |
| privatedata->bus = vendor_cmd->bus; |
| privatedata->pdrive = vendor_cmd->pdrive; |
| |
| // eventually gets us to our own _quecommand routine |
| scsi_wait_req(ScsiPassThruReq, |
| &vendor_cmd->cdb[0], buf, vendor_cmd->len, |
| 10*HZ, // timeout |
| 1); // retries |
| result = ScsiPassThruReq->sr_result; |
| |
| // copy any sense data back to caller |
| if( result != 0 ) |
| { |
| memcpy( vendor_cmd->sense_data, // see struct def - size=40 |
| ScsiPassThruReq->sr_sense_buffer, |
| sizeof(ScsiPassThruReq->sr_sense_buffer) < |
| sizeof(vendor_cmd->sense_data) ? |
| sizeof(ScsiPassThruReq->sr_sense_buffer) : |
| sizeof(vendor_cmd->sense_data) |
| ); |
| } |
| SDpnt = ScsiPassThruReq->sr_device; |
| /* upper_private_data is already freed in call_scsi_done() */ |
| scsi_release_request(ScsiPassThruReq); // "de-allocate" |
| ScsiPassThruReq = NULL; |
| |
| // need to pass data back to user (space)? |
| if( (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) && |
| vendor_cmd->len ) |
| if( copy_to_user( vendor_cmd->bufp, buf, vendor_cmd->len)) |
| result = -EFAULT; |
| |
| if( buf) |
| kfree( buf); |
| |
| return result; |
| } |
| |
| case CPQFCTS_GETPCIINFO: |
| { |
| cpqfc_pci_info_struct pciinfo; |
| |
| if( !arg) |
| return -EINVAL; |
| |
| |
| |
| pciinfo.bus = cpqfcHBAdata->PciDev->bus->number; |
| pciinfo.dev_fn = cpqfcHBAdata->PciDev->devfn; |
| pciinfo.board_id = cpqfcHBAdata->PciDev->device | |
| (cpqfcHBAdata->PciDev->vendor <<16); |
| |
| if(copy_to_user( arg, &pciinfo, sizeof(cpqfc_pci_info_struct))) |
| return( -EFAULT); |
| return 0; |
| } |
| |
| case CPQFCTS_GETDRIVVER: |
| { |
| DriverVer_type DriverVer = |
| CPQFCTS_DRIVER_VER( VER_MAJOR,VER_MINOR,VER_SUBMINOR); |
| |
| if( !arg) |
| return -EINVAL; |
| |
| if(copy_to_user( arg, &DriverVer, sizeof(DriverVer))) |
| return( -EFAULT); |
| return 0; |
| } |
| |
| |
| |
| case CPQFC_IOCTL_FC_TARGET_ADDRESS: |
| // can we find an FC device mapping to this SCSI target? |
| /* DumCmnd.channel = ScsiDev->channel; */ // For searching |
| /* DumCmnd.target = ScsiDev->id; */ |
| /* DumCmnd.lun = ScsiDev->lun; */ |
| |
| DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL); |
| if (!DumCmnd) |
| return -ENOMEM; |
| |
| pLoggedInPort = fcFindLoggedInPort( fcChip, |
| DumCmnd, // search Scsi Nexus |
| 0, // DON'T search linked list for FC port id |
| NULL, // DON'T search linked list for FC WWN |
| NULL); // DON'T care about end of list |
| scsi_put_command (DumCmnd); |
| if (pLoggedInPort == NULL) { |
| result = -ENXIO; |
| break; |
| } |
| result = access_ok(VERIFY_WRITE, arg, sizeof(Scsi_FCTargAddress)) ? 0 : -EFAULT; |
| if (result) break; |
| |
| put_user(pLoggedInPort->port_id, |
| &((Scsi_FCTargAddress *) arg)->host_port_id); |
| |
| for( i=3,j=0; i>=0; i--) // copy the LOGIN port's WWN |
| put_user(pLoggedInPort->u.ucWWN[i], |
| &((Scsi_FCTargAddress *) arg)->host_wwn[j++]); |
| for( i=7; i>3; i--) // copy the LOGIN port's WWN |
| put_user(pLoggedInPort->u.ucWWN[i], |
| &((Scsi_FCTargAddress *) arg)->host_wwn[j++]); |
| break; |
| |
| |
| case CPQFC_IOCTL_FC_TDR: |
| |
| result = cpqfcTS_TargetDeviceReset( ScsiDev, 0); |
| |
| break; |
| |
| |
| |
| |
| default: |
| result = -EINVAL; |
| break; |
| } |
| |
| LEAVE("cpqfcTS_ioctl"); |
| return result; |
| } |
| |
| |
| /* "Release" the Host Bus Adapter... |
| disable interrupts, stop the HBA, release the interrupt, |
| and free all resources */ |
| |
| int cpqfcTS_release(struct Scsi_Host *HostAdapter) |
| { |
| CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| |
| |
| ENTER("cpqfcTS_release"); |
| |
| DEBUG_PCI( printk(" cpqfcTS: delete timer...\n")); |
| del_timer( &cpqfcHBAdata->cpqfcTStimer); |
| |
| // disable the hardware... |
| DEBUG_PCI( printk(" disable hardware, destroy queues, free mem\n")); |
| cpqfcHBAdata->fcChip.ResetTachyon( cpqfcHBAdata, CLEAR_FCPORTS); |
| |
| // kill kernel thread |
| if( cpqfcHBAdata->worker_thread ) // (only if exists) |
| { |
| DECLARE_MUTEX_LOCKED(sem); // synchronize thread kill |
| |
| cpqfcHBAdata->notify_wt = &sem; |
| DEBUG_PCI( printk(" killing kernel thread\n")); |
| send_sig( SIGKILL, cpqfcHBAdata->worker_thread, 1); |
| down( &sem); |
| cpqfcHBAdata->notify_wt = NULL; |
| |
| } |
| |
| cpqfc_free_private_data_pool(cpqfcHBAdata); |
| // free Linux resources |
| DEBUG_PCI( printk(" cpqfcTS: freeing resources...\n")); |
| free_irq( HostAdapter->irq, HostAdapter); |
| scsi_unregister( HostAdapter); |
| release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff); |
| release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff); |
| /* we get "vfree: bad address" executing this - need to investigate... |
| if( (void*)((unsigned long)cpqfcHBAdata->fcChip.Registers.MemBase) != |
| cpqfcHBAdata->fcChip.Registers.ReMapMemBase) |
| vfree( cpqfcHBAdata->fcChip.Registers.ReMapMemBase); |
| */ |
| pci_disable_device( cpqfcHBAdata->PciDev); |
| |
| LEAVE("cpqfcTS_release"); |
| return 0; |
| } |
| |
| |
| const char * cpqfcTS_info(struct Scsi_Host *HostAdapter) |
| { |
| static char buf[300]; |
| CPQFCHBA *cpqfcHBA; |
| int BusSpeed, BusWidth; |
| |
| // get the pointer to our Scsi layer HBA buffer |
| cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata; |
| |
| BusWidth = (cpqfcHBA->fcChip.Registers.PCIMCTR &0x4) > 0 ? |
| 64 : 32; |
| |
| if( cpqfcHBA->fcChip.Registers.TYconfig.value & 0x80000000) |
| BusSpeed = 66; |
| else |
| BusSpeed = 33; |
| |
| sprintf(buf, |
| "%s: WWN %08X%08X\n on PCI bus %d device 0x%02x irq %d IObaseL 0x%x, MEMBASE 0x%x\nPCI bus width %d bits, bus speed %d MHz\nFCP-SCSI Driver v%d.%d.%d", |
| cpqfcHBA->fcChip.Name, |
| cpqfcHBA->fcChip.Registers.wwn_hi, |
| cpqfcHBA->fcChip.Registers.wwn_lo, |
| cpqfcHBA->PciDev->bus->number, |
| cpqfcHBA->PciDev->device, |
| HostAdapter->irq, |
| cpqfcHBA->fcChip.Registers.IOBaseL, |
| cpqfcHBA->fcChip.Registers.MemBase, |
| BusWidth, |
| BusSpeed, |
| VER_MAJOR, VER_MINOR, VER_SUBMINOR |
| ); |
| |
| |
| cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); |
| cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); |
| return buf; |
| } |
| |
| // |
| // /proc/scsi support. The following routines allow us to do 'normal' |
| // sprintf like calls to return the currently requested piece (buflenght |
| // chars, starting at bufoffset) of the file. Although procfs allows for |
| // a 1 Kb bytes overflow after te supplied buffer, I consider it bad |
| // programming to use it to make programming a little simpler. This piece |
| // of coding is borrowed from ncr53c8xx.c with some modifications |
| // |
| struct info_str |
| { |
| char *buffer; // Pointer to output buffer |
| int buflength; // It's length |
| int bufoffset; // File offset corresponding with buf[0] |
| int buffillen; // Current filled length |
| int filpos; // Current file offset |
| }; |
| |
| static void copy_mem_info(struct info_str *info, char *data, int datalen) |
| { |
| |
| if (info->filpos < info->bufoffset) { // Current offset before buffer offset |
| if (info->filpos + datalen <= info->bufoffset) { |
| info->filpos += datalen; // Discard if completely before buffer |
| return; |
| } else { // Partial copy, set to begin |
| data += (info->bufoffset - info->filpos); |
| datalen -= (info->bufoffset - info->filpos); |
| info->filpos = info->bufoffset; |
| } |
| } |
| |
| info->filpos += datalen; // Update current offset |
| |
| if (info->buffillen == info->buflength) // Buffer full, discard |
| return; |
| |
| if (info->buflength - info->buffillen < datalen) // Overflows buffer ? |
| datalen = info->buflength - info->buffillen; |
| |
| memcpy(info->buffer + info->buffillen, data, datalen); |
| info->buffillen += datalen; |
| } |
| |
| static int copy_info(struct info_str *info, char *fmt, ...) |
| { |
| va_list args; |
| char buf[400]; |
| int len; |
| |
| va_start(args, fmt); |
| len = vsprintf(buf, fmt, args); |
| va_end(args); |
| |
| copy_mem_info(info, buf, len); |
| return len; |
| } |
| |
| |
| // Routine to get data for /proc RAM filesystem |
| // |
| int cpqfcTS_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, |
| int inout) |
| { |
| struct scsi_cmnd *DumCmnd; |
| struct scsi_device *ScsiDev; |
| int Chan, Targ, i; |
| struct info_str info; |
| CPQFCHBA *cpqfcHBA; |
| PTACHYON fcChip; |
| PFC_LOGGEDIN_PORT pLoggedInPort; |
| char buf[81]; |
| |
| if (inout) return -EINVAL; |
| |
| // get the pointer to our Scsi layer HBA buffer |
| cpqfcHBA = (CPQFCHBA *)host->hostdata; |
| fcChip = &cpqfcHBA->fcChip; |
| |
| *start = buffer; |
| |
| info.buffer = buffer; |
| info.buflength = length; |
| info.bufoffset = offset; |
| info.filpos = 0; |
| info.buffillen = 0; |
| copy_info(&info, "Driver version = %d.%d.%d", VER_MAJOR, VER_MINOR, VER_SUBMINOR); |
| cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[0]); |
| cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); |
| copy_info(&info, "%s\n", buf); |
| |
| #define DISPLAY_WWN_INFO |
| #ifdef DISPLAY_WWN_INFO |
| ScsiDev = scsi_get_host_dev (host); |
| if (!ScsiDev) |
| return -ENOMEM; |
| DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL); |
| if (!DumCmnd) { |
| scsi_free_host_dev (ScsiDev); |
| return -ENOMEM; |
| } |
| copy_info(&info, "WWN database: (\"port_id: 000000\" means disconnected)\n"); |
| for ( Chan=0; Chan <= host->max_channel; Chan++) { |
| DumCmnd->device->channel = Chan; |
| for (Targ=0; Targ <= host->max_id; Targ++) { |
| DumCmnd->device->id = Targ; |
| if ((pLoggedInPort = fcFindLoggedInPort( fcChip, |
| DumCmnd, // search Scsi Nexus |
| 0, // DON'T search list for FC port id |
| NULL, // DON'T search list for FC WWN |
| NULL))){ // DON'T care about end of list |
| copy_info(&info, "Host: scsi%d Channel: %02d TargetId: %02d -> WWN: ", |
| host->host_no, Chan, Targ); |
| for( i=3; i>=0; i--) // copy the LOGIN port's WWN |
| copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]); |
| for( i=7; i>3; i--) // copy the LOGIN port's WWN |
| copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]); |
| copy_info(&info, " port_id: %06X\n", pLoggedInPort->port_id); |
| } |
| } |
| } |
| |
| scsi_put_command (DumCmnd); |
| scsi_free_host_dev (ScsiDev); |
| #endif |
| |
| |
| |
| |
| |
| // Unfortunately, the proc_info buffer isn't big enough |
| // for everything we would like... |
| // For FC stats, compile this and turn off WWN stuff above |
| //#define DISPLAY_FC_STATS |
| #ifdef DISPLAY_FC_STATS |
| // get the Fibre Channel statistics |
| { |
| int DeltaSecs = (jiffies - cpqfcHBA->fcStatsTime) / HZ; |
| int days,hours,minutes,secs; |
| |
| days = DeltaSecs / (3600*24); // days |
| hours = (DeltaSecs% (3600*24)) / 3600; // hours |
| minutes = (DeltaSecs%3600 /60); // minutes |
| secs = DeltaSecs%60; // secs |
| copy_info( &info, "Fibre Channel Stats (time dd:hh:mm:ss %02u:%02u:%02u:%02u\n", |
| days, hours, minutes, secs); |
| } |
| |
| cpqfcHBA->fcStatsTime = jiffies; // (for next delta) |
| |
| copy_info( &info, " LinkUp %9u LinkDown %u\n", |
| fcChip->fcStats.linkUp, fcChip->fcStats.linkDown); |
| |
| copy_info( &info, " Loss of Signal %9u Loss of Sync %u\n", |
| fcChip->fcStats.LossofSignal, fcChip->fcStats.LossofSync); |
| |
| copy_info( &info, " Discarded Frames %9u Bad CRC Frame %u\n", |
| fcChip->fcStats.Dis_Frm, fcChip->fcStats.Bad_CRC); |
| |
| copy_info( &info, " TACH LinkFailTX %9u TACH LinkFailRX %u\n", |
| fcChip->fcStats.linkFailTX, fcChip->fcStats.linkFailRX); |
| |
| copy_info( &info, " TACH RxEOFa %9u TACH Elastic Store %u\n", |
| fcChip->fcStats.Rx_EOFa, fcChip->fcStats.e_stores); |
| |
| copy_info( &info, " BufferCreditWait %9uus TACH FM Inits %u\n", |
| fcChip->fcStats.BB0_Timer*10, fcChip->fcStats.FMinits ); |
| |
| copy_info( &info, " FC-2 Timeouts %9u FC-2 Logouts %u\n", |
| fcChip->fcStats.timeouts, fcChip->fcStats.logouts); |
| |
| copy_info( &info, " FC-2 Aborts %9u FC-4 Aborts %u\n", |
| fcChip->fcStats.FC2aborted, fcChip->fcStats.FC4aborted); |
| |
| // clear the counters |
| cpqfcTSClearLinkStatusCounters( fcChip); |
| #endif |
| |
| return info.buffillen; |
| } |
| |
| |
| #if DEBUG_CMND |
| |
| UCHAR *ScsiToAscii( UCHAR ScsiCommand) |
| { |
| |
| /*++ |
| |
| Routine Description: |
| |
| Converts a SCSI command to a text string for debugging purposes. |
| |
| |
| Arguments: |
| |
| ScsiCommand -- hex value SCSI Command |
| |
| |
| Return Value: |
| |
| An ASCII, null-terminated string if found, else returns NULL. |
| |
| Original code from M. McGowen, Compaq |
| --*/ |
| |
| |
| switch (ScsiCommand) |
| { |
| case 0x00: |
| return( "Test Unit Ready" ); |
| |
| case 0x01: |
| return( "Rezero Unit or Rewind" ); |
| |
| case 0x02: |
| return( "Request Block Address" ); |
| |
| case 0x03: |
| return( "Requese Sense" ); |
| |
| case 0x04: |
| return( "Format Unit" ); |
| |
| case 0x05: |
| return( "Read Block Limits" ); |
| |
| case 0x07: |
| return( "Reassign Blocks" ); |
| |
| case 0x08: |
| return( "Read (6)" ); |
| |
| case 0x0a: |
| return( "Write (6)" ); |
| |
| case 0x0b: |
| return( "Seek (6)" ); |
| |
| case 0x12: |
| return( "Inquiry" ); |
| |
| case 0x15: |
| return( "Mode Select (6)" ); |
| |
| case 0x16: |
| return( "Reserve" ); |
| |
| case 0x17: |
| return( "Release" ); |
| |
| case 0x1a: |
| return( "ModeSen(6)" ); |
| |
| case 0x1b: |
| return( "Start/Stop Unit" ); |
| |
| case 0x1c: |
| return( "Receive Diagnostic Results" ); |
| |
| case 0x1d: |
| return( "Send Diagnostic" ); |
| |
| case 0x25: |
| return( "Read Capacity" ); |
| |
| case 0x28: |
| return( "Read (10)" ); |
| |
| case 0x2a: |
| return( "Write (10)" ); |
| |
| case 0x2b: |
| return( "Seek (10)" ); |
| |
| case 0x2e: |
| return( "Write and Verify" ); |
| |
| case 0x2f: |
| return( "Verify" ); |
| |
| case 0x34: |
| return( "Pre-Fetch" ); |
| |
| case 0x35: |
| return( "Synchronize Cache" ); |
| |
| case 0x37: |
| return( "Read Defect Data (10)" ); |
| |
| case 0x3b: |
| return( "Write Buffer" ); |
| |
| case 0x3c: |
| return( "Read Buffer" ); |
| |
| case 0x3e: |
| return( "Read Long" ); |
| |
| case 0x3f: |
| return( "Write Long" ); |
| |
| case 0x41: |
| return( "Write Same" ); |
| |
| case 0x4c: |
| return( "Log Select" ); |
| |
| case 0x4d: |
| return( "Log Sense" ); |
| |
| case 0x56: |
| return( "Reserve (10)" ); |
| |
| case 0x57: |
| return( "Release (10)" ); |
| |
| case 0xa0: |
| return( "ReportLuns" ); |
| |
| case 0xb7: |
| return( "Read Defect Data (12)" ); |
| |
| case 0xca: |
| return( "Peripheral Device Addressing SCSI Passthrough" ); |
| |
| case 0xcb: |
| return( "Compaq Array Firmware Passthrough" ); |
| |
| default: |
| return( NULL ); |
| } |
| |
| } // end ScsiToAscii() |
| |
| void cpqfcTS_print_scsi_cmd(Scsi_Cmnd * cmd) |
| { |
| |
| printk("cpqfcTS: (%s) chnl 0x%02x, trgt = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n", |
| ScsiToAscii( cmd->cmnd[0]), cmd->channel, cmd->target, cmd->lun, cmd->cmd_len); |
| |
| if( cmd->cmnd[0] == 0) // Test Unit Ready? |
| { |
| int i; |
| |
| printk("Cmnd->request_bufflen = 0x%X, ->use_sg = %d, ->bufflen = %d\n", |
| cmd->request_bufflen, cmd->use_sg, cmd->bufflen); |
| printk("Cmnd->request_buffer = %p, ->sglist_len = %d, ->buffer = %p\n", |
| cmd->request_buffer, cmd->sglist_len, cmd->buffer); |
| for (i = 0; i < cmd->cmd_len; i++) |
| printk("0x%02x ", cmd->cmnd[i]); |
| printk("\n"); |
| } |
| |
| } |
| |
| #endif /* DEBUG_CMND */ |
| |
| |
| |
| |
| static void QueCmndOnBoardLock( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) |
| { |
| int i; |
| |
| for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++) |
| { // find spare slot |
| if( cpqfcHBAdata->BoardLockCmnd[i] == NULL ) |
| { |
| cpqfcHBAdata->BoardLockCmnd[i] = Cmnd; |
| // printk(" BoardLockCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n", |
| // i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun); |
| break; |
| } |
| } |
| if( i >= CPQFCTS_REQ_QUEUE_LEN) |
| { |
| printk(" cpqfcTS WARNING: Lost Cmnd %p on BoardLock Q full!", Cmnd); |
| } |
| |
| } |
| |
| |
| static void QueLinkDownCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) |
| { |
| int indx; |
| |
| // Remember the command ptr so we can return; we'll complete when |
| // the device comes back, causing immediate retry |
| for( indx=0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++)//, SCptr++) |
| { |
| if( cpqfcHBAdata->LinkDnCmnd[indx] == NULL ) // available? |
| { |
| #ifdef DUMMYCMND_DBG |
| printk(" @add Cmnd %p to LnkDnCmnd[%d]@ ", Cmnd,indx); |
| #endif |
| cpqfcHBAdata->LinkDnCmnd[indx] = Cmnd; |
| break; |
| } |
| } |
| |
| if( indx >= CPQFCTS_REQ_QUEUE_LEN ) // no space for Cmnd?? |
| { |
| // this will result in an _abort call later (with possible trouble) |
| printk("no buffer for LinkDnCmnd!! %p\n", Cmnd); |
| } |
| } |
| |
| |
| |
| |
| |
| // The file <scsi/scsi_host.h> says not to call scsi_done from |
| // inside _queuecommand, so we'll do it from the heartbeat timer |
| // (clarification: Turns out it's ok to call scsi_done from queuecommand |
| // for cases that don't go to the hardware like scsi cmds destined |
| // for LUNs we know don't exist, so this code might be simplified...) |
| |
| static void QueBadTargetCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) |
| { |
| int i; |
| // printk(" can't find target %d\n", Cmnd->target); |
| |
| for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++) |
| { // find spare slot |
| if( cpqfcHBAdata->BadTargetCmnd[i] == NULL ) |
| { |
| cpqfcHBAdata->BadTargetCmnd[i] = Cmnd; |
| // printk(" BadTargetCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n", |
| // i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun); |
| break; |
| } |
| } |
| } |
| |
| |
| // This is the "main" entry point for Linux Scsi commands -- |
| // it all starts here. |
| |
| int cpqfcTS_queuecommand(Scsi_Cmnd *Cmnd, void (* done)(Scsi_Cmnd *)) |
| { |
| struct Scsi_Host *HostAdapter = Cmnd->device->host; |
| CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| PTACHYON fcChip = &cpqfcHBAdata->fcChip; |
| TachFCHDR_GCMND fchs; // only use for FC destination id field |
| PFC_LOGGEDIN_PORT pLoggedInPort; |
| ULONG ulStatus, SESTtype; |
| LONG ExchangeID; |
| |
| |
| |
| |
| ENTER("cpqfcTS_queuecommand"); |
| |
| PCI_TRACEO( (ULONG)Cmnd, 0x98) |
| |
| |
| Cmnd->scsi_done = done; |
| #ifdef DEBUG_CMND |
| cpqfcTS_print_scsi_cmd( Cmnd); |
| #endif |
| |
| // prevent board contention with kernel thread... |
| |
| if( cpqfcHBAdata->BoardLock ) |
| { |
| // printk(" @BrdLck Hld@ "); |
| QueCmndOnBoardLock( cpqfcHBAdata, Cmnd); |
| } |
| |
| else |
| { |
| |
| // in the current system (2.2.12), this routine is called |
| // after spin_lock_irqsave(), so INTs are disabled. However, |
| // we might have something pending in the LinkQ, which |
| // might cause the WorkerTask to run. In case that |
| // happens, make sure we lock it out. |
| |
| |
| |
| PCI_TRACE( 0x98) |
| CPQ_SPINLOCK_HBA( cpqfcHBAdata) |
| PCI_TRACE( 0x98) |
| |
| // can we find an FC device mapping to this SCSI target? |
| pLoggedInPort = fcFindLoggedInPort( fcChip, |
| Cmnd, // search Scsi Nexus |
| 0, // DON'T search linked list for FC port id |
| NULL, // DON'T search linked list for FC WWN |
| NULL); // DON'T care about end of list |
| |
| if( pLoggedInPort == NULL ) // not found! |
| { |
| // printk(" @Q bad targ cmnd %p@ ", Cmnd); |
| QueBadTargetCmnd( cpqfcHBAdata, Cmnd); |
| } |
| else if (Cmnd->device->lun >= CPQFCTS_MAX_LUN) |
| { |
| printk(KERN_WARNING "cpqfc: Invalid LUN: %d\n", Cmnd->device->lun); |
| QueBadTargetCmnd( cpqfcHBAdata, Cmnd); |
| } |
| |
| else // we know what FC device to send to... |
| { |
| |
| // does this device support FCP target functions? |
| // (determined by PRLI field) |
| |
| if( !(pLoggedInPort->fcp_info & TARGET_FUNCTION) ) |
| { |
| printk(" Doesn't support TARGET functions port_id %Xh\n", |
| pLoggedInPort->port_id ); |
| QueBadTargetCmnd( cpqfcHBAdata, Cmnd); |
| } |
| |
| // In this case (previous login OK), the device is temporarily |
| // unavailable waiting for re-login, in which case we expect it |
| // to be back in between 25 - 500ms. |
| // If the FC port doesn't log back in within several seconds |
| // (i.e. implicit "logout"), or we get an explicit logout, |
| // we set "device_blocked" in Scsi_Device struct; in this |
| // case 30 seconds will elapse before Linux/Scsi sends another |
| // command to the device. |
| else if( pLoggedInPort->prli != TRUE ) |
| { |
| // printk("Device (Chnl/Target %d/%d) invalid PRLI, port_id %06lXh\n", |
| // Cmnd->channel, Cmnd->target, pLoggedInPort->port_id); |
| QueLinkDownCmnd( cpqfcHBAdata, Cmnd); |
| // Need to use "blocked" flag?? |
| // Cmnd->device->device_blocked = TRUE; // just let it timeout |
| } |
| else // device supports TARGET functions, and is logged in... |
| { |
| // (context of fchs is to "reply" to...) |
| fchs.s_id = pLoggedInPort->port_id; // destination FC address |
| |
| // what is the data direction? For data TO the device, |
| // we need IWE (Intiator Write Entry). Otherwise, IRE. |
| |
| if( Cmnd->cmnd[0] == WRITE_10 || |
| Cmnd->cmnd[0] == WRITE_6 || |
| Cmnd->cmnd[0] == WRITE_BUFFER || |
| Cmnd->cmnd[0] == VENDOR_WRITE_OPCODE || // CPQ specific |
| Cmnd->cmnd[0] == MODE_SELECT ) |
| { |
| SESTtype = SCSI_IWE; // data from HBA to Device |
| } |
| else |
| SESTtype = SCSI_IRE; // data from Device to HBA |
| |
| ulStatus = cpqfcTSBuildExchange( |
| cpqfcHBAdata, |
| SESTtype, // e.g. Initiator Read Entry (IRE) |
| &fchs, // we are originator; only use d_id |
| Cmnd, // Linux SCSI command (with scatter/gather list) |
| &ExchangeID );// fcController->fcExchanges index, -1 if failed |
| |
| if( !ulStatus ) // Exchange setup? |
| |
| { |
| if( cpqfcHBAdata->BoardLock ) |
| { |
| TriggerHBA( fcChip->Registers.ReMapMemBase, 0); |
| printk(" @bl! %d, xID %Xh@ ", current->pid, ExchangeID); |
| } |
| |
| ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID ); |
| if( !ulStatus ) |
| { |
| PCI_TRACEO( ExchangeID, 0xB8) |
| // submitted to Tach's Outbound Que (ERQ PI incremented) |
| // waited for completion for ELS type (Login frames issued |
| // synchronously) |
| } |
| else |
| // check reason for Exchange not being started - we might |
| // want to Queue and start later, or fail with error |
| { |
| printk("quecommand: cpqfcTSStartExchange failed: %Xh\n", ulStatus ); |
| } |
| } // end good BuildExchange status |
| |
| else // SEST table probably full -- why? hardware hang? |
| { |
| printk("quecommand: cpqfcTSBuildExchange faild: %Xh\n", ulStatus); |
| } |
| } // end can't do FCP-SCSI target functions |
| } // end can't find target (FC device) |
| |
| CPQ_SPINUNLOCK_HBA( cpqfcHBAdata) |
| } |
| |
| PCI_TRACEO( (ULONG)Cmnd, 0x9C) |
| LEAVE("cpqfcTS_queuecommand"); |
| return 0; |
| } |
| |
| |
| // Entry point for upper Scsi layer intiated abort. Typically |
| // this is called if the command (for hard disk) fails to complete |
| // in 30 seconds. This driver intends to complete all disk commands |
| // within Exchange ".timeOut" seconds (now 7) with target status, or |
| // in case of ".timeOut" expiration, a DID_SOFT_ERROR which causes |
| // immediate retry. |
| // If any disk commands get the _abort call, except for the case that |
| // the physical device was removed or unavailable due to hardware |
| // errors, it should be considered a driver error and reported to |
| // the author. |
| |
| int cpqfcTS_abort(Scsi_Cmnd *Cmnd) |
| { |
| // printk(" cpqfcTS_abort called?? \n"); |
| return 0; |
| } |
| |
| int cpqfcTS_eh_abort(Scsi_Cmnd *Cmnd) |
| { |
| |
| struct Scsi_Host *HostAdapter = Cmnd->device->host; |
| // get the pointer to our Scsi layer HBA buffer |
| CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; |
| PTACHYON fcChip = &cpqfcHBAdata->fcChip; |
| FC_EXCHANGES *Exchanges = fcChip->Exchanges; |
| int i; |
| ENTER("cpqfcTS_eh_abort"); |
| |
| Cmnd->result = DID_ABORT <<16; // assume we'll find it |
| |
| printk(" @Linux _abort Scsi_Cmnd %p ", Cmnd); |
| // See if we can find a Cmnd pointer that matches... |
| // The most likely case is we accepted the command |
| // from Linux Scsi (e.g. ceated a SEST entry) and it |
| // got lost somehow. If we can't find any reference |
| // to the passed pointer, we can only presume it |
| // got completed as far as our driver is concerned. |
| // If we found it, we will try to abort it through |
| // common mechanism. If FC ABTS is successful (ACC) |
| // or is rejected (RJT) by target, we will call |
| // Scsi "done" quickly. Otherwise, the ABTS will timeout |
| // and we'll call "done" later. |
| |
| // Search the SEST exchanges for a matching Cmnd ptr. |
| for( i=0; i< TACH_SEST_LEN; i++) |
| { |
| if( Exchanges->fcExchange[i].Cmnd == Cmnd ) |
| { |
| |
| // found it! |
| printk(" x_ID %Xh, type %Xh\n", i, Exchanges->fcExchange[i].type); |
| |
| Exchanges->fcExchange[i].status = INITIATOR_ABORT; // seconds default |
| Exchanges->fcExchange[i].timeOut = 10; // seconds default (changed later) |
| |
| // Since we need to immediately return the aborted Cmnd to Scsi |
| // upper layers, we can't make future reference to any of its |
| // fields (e.g the Nexus). |
| |
| cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &i); |
| |
| break; |
| } |
| } |
| |
| if( i >= TACH_SEST_LEN ) // didn't find Cmnd ptr in chip's SEST? |
| { |
| // now search our non-SEST buffers (i.e. Cmnd waiting to |
| // start on the HBA or waiting to complete with error for retry). |
| |
| // first check BadTargetCmnd |
| for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++) |
| { |
| if( cpqfcHBAdata->BadTargetCmnd[i] == Cmnd ) |
| { |
| cpqfcHBAdata->BadTargetCmnd[i] = NULL; |
| printk("in BadTargetCmnd Q\n"); |
| goto Done; // exit |
| } |
| } |
| |
| // if not found above... |
| |
| for( i=0; i < CPQFCTS_REQ_QUEUE_LEN; i++) |
| { |
| if( cpqfcHBAdata->LinkDnCmnd[i] == Cmnd ) |
| { |
| cpqfcHBAdata->LinkDnCmnd[i] = NULL; |
| printk("in LinkDnCmnd Q\n"); |
| goto Done; |
| } |
| } |
| |
| |
| for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++) |
| { // find spare slot |
| if( cpqfcHBAdata->BoardLockCmnd[i] == Cmnd ) |
| { |
| cpqfcHBAdata->BoardLockCmnd[i] = NULL; |
| printk("in BoardLockCmnd Q\n"); |
| goto Done; |
| } |
| } |
| |
| Cmnd->result = DID_ERROR <<16; // Hmmm... |
| printk("Not found! "); |
| // panic("_abort"); |
| } |
| |
| Done: |
| |
| // panic("_abort"); |
| LEAVE("cpqfcTS_eh_abort"); |
| return 0; // (see scsi.h) |
| } |
| |
| |
| // FCP-SCSI Target Device Reset |
| // See dpANS Fibre Channel Protocol for SCSI |
| // X3.269-199X revision 12, pg 25 |
| |
| #ifdef SUPPORT_RESET |
| |
| int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, |
| unsigned int reset_flags) |
| { |
| int timeout = 10*HZ; |
| int retries = 1; |
| char scsi_cdb[12]; |
| int result; |
| Scsi_Cmnd * SCpnt; |
| Scsi_Device * SDpnt; |
| |
| // FIXME, cpqfcTS_TargetDeviceReset needs to be fixed |
| // similarly to how the passthrough ioctl was fixed |
| // around the 2.5.30 kernel. Scsi_Cmnd replaced with |
| // Scsi_Request, etc. |
| // For now, so people don't fall into a hole... |
| |
| // printk(" ENTERING cpqfcTS_TargetDeviceReset() - flag=%d \n",reset_flags); |
| |
| if (ScsiDev->host->eh_active) return FAILED; |
| |
| memset( scsi_cdb, 0, sizeof( scsi_cdb)); |
| |
| scsi_cdb[0] = RELEASE; |
| |
| SCpnt = scsi_get_command(ScsiDev, GFP_KERNEL); |
| { |
| CPQFC_DECLARE_COMPLETION(wait); |
| |
| SCpnt->SCp.buffers_residual = FCP_TARGET_RESET; |
| |
| // FIXME: this would panic, SCpnt->request would be NULL. |
| SCpnt->request->CPQFC_WAITING = &wait; |
| scsi_do_cmd(SCpnt, scsi_cdb, NULL, 0, my_ioctl_done, timeout, retries); |
| CPQFC_WAIT_FOR_COMPLETION(&wait); |
| SCpnt->request->CPQFC_WAITING = NULL; |
| } |
| |
| |
| if(driver_byte(SCpnt->result) != 0) |
| switch(SCpnt->sense_buffer[2] & 0xf) { |
| case ILLEGAL_REQUEST: |
| if(cmd[0] == ALLOW_MEDIUM_REMOVAL) dev->lockable = 0; |
| else printk("SCSI device (ioctl) reports ILLEGAL REQUEST.\n"); |
| break; |
| case NOT_READY: // This happens if there is no disc in drive |
| if(dev->removable && (cmd[0] != TEST_UNIT_READY)){ |
| printk(KERN_INFO "Device not ready. Make sure there is a disc in the drive.\n"); |
| break; |
| } |
| case UNIT_ATTENTION: |
| if (dev->removable){ |
| dev->changed = 1; |
| SCpnt->result = 0; // This is no longer considered an error |
| // gag this error, VFS will log it anyway /axboe |
| // printk(KERN_INFO "Disc change detected.\n"); |
| break; |
| }; |
| default: // Fall through for non-removable media |
| printk("SCSI error: host %d id %d lun %d return code = %x\n", |
| dev->host->host_no, |
| dev->id, |
| dev->lun, |
| SCpnt->result); |
| printk("\tSense class %x, sense error %x, extended sense %x\n", |
| sense_class(SCpnt->sense_buffer[0]), |
| sense_error(SCpnt->sense_buffer[0]), |
| SCpnt->sense_buffer[2] & 0xf); |
| |
| }; |
| result = SCpnt->result; |
| |
| SDpnt = SCpnt->device; |
| scsi_put_command(SCpnt); |
| SCpnt = NULL; |
| |
| // printk(" LEAVING cpqfcTS_TargetDeviceReset() - return SUCCESS \n"); |
| return SUCCESS; |
| } |
| |
| #else |
| int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, |
| unsigned int reset_flags) |
| { |
| return -ENOTSUPP; |
| } |
| |
| #endif /* SUPPORT_RESET */ |
| |
| int cpqfcTS_eh_device_reset(Scsi_Cmnd *Cmnd) |
| { |
| int retval; |
| Scsi_Device *SDpnt = Cmnd->device; |
| // printk(" ENTERING cpqfcTS_eh_device_reset() \n"); |
| spin_unlock_irq(Cmnd->device->host->host_lock); |
| retval = cpqfcTS_TargetDeviceReset( SDpnt, 0); |
| spin_lock_irq(Cmnd->device->host->host_lock); |
| return retval; |
| } |
| |
| |
| int cpqfcTS_reset(Scsi_Cmnd *Cmnd, unsigned int reset_flags) |
| { |
| |
| ENTER("cpqfcTS_reset"); |
| |
| LEAVE("cpqfcTS_reset"); |
| return SCSI_RESET_ERROR; /* Bus Reset Not supported */ |
| } |
| |
| /* This function determines the bios parameters for a given |
| harddisk. These tend to be numbers that are made up by the |
| host adapter. Parameters: |
| size, device number, list (heads, sectors,cylinders). |
| (from hosts.h) |
| */ |
| |
| int cpqfcTS_biosparam(struct scsi_device *sdev, struct block_device *n, |
| sector_t capacity, int ip[]) |
| { |
| int size = capacity; |
| |
| ENTER("cpqfcTS_biosparam"); |
| ip[0] = 64; |
| ip[1] = 32; |
| ip[2] = size >> 11; |
| |
| if( ip[2] > 1024 ) |
| { |
| ip[0] = 255; |
| ip[1] = 63; |
| ip[2] = size / (ip[0] * ip[1]); |
| } |
| |
| LEAVE("cpqfcTS_biosparam"); |
| return 0; |
| } |
| |
| |
| |
| irqreturn_t cpqfcTS_intr_handler( int irq, |
| void *dev_id, |
| struct pt_regs *regs) |
| { |
| |
| unsigned long flags, InfLoopBrk=0; |
| struct Scsi_Host *HostAdapter = dev_id; |
| CPQFCHBA *cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata; |
| int MoreMessages = 1; // assume we have something to do |
| UCHAR IntPending; |
| int handled = 0; |
| |
| ENTER("intr_handler"); |
| spin_lock_irqsave( HostAdapter->host_lock, flags); |
| // is this our INT? |
| IntPending = readb( cpqfcHBA->fcChip.Registers.INTPEND.address); |
| |
| // broken boards can generate messages forever, so |
| // prevent the infinite loop |
| #define INFINITE_IMQ_BREAK 10000 |
| if( IntPending ) |
| { |
| handled = 1; |
| // mask our HBA interrupts until we handle it... |
| writeb( 0, cpqfcHBA->fcChip.Registers.INTEN.address); |
| |
| if( IntPending & 0x4) // "INT" - Tach wrote to IMQ |
| { |
| while( (++InfLoopBrk < INFINITE_IMQ_BREAK) && (MoreMessages ==1) ) |
| { |
| MoreMessages = CpqTsProcessIMQEntry( HostAdapter); // ret 0 when done |
| } |
| if( InfLoopBrk >= INFINITE_IMQ_BREAK ) |
| { |
| printk("WARNING: Compaq FC adapter generating excessive INTs -REPLACE\n"); |
| printk("or investigate alternate causes (e.g. physical FC layer)\n"); |
| } |
| |
| else // working normally - re-enable INTs and continue |
| writeb( 0x1F, cpqfcHBA->fcChip.Registers.INTEN.address); |
| |
| } // (...ProcessIMQEntry() clears INT by writing IMQ consumer) |
| else // indications of errors or problems... |
| // these usually indicate critical system hardware problems. |
| { |
| if( IntPending & 0x10 ) |
| printk(" cpqfcTS adapter external memory parity error detected\n"); |
| if( IntPending & 0x8 ) |
| printk(" cpqfcTS adapter PCI master address crossed 45-bit boundary\n"); |
| if( IntPending & 0x2 ) |
| printk(" cpqfcTS adapter DMA error detected\n"); |
| if( IntPending & 0x1 ) { |
| UCHAR IntStat; |
| printk(" cpqfcTS adapter PCI error detected\n"); |
| IntStat = readb( cpqfcHBA->fcChip.Registers.INTSTAT.address); |
| printk("cpqfc: ISR = 0x%02x\n", IntStat); |
| if (IntStat & 0x1) { |
| __u16 pcistat; |
| /* read the pci status register */ |
| pci_read_config_word(cpqfcHBA->PciDev, 0x06, &pcistat); |
| printk("PCI status register is 0x%04x\n", pcistat); |
| if (pcistat & 0x8000) printk("Parity Error Detected.\n"); |
| if (pcistat & 0x4000) printk("Signalled System Error\n"); |
| if (pcistat & 0x2000) printk("Received Master Abort\n"); |
| if (pcistat & 0x1000) printk("Received Target Abort\n"); |
| if (pcistat & 0x0800) printk("Signalled Target Abort\n"); |
| } |
| if (IntStat & 0x4) printk("(INT)\n"); |
| if (IntStat & 0x8) |
| printk("CRS: PCI master address crossed 46 bit bouandary\n"); |
| if (IntStat & 0x10) printk("MRE: external memory parity error.\n"); |
| } |
| } |
| } |
| spin_unlock_irqrestore( HostAdapter->host_lock, flags); |
| LEAVE("intr_handler"); |
| return IRQ_RETVAL(handled); |
| } |
| |
| |
| |
| |
| int cpqfcTSDecodeGBICtype( PTACHYON fcChip, char cErrorString[]) |
| { |
| // Verify GBIC type (if any) and correct Tachyon Port State Machine |
| // (GBIC) module definition is: |
| // GPIO1, GPIO0, GPIO4 for MD2, MD1, MD0. The input states appear |
| // to be inverted -- i.e., a setting of 111 is read when there is NO |
| // GBIC present. The Module Def (MD) spec says 000 is "no GBIC" |
| // Hard code the bit states to detect Copper, |
| // Long wave (single mode), Short wave (multi-mode), and absent GBIC |
| |
| ULONG ulBuff; |
| |
| sprintf( cErrorString, "\nGBIC detected: "); |
| |
| ulBuff = fcChip->Registers.TYstatus.value & 0x13; |
| switch( ulBuff ) |
| { |
| case 0x13: // GPIO4, GPIO1, GPIO0 = 111; no GBIC! |
| sprintf( &cErrorString[ strlen( cErrorString)], |
| "NONE! "); |
| return FALSE; |
| |
| |
| case 0x11: // Copper GBIC detected |
| sprintf( &cErrorString[ strlen( cErrorString)], |
| "Copper. "); |
| break; |
| |
| case 0x10: // Long-wave (single mode) GBIC detected |
| sprintf( &cErrorString[ strlen( cErrorString)], |
| "Long-wave. "); |
| break; |
| case 0x1: // Short-wave (multi mode) GBIC detected |
| sprintf( &cErrorString[ strlen( cErrorString)], |
| "Short-wave. "); |
| break; |
| default: // unknown GBIC - presumably it will work (?) |
| sprintf( &cErrorString[ strlen( cErrorString)], |
| "Unknown. "); |
| |
| break; |
| } // end switch GBIC detection |
| |
| return TRUE; |
| } |
| |
| |
| |
| |
| |
| |
| int cpqfcTSGetLPSM( PTACHYON fcChip, char cErrorString[]) |
| { |
| // Tachyon's Frame Manager LPSM in LinkDown state? |
| // (For non-loop port, check PSM instead.) |
| // return string with state and FALSE is Link Down |
| |
| int LinkUp; |
| |
| if( fcChip->Registers.FMstatus.value & 0x80 ) |
| LinkUp = FALSE; |
| else |
| LinkUp = TRUE; |
| |
| sprintf( &cErrorString[ strlen( cErrorString)], |
| " LPSM %Xh ", |
| (fcChip->Registers.FMstatus.value >>4) & 0xf ); |
| |
| |
| switch( fcChip->Registers.FMstatus.value & 0xF0) |
| { |
| // bits set in LPSM |
| case 0x10: |
| sprintf( &cErrorString[ strlen( cErrorString)], "ARB"); |
| break; |
| case 0x20: |
| sprintf( &cErrorString[ strlen( cErrorString)], "ARBwon"); |
| break; |
| case 0x30: |
| sprintf( &cErrorString[ strlen( cErrorString)], "OPEN"); |
| break; |
| case 0x40: |
| sprintf( &cErrorString[ strlen( cErrorString)], "OPENed"); |
| break; |
| case 0x50: |
| sprintf( &cErrorString[ strlen( cErrorString)], "XmitCLS"); |
| break; |
| case 0x60: |
| sprintf( &cErrorString[ strlen( cErrorString)], "RxCLS"); |
| break; |
| case 0x70: |
| sprintf( &cErrorString[ strlen( cErrorString)], "Xfer"); |
| break; |
| case 0x80: |
| sprintf( &cErrorString[ strlen( cErrorString)], "Init"); |
| break; |
| case 0x90: |
| sprintf( &cErrorString[ strlen( cErrorString)], "O-IInitFin"); |
| break; |
| case 0xa0: |
| sprintf( &cErrorString[ strlen( cErrorString)], "O-IProtocol"); |
| break; |
| case 0xb0: |
| sprintf( &cErrorString[ strlen( cErrorString)], "O-ILipRcvd"); |
| break; |
| case 0xc0: |
| sprintf( &cErrorString[ strlen( cErrorString)], "HostControl"); |
| break; |
| case 0xd0: |
| sprintf( &cErrorString[ strlen( cErrorString)], "LoopFail"); |
| break; |
| case 0xe0: |
| sprintf( &cErrorString[ strlen( cErrorString)], "Offline"); |
| break; |
| case 0xf0: |
| sprintf( &cErrorString[ strlen( cErrorString)], "OldPort"); |
| break; |
| case 0: |
| default: |
| sprintf( &cErrorString[ strlen( cErrorString)], "Monitor"); |
| break; |
| |
| } |
| |
| return LinkUp; |
| } |
| |
| |
| |
| |
| #include "linux/slab.h" |
| |
| // Dynamic memory allocation alignment routines |
| // HP's Tachyon Fibre Channel Controller chips require |
| // certain memory queues and register pointers to be aligned |
| // on various boundaries, usually the size of the Queue in question. |
| // Alignment might be on 2, 4, 8, ... or even 512 byte boundaries. |
| // Since most O/Ss don't allow this (usually only Cache aligned - |
| // 32-byte boundary), these routines provide generic alignment (after |
| // O/S allocation) at any boundary, and store the original allocated |
| // pointer for deletion (O/S free function). Typically, we expect |
| // these functions to only be called at HBA initialization and |
| // removal time (load and unload times) |
| // ALGORITHM notes: |
| // Memory allocation varies by compiler and platform. In the worst case, |
| // we are only assured BYTE alignment, but in the best case, we can |
| // request allocation on any desired boundary. Our strategy: pad the |
| // allocation request size (i.e. waste memory) so that we are assured |
| // of passing desired boundary near beginning of contiguous space, then |
| // mask out lower address bits. |
| // We define the following algorithm: |
| // allocBoundary - compiler/platform specific address alignment |
| // in number of bytes (default is single byte; i.e. 1) |
| // n_alloc - number of bytes application wants @ aligned address |
| // ab - alignment boundary, in bytes (e.g. 4, 32, ...) |
| // t_alloc - total allocation needed to ensure desired boundary |
| // mask - to clear least significant address bits for boundary |
| // Compute: |
| // t_alloc = n_alloc + (ab - allocBoundary) |
| // allocate t_alloc bytes @ alloc_address |
| // mask = NOT (ab - 1) |
| // (e.g. if ab=32 _0001 1111 -> _1110 0000 |
| // aligned_address = alloc_address & mask |
| // set n_alloc bytes to 0 |
| // return aligned_address (NULL if failed) |
| // |
| // If u32_AlignedAddress is non-zero, then search for BaseAddress (stored |
| // from previous allocation). If found, invoke call to FREE the memory. |
| // Return NULL if BaseAddress not found |
| |
| // we need about 8 allocations per HBA. Figuring at most 10 HBAs per server |
| // size the dynamic_mem array at 80. |
| |
| void* fcMemManager( struct pci_dev *pdev, ALIGNED_MEM *dynamic_mem, |
| ULONG n_alloc, ULONG ab, ULONG u32_AlignedAddress, |
| dma_addr_t *dma_handle) |
| { |
| USHORT allocBoundary=1; // compiler specific - worst case 1 |
| // best case - replace malloc() call |
| // with function that allocates exactly |
| // at desired boundary |
| |
| unsigned long ulAddress; |
| ULONG t_alloc, i; |
| void *alloc_address = 0; // def. error code / address not found |
| LONG mask; // must be 32-bits wide! |
| |
| ENTER("fcMemManager"); |
| if( u32_AlignedAddress ) // are we freeing existing memory? |
| { |
| // printk(" freeing AlignedAddress %Xh\n", u32_AlignedAddress); |
| for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for the base address |
| { |
| // printk("dynamic_mem[%u].AlignedAddress %lX\n", i, dynamic_mem[i].AlignedAddress); |
| if( dynamic_mem[i].AlignedAddress == u32_AlignedAddress ) |
| { |
| alloc_address = dynamic_mem[i].BaseAllocated; // 'success' status |
| pci_free_consistent(pdev,dynamic_mem[i].size, |
| alloc_address, |
| dynamic_mem[i].dma_handle); |
| dynamic_mem[i].BaseAllocated = 0; // clear for next use |
| dynamic_mem[i].AlignedAddress = 0; |
| dynamic_mem[i].size = 0; |
| break; // quit for loop; done |
| } |
| } |
| } |
| else if( n_alloc ) // want new memory? |
| { |
| dma_addr_t handle; |
| t_alloc = n_alloc + (ab - allocBoundary); // pad bytes for alignment |
| // printk("pci_alloc_consistent() for Tach alignment: %ld bytes\n", t_alloc); |
| |
| // (would like to) allow thread block to free pages |
| alloc_address = // total bytes (NumberOfBytes) |
| pci_alloc_consistent(pdev, t_alloc, &handle); |
| |
| // now mask off least sig. bits of address |
| if( alloc_address ) // (only if non-NULL) |
| { |
| // find place to store ptr, so we |
| // can free it later... |
| |
| mask = (LONG)(ab - 1); // mask all low-order bits |
| mask = ~mask; // invert bits |
| for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for free slot |
| { |
| if( dynamic_mem[i].BaseAllocated == 0) // take 1st available |
| { |
| dynamic_mem[i].BaseAllocated = alloc_address;// address from O/S |
| dynamic_mem[i].dma_handle = handle; |
| if (dma_handle != NULL) |
| { |
| // printk("handle = %p, ab=%d, boundary = %d, mask=0x%08x\n", |
| // handle, ab, allocBoundary, mask); |
| *dma_handle = (dma_addr_t) |
| ((((ULONG)handle) + (ab - allocBoundary)) & mask); |
| } |
| dynamic_mem[i].size = t_alloc; |
| break; |
| } |
| } |
| ulAddress = (unsigned long)alloc_address; |
| |
| ulAddress += (ab - allocBoundary); // add the alignment bytes- |
| // then truncate address... |
| alloc_address = (void*)(ulAddress & mask); |
| |
| dynamic_mem[i].AlignedAddress = |
| (ULONG)(ulAddress & mask); // 32bit Tach address |
| memset( alloc_address, 0, n_alloc ); // clear new memory |
| } |
| else // O/S dynamic mem alloc failed! |
| alloc_address = 0; // (for debugging breakpt) |
| |
| } |
| |
| LEAVE("fcMemManager"); |
| return alloc_address; // good (or NULL) address |
| } |
| |
| |
| static Scsi_Host_Template driver_template = { |
| .detect = cpqfcTS_detect, |
| .release = cpqfcTS_release, |
| .info = cpqfcTS_info, |
| .proc_info = cpqfcTS_proc_info, |
| .ioctl = cpqfcTS_ioctl, |
| .queuecommand = cpqfcTS_queuecommand, |
| .eh_device_reset_handler = cpqfcTS_eh_device_reset, |
| .eh_abort_handler = cpqfcTS_eh_abort, |
| .bios_param = cpqfcTS_biosparam, |
| .can_queue = CPQFCTS_REQ_QUEUE_LEN, |
| .this_id = -1, |
| .sg_tablesize = SG_ALL, |
| .cmd_per_lun = CPQFCTS_CMD_PER_LUN, |
| .use_clustering = ENABLE_CLUSTERING, |
| }; |
| #include "scsi_module.c" |
| |