| /* |
| * Copyright (C) 2007 Ben Skeggs. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial |
| * portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE |
| * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "drmP.h" |
| #include "drm.h" |
| |
| #include "nouveau_drv.h" |
| #include "nouveau_ramht.h" |
| #include "nouveau_dma.h" |
| |
| #define USE_REFCNT(dev) (nouveau_private(dev)->chipset >= 0x10) |
| #define USE_SEMA(dev) (nouveau_private(dev)->chipset >= 0x17 && \ |
| nouveau_private(dev)->card_type < NV_C0) |
| |
| struct nouveau_fence { |
| struct nouveau_channel *channel; |
| struct kref refcount; |
| struct list_head entry; |
| |
| uint32_t sequence; |
| bool signalled; |
| |
| void (*work)(void *priv, bool signalled); |
| void *priv; |
| }; |
| |
| struct nouveau_semaphore { |
| struct kref ref; |
| struct drm_device *dev; |
| struct drm_mm_node *mem; |
| }; |
| |
| static inline struct nouveau_fence * |
| nouveau_fence(void *sync_obj) |
| { |
| return (struct nouveau_fence *)sync_obj; |
| } |
| |
| static void |
| nouveau_fence_del(struct kref *ref) |
| { |
| struct nouveau_fence *fence = |
| container_of(ref, struct nouveau_fence, refcount); |
| |
| nouveau_channel_ref(NULL, &fence->channel); |
| kfree(fence); |
| } |
| |
| void |
| nouveau_fence_update(struct nouveau_channel *chan) |
| { |
| struct drm_device *dev = chan->dev; |
| struct nouveau_fence *tmp, *fence; |
| uint32_t sequence; |
| |
| spin_lock(&chan->fence.lock); |
| |
| /* Fetch the last sequence if the channel is still up and running */ |
| if (likely(!list_empty(&chan->fence.pending))) { |
| if (USE_REFCNT(dev)) |
| sequence = nvchan_rd32(chan, 0x48); |
| else |
| sequence = atomic_read(&chan->fence.last_sequence_irq); |
| |
| if (chan->fence.sequence_ack == sequence) |
| goto out; |
| chan->fence.sequence_ack = sequence; |
| } |
| |
| list_for_each_entry_safe(fence, tmp, &chan->fence.pending, entry) { |
| sequence = fence->sequence; |
| fence->signalled = true; |
| list_del(&fence->entry); |
| |
| if (unlikely(fence->work)) |
| fence->work(fence->priv, true); |
| |
| kref_put(&fence->refcount, nouveau_fence_del); |
| |
| if (sequence == chan->fence.sequence_ack) |
| break; |
| } |
| out: |
| spin_unlock(&chan->fence.lock); |
| } |
| |
| int |
| nouveau_fence_new(struct nouveau_channel *chan, struct nouveau_fence **pfence, |
| bool emit) |
| { |
| struct nouveau_fence *fence; |
| int ret = 0; |
| |
| fence = kzalloc(sizeof(*fence), GFP_KERNEL); |
| if (!fence) |
| return -ENOMEM; |
| kref_init(&fence->refcount); |
| nouveau_channel_ref(chan, &fence->channel); |
| |
| if (emit) |
| ret = nouveau_fence_emit(fence); |
| |
| if (ret) |
| nouveau_fence_unref(&fence); |
| *pfence = fence; |
| return ret; |
| } |
| |
| struct nouveau_channel * |
| nouveau_fence_channel(struct nouveau_fence *fence) |
| { |
| return fence ? nouveau_channel_get_unlocked(fence->channel) : NULL; |
| } |
| |
| int |
| nouveau_fence_emit(struct nouveau_fence *fence) |
| { |
| struct nouveau_channel *chan = fence->channel; |
| struct drm_device *dev = chan->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = RING_SPACE(chan, 2); |
| if (ret) |
| return ret; |
| |
| if (unlikely(chan->fence.sequence == chan->fence.sequence_ack - 1)) { |
| nouveau_fence_update(chan); |
| |
| BUG_ON(chan->fence.sequence == |
| chan->fence.sequence_ack - 1); |
| } |
| |
| fence->sequence = ++chan->fence.sequence; |
| |
| kref_get(&fence->refcount); |
| spin_lock(&chan->fence.lock); |
| list_add_tail(&fence->entry, &chan->fence.pending); |
| spin_unlock(&chan->fence.lock); |
| |
| if (USE_REFCNT(dev)) { |
| if (dev_priv->card_type < NV_C0) |
| BEGIN_RING(chan, NvSubSw, 0x0050, 1); |
| else |
| BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0050, 1); |
| } else { |
| BEGIN_RING(chan, NvSubSw, 0x0150, 1); |
| } |
| OUT_RING (chan, fence->sequence); |
| FIRE_RING(chan); |
| |
| return 0; |
| } |
| |
| void |
| nouveau_fence_work(struct nouveau_fence *fence, |
| void (*work)(void *priv, bool signalled), |
| void *priv) |
| { |
| BUG_ON(fence->work); |
| |
| spin_lock(&fence->channel->fence.lock); |
| |
| if (fence->signalled) { |
| work(priv, true); |
| } else { |
| fence->work = work; |
| fence->priv = priv; |
| } |
| |
| spin_unlock(&fence->channel->fence.lock); |
| } |
| |
| void |
| __nouveau_fence_unref(void **sync_obj) |
| { |
| struct nouveau_fence *fence = nouveau_fence(*sync_obj); |
| |
| if (fence) |
| kref_put(&fence->refcount, nouveau_fence_del); |
| *sync_obj = NULL; |
| } |
| |
| void * |
| __nouveau_fence_ref(void *sync_obj) |
| { |
| struct nouveau_fence *fence = nouveau_fence(sync_obj); |
| |
| kref_get(&fence->refcount); |
| return sync_obj; |
| } |
| |
| bool |
| __nouveau_fence_signalled(void *sync_obj, void *sync_arg) |
| { |
| struct nouveau_fence *fence = nouveau_fence(sync_obj); |
| struct nouveau_channel *chan = fence->channel; |
| |
| if (fence->signalled) |
| return true; |
| |
| nouveau_fence_update(chan); |
| return fence->signalled; |
| } |
| |
| int |
| __nouveau_fence_wait(void *sync_obj, void *sync_arg, bool lazy, bool intr) |
| { |
| unsigned long timeout = jiffies + (3 * DRM_HZ); |
| unsigned long sleep_time = jiffies + 1; |
| int ret = 0; |
| |
| while (1) { |
| if (__nouveau_fence_signalled(sync_obj, sync_arg)) |
| break; |
| |
| if (time_after_eq(jiffies, timeout)) { |
| ret = -EBUSY; |
| break; |
| } |
| |
| __set_current_state(intr ? TASK_INTERRUPTIBLE |
| : TASK_UNINTERRUPTIBLE); |
| if (lazy && time_after_eq(jiffies, sleep_time)) |
| schedule_timeout(1); |
| |
| if (intr && signal_pending(current)) { |
| ret = -ERESTARTSYS; |
| break; |
| } |
| } |
| |
| __set_current_state(TASK_RUNNING); |
| |
| return ret; |
| } |
| |
| static struct nouveau_semaphore * |
| semaphore_alloc(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_semaphore *sema; |
| int size = (dev_priv->chipset < 0x84) ? 4 : 16; |
| int ret, i; |
| |
| if (!USE_SEMA(dev)) |
| return NULL; |
| |
| sema = kmalloc(sizeof(*sema), GFP_KERNEL); |
| if (!sema) |
| goto fail; |
| |
| ret = drm_mm_pre_get(&dev_priv->fence.heap); |
| if (ret) |
| goto fail; |
| |
| spin_lock(&dev_priv->fence.lock); |
| sema->mem = drm_mm_search_free(&dev_priv->fence.heap, size, 0, 0); |
| if (sema->mem) |
| sema->mem = drm_mm_get_block_atomic(sema->mem, size, 0); |
| spin_unlock(&dev_priv->fence.lock); |
| |
| if (!sema->mem) |
| goto fail; |
| |
| kref_init(&sema->ref); |
| sema->dev = dev; |
| for (i = sema->mem->start; i < sema->mem->start + size; i += 4) |
| nouveau_bo_wr32(dev_priv->fence.bo, i / 4, 0); |
| |
| return sema; |
| fail: |
| kfree(sema); |
| return NULL; |
| } |
| |
| static void |
| semaphore_free(struct kref *ref) |
| { |
| struct nouveau_semaphore *sema = |
| container_of(ref, struct nouveau_semaphore, ref); |
| struct drm_nouveau_private *dev_priv = sema->dev->dev_private; |
| |
| spin_lock(&dev_priv->fence.lock); |
| drm_mm_put_block(sema->mem); |
| spin_unlock(&dev_priv->fence.lock); |
| |
| kfree(sema); |
| } |
| |
| static void |
| semaphore_work(void *priv, bool signalled) |
| { |
| struct nouveau_semaphore *sema = priv; |
| struct drm_nouveau_private *dev_priv = sema->dev->dev_private; |
| |
| if (unlikely(!signalled)) |
| nouveau_bo_wr32(dev_priv->fence.bo, sema->mem->start / 4, 1); |
| |
| kref_put(&sema->ref, semaphore_free); |
| } |
| |
| static int |
| semaphore_acquire(struct nouveau_channel *chan, struct nouveau_semaphore *sema) |
| { |
| struct drm_nouveau_private *dev_priv = chan->dev->dev_private; |
| struct nouveau_fence *fence = NULL; |
| int ret; |
| |
| if (dev_priv->chipset < 0x84) { |
| ret = RING_SPACE(chan, 3); |
| if (ret) |
| return ret; |
| |
| BEGIN_RING(chan, NvSubSw, NV_SW_SEMAPHORE_OFFSET, 2); |
| OUT_RING (chan, sema->mem->start); |
| OUT_RING (chan, 1); |
| } else { |
| /* |
| * NV50 tries to be too smart and context-switch |
| * between semaphores instead of doing a "first come, |
| * first served" strategy like previous cards |
| * do. |
| * |
| * That's bad because the ACQUIRE latency can get as |
| * large as the PFIFO context time slice in the |
| * typical DRI2 case where you have several |
| * outstanding semaphores at the same moment. |
| * |
| * If we're going to ACQUIRE, force the card to |
| * context switch before, just in case the matching |
| * RELEASE is already scheduled to be executed in |
| * another channel. |
| */ |
| |
| ret = RING_SPACE(chan, 7); |
| if (ret) |
| return ret; |
| |
| BEGIN_RING(chan, NvSubSw, 0x0080, 1); |
| OUT_RING (chan, 0); |
| BEGIN_RING(chan, NvSubSw, 0x0010, 4); |
| OUT_RING (chan, upper_32_bits(sema->mem->start)); |
| OUT_RING (chan, lower_32_bits(sema->mem->start)); |
| OUT_RING (chan, 1); |
| OUT_RING (chan, 1); /* ACQUIRE_EQ */ |
| } |
| |
| /* Delay semaphore destruction until its work is done */ |
| ret = nouveau_fence_new(chan, &fence, true); |
| if (ret) |
| return ret; |
| |
| kref_get(&sema->ref); |
| nouveau_fence_work(fence, semaphore_work, sema); |
| nouveau_fence_unref(&fence); |
| return 0; |
| } |
| |
| static int |
| semaphore_release(struct nouveau_channel *chan, struct nouveau_semaphore *sema) |
| { |
| struct drm_nouveau_private *dev_priv = chan->dev->dev_private; |
| struct nouveau_fence *fence = NULL; |
| int ret; |
| |
| if (dev_priv->chipset < 0x84) { |
| ret = RING_SPACE(chan, 4); |
| if (ret) |
| return ret; |
| |
| BEGIN_RING(chan, NvSubSw, NV_SW_SEMAPHORE_OFFSET, 1); |
| OUT_RING (chan, sema->mem->start); |
| BEGIN_RING(chan, NvSubSw, NV_SW_SEMAPHORE_RELEASE, 1); |
| OUT_RING (chan, 1); |
| } else { |
| /* |
| * Emits release and forces the card to context switch right |
| * afterwards, there may be another channel waiting for the |
| * semaphore |
| */ |
| |
| ret = RING_SPACE(chan, 7); |
| if (ret) |
| return ret; |
| |
| BEGIN_RING(chan, NvSubSw, 0x0010, 4); |
| OUT_RING (chan, upper_32_bits(sema->mem->start)); |
| OUT_RING (chan, lower_32_bits(sema->mem->start)); |
| OUT_RING (chan, 1); |
| OUT_RING (chan, 2); /* RELEASE */ |
| BEGIN_RING(chan, NvSubSw, 0x0080, 1); |
| OUT_RING (chan, 0); |
| } |
| |
| /* Delay semaphore destruction until its work is done */ |
| ret = nouveau_fence_new(chan, &fence, true); |
| if (ret) |
| return ret; |
| |
| kref_get(&sema->ref); |
| nouveau_fence_work(fence, semaphore_work, sema); |
| nouveau_fence_unref(&fence); |
| return 0; |
| } |
| |
| int |
| nouveau_fence_sync(struct nouveau_fence *fence, |
| struct nouveau_channel *wchan) |
| { |
| struct nouveau_channel *chan = nouveau_fence_channel(fence); |
| struct drm_device *dev = wchan->dev; |
| struct nouveau_semaphore *sema; |
| int ret = 0; |
| |
| if (likely(!chan || chan == wchan || |
| nouveau_fence_signalled(fence))) |
| goto out; |
| |
| sema = semaphore_alloc(dev); |
| if (!sema) { |
| /* Early card or broken userspace, fall back to |
| * software sync. */ |
| ret = nouveau_fence_wait(fence, true, false); |
| goto out; |
| } |
| |
| /* try to take chan's mutex, if we can't take it right away |
| * we have to fallback to software sync to prevent locking |
| * order issues |
| */ |
| if (!mutex_trylock(&chan->mutex)) { |
| ret = nouveau_fence_wait(fence, true, false); |
| goto out_unref; |
| } |
| |
| /* Make wchan wait until it gets signalled */ |
| ret = semaphore_acquire(wchan, sema); |
| if (ret) |
| goto out_unlock; |
| |
| /* Signal the semaphore from chan */ |
| ret = semaphore_release(chan, sema); |
| |
| out_unlock: |
| mutex_unlock(&chan->mutex); |
| out_unref: |
| kref_put(&sema->ref, semaphore_free); |
| out: |
| if (chan) |
| nouveau_channel_put_unlocked(&chan); |
| return ret; |
| } |
| |
| int |
| __nouveau_fence_flush(void *sync_obj, void *sync_arg) |
| { |
| return 0; |
| } |
| |
| int |
| nouveau_fence_channel_init(struct nouveau_channel *chan) |
| { |
| struct drm_device *dev = chan->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_gpuobj *obj = NULL; |
| int ret; |
| |
| /* Create an NV_SW object for various sync purposes */ |
| ret = nouveau_gpuobj_gr_new(chan, NvSw, NV_SW); |
| if (ret) |
| return ret; |
| |
| /* we leave subchannel empty for nvc0 */ |
| if (dev_priv->card_type < NV_C0) { |
| ret = RING_SPACE(chan, 2); |
| if (ret) |
| return ret; |
| BEGIN_RING(chan, NvSubSw, 0, 1); |
| OUT_RING(chan, NvSw); |
| } |
| |
| /* Create a DMA object for the shared cross-channel sync area. */ |
| if (USE_SEMA(dev)) { |
| struct ttm_mem_reg *mem = &dev_priv->fence.bo->bo.mem; |
| |
| ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, |
| mem->start << PAGE_SHIFT, |
| mem->size, NV_MEM_ACCESS_RW, |
| NV_MEM_TARGET_VRAM, &obj); |
| if (ret) |
| return ret; |
| |
| ret = nouveau_ramht_insert(chan, NvSema, obj); |
| nouveau_gpuobj_ref(NULL, &obj); |
| if (ret) |
| return ret; |
| |
| ret = RING_SPACE(chan, 2); |
| if (ret) |
| return ret; |
| BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 1); |
| OUT_RING(chan, NvSema); |
| } |
| |
| FIRE_RING(chan); |
| |
| INIT_LIST_HEAD(&chan->fence.pending); |
| spin_lock_init(&chan->fence.lock); |
| atomic_set(&chan->fence.last_sequence_irq, 0); |
| |
| return 0; |
| } |
| |
| void |
| nouveau_fence_channel_fini(struct nouveau_channel *chan) |
| { |
| struct nouveau_fence *tmp, *fence; |
| |
| spin_lock(&chan->fence.lock); |
| |
| list_for_each_entry_safe(fence, tmp, &chan->fence.pending, entry) { |
| fence->signalled = true; |
| list_del(&fence->entry); |
| |
| if (unlikely(fence->work)) |
| fence->work(fence->priv, false); |
| |
| kref_put(&fence->refcount, nouveau_fence_del); |
| } |
| |
| spin_unlock(&chan->fence.lock); |
| } |
| |
| int |
| nouveau_fence_init(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int size = (dev_priv->chipset < 0x84) ? 4096 : 16384; |
| int ret; |
| |
| /* Create a shared VRAM heap for cross-channel sync. */ |
| if (USE_SEMA(dev)) { |
| ret = nouveau_bo_new(dev, NULL, size, 0, TTM_PL_FLAG_VRAM, |
| 0, 0, false, true, &dev_priv->fence.bo); |
| if (ret) |
| return ret; |
| |
| ret = nouveau_bo_pin(dev_priv->fence.bo, TTM_PL_FLAG_VRAM); |
| if (ret) |
| goto fail; |
| |
| ret = nouveau_bo_map(dev_priv->fence.bo); |
| if (ret) |
| goto fail; |
| |
| ret = drm_mm_init(&dev_priv->fence.heap, 0, |
| dev_priv->fence.bo->bo.mem.size); |
| if (ret) |
| goto fail; |
| |
| spin_lock_init(&dev_priv->fence.lock); |
| } |
| |
| return 0; |
| fail: |
| nouveau_bo_unmap(dev_priv->fence.bo); |
| nouveau_bo_ref(NULL, &dev_priv->fence.bo); |
| return ret; |
| } |
| |
| void |
| nouveau_fence_fini(struct drm_device *dev) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| |
| if (USE_SEMA(dev)) { |
| drm_mm_takedown(&dev_priv->fence.heap); |
| nouveau_bo_unmap(dev_priv->fence.bo); |
| nouveau_bo_unpin(dev_priv->fence.bo); |
| nouveau_bo_ref(NULL, &dev_priv->fence.bo); |
| } |
| } |