| /* |
| * macserial.c: Serial port driver for Power Macintoshes. |
| * |
| * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. |
| * |
| * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * |
| * Receive DMA code by Takashi Oe <toe@unlserve.unl.edu>. |
| * |
| * $Id: macserial.c,v 1.24.2.4 1999/10/19 04:36:42 paulus Exp $ |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/workqueue.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/major.h> |
| #include <linux/string.h> |
| #include <linux/fcntl.h> |
| #include <linux/mm.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #ifdef CONFIG_SERIAL_CONSOLE |
| #include <linux/console.h> |
| #endif |
| #include <linux/slab.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/sections.h> |
| #include <asm/io.h> |
| #include <asm/pgtable.h> |
| #include <asm/irq.h> |
| #include <asm/prom.h> |
| #include <asm/system.h> |
| #include <asm/segment.h> |
| #include <asm/machdep.h> |
| #include <asm/pmac_feature.h> |
| #include <linux/adb.h> |
| #include <linux/pmu.h> |
| #ifdef CONFIG_KGDB |
| #include <asm/kgdb.h> |
| #endif |
| #include <asm/dbdma.h> |
| |
| #include "macserial.h" |
| |
| #ifdef CONFIG_PMAC_PBOOK |
| static int serial_notify_sleep(struct pmu_sleep_notifier *self, int when); |
| static struct pmu_sleep_notifier serial_sleep_notifier = { |
| serial_notify_sleep, |
| SLEEP_LEVEL_MISC, |
| }; |
| #endif |
| |
| #define SUPPORT_SERIAL_DMA |
| #define MACSERIAL_VERSION "2.0" |
| |
| /* |
| * It would be nice to dynamically allocate everything that |
| * depends on NUM_SERIAL, so we could support any number of |
| * Z8530s, but for now... |
| */ |
| #define NUM_SERIAL 2 /* Max number of ZS chips supported */ |
| #define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */ |
| |
| /* On PowerMacs, the hardware takes care of the SCC recovery time, |
| but we need the eieio to make sure that the accesses occur |
| in the order we want. */ |
| #define RECOVERY_DELAY eieio() |
| |
| static struct tty_driver *serial_driver; |
| |
| struct mac_zschannel zs_channels[NUM_CHANNELS]; |
| |
| struct mac_serial zs_soft[NUM_CHANNELS]; |
| int zs_channels_found; |
| struct mac_serial *zs_chain; /* list of all channels */ |
| |
| struct tty_struct zs_ttys[NUM_CHANNELS]; |
| |
| static int is_powerbook; |
| |
| #ifdef CONFIG_SERIAL_CONSOLE |
| static struct console sercons; |
| #endif |
| |
| #ifdef CONFIG_KGDB |
| struct mac_zschannel *zs_kgdbchan; |
| static unsigned char scc_inittab[] = { |
| 9, 0x80, /* reset A side (CHRA) */ |
| 13, 0, /* set baud rate divisor */ |
| 12, 1, |
| 14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */ |
| 11, 0x50, /* clocks = br gen (RCBR | TCBR) */ |
| 5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */ |
| 4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/ |
| 3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/ |
| }; |
| #endif |
| #define ZS_CLOCK 3686400 /* Z8530 RTxC input clock rate */ |
| |
| /* serial subtype definitions */ |
| #define SERIAL_TYPE_NORMAL 1 |
| |
| /* number of characters left in xmit buffer before we ask for more */ |
| #define WAKEUP_CHARS 256 |
| |
| /* |
| * Debugging. |
| */ |
| #undef SERIAL_DEBUG_INTR |
| #undef SERIAL_DEBUG_OPEN |
| #undef SERIAL_DEBUG_FLOW |
| #undef SERIAL_DEBUG_POWER |
| #undef SERIAL_DEBUG_THROTTLE |
| #undef SERIAL_DEBUG_STOP |
| #undef SERIAL_DEBUG_BAUDS |
| |
| #define RS_STROBE_TIME 10 |
| #define RS_ISR_PASS_LIMIT 256 |
| |
| #define _INLINE_ inline |
| |
| #ifdef SERIAL_DEBUG_OPEN |
| #define OPNDBG(fmt, arg...) printk(KERN_DEBUG fmt , ## arg) |
| #else |
| #define OPNDBG(fmt, arg...) do { } while (0) |
| #endif |
| #ifdef SERIAL_DEBUG_POWER |
| #define PWRDBG(fmt, arg...) printk(KERN_DEBUG fmt , ## arg) |
| #else |
| #define PWRDBG(fmt, arg...) do { } while (0) |
| #endif |
| #ifdef SERIAL_DEBUG_BAUDS |
| #define BAUDBG(fmt, arg...) printk(fmt , ## arg) |
| #else |
| #define BAUDBG(fmt, arg...) do { } while (0) |
| #endif |
| |
| static void probe_sccs(void); |
| static void change_speed(struct mac_serial *info, struct termios *old); |
| static void rs_wait_until_sent(struct tty_struct *tty, int timeout); |
| static int set_scc_power(struct mac_serial * info, int state); |
| static int setup_scc(struct mac_serial * info); |
| static void dbdma_reset(volatile struct dbdma_regs *dma); |
| static void dbdma_flush(volatile struct dbdma_regs *dma); |
| static irqreturn_t rs_txdma_irq(int irq, void *dev_id, struct pt_regs *regs); |
| static irqreturn_t rs_rxdma_irq(int irq, void *dev_id, struct pt_regs *regs); |
| static void dma_init(struct mac_serial * info); |
| static void rxdma_start(struct mac_serial * info, int curr); |
| static void rxdma_to_tty(struct mac_serial * info); |
| |
| /* |
| * tmp_buf is used as a temporary buffer by serial_write. We need to |
| * lock it in case the copy_from_user blocks while swapping in a page, |
| * and some other program tries to do a serial write at the same time. |
| * Since the lock will only come under contention when the system is |
| * swapping and available memory is low, it makes sense to share one |
| * buffer across all the serial ports, since it significantly saves |
| * memory if large numbers of serial ports are open. |
| */ |
| static unsigned char *tmp_buf; |
| static DECLARE_MUTEX(tmp_buf_sem); |
| |
| |
| static inline int __pmac |
| serial_paranoia_check(struct mac_serial *info, |
| char *name, const char *routine) |
| { |
| #ifdef SERIAL_PARANOIA_CHECK |
| static const char badmagic[] = KERN_WARNING |
| "Warning: bad magic number for serial struct %s in %s\n"; |
| static const char badinfo[] = KERN_WARNING |
| "Warning: null mac_serial for %s in %s\n"; |
| |
| if (!info) { |
| printk(badinfo, name, routine); |
| return 1; |
| } |
| if (info->magic != SERIAL_MAGIC) { |
| printk(badmagic, name, routine); |
| return 1; |
| } |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Reading and writing Z8530 registers. |
| */ |
| static inline unsigned char __pmac read_zsreg(struct mac_zschannel *channel, |
| unsigned char reg) |
| { |
| unsigned char retval; |
| unsigned long flags; |
| |
| /* |
| * We have to make this atomic. |
| */ |
| spin_lock_irqsave(&channel->lock, flags); |
| if (reg != 0) { |
| *channel->control = reg; |
| RECOVERY_DELAY; |
| } |
| retval = *channel->control; |
| RECOVERY_DELAY; |
| spin_unlock_irqrestore(&channel->lock, flags); |
| return retval; |
| } |
| |
| static inline void __pmac write_zsreg(struct mac_zschannel *channel, |
| unsigned char reg, unsigned char value) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&channel->lock, flags); |
| if (reg != 0) { |
| *channel->control = reg; |
| RECOVERY_DELAY; |
| } |
| *channel->control = value; |
| RECOVERY_DELAY; |
| spin_unlock_irqrestore(&channel->lock, flags); |
| return; |
| } |
| |
| static inline unsigned char __pmac read_zsdata(struct mac_zschannel *channel) |
| { |
| unsigned char retval; |
| |
| retval = *channel->data; |
| RECOVERY_DELAY; |
| return retval; |
| } |
| |
| static inline void write_zsdata(struct mac_zschannel *channel, |
| unsigned char value) |
| { |
| *channel->data = value; |
| RECOVERY_DELAY; |
| return; |
| } |
| |
| static inline void load_zsregs(struct mac_zschannel *channel, |
| unsigned char *regs) |
| { |
| ZS_CLEARERR(channel); |
| ZS_CLEARFIFO(channel); |
| /* Load 'em up */ |
| write_zsreg(channel, R4, regs[R4]); |
| write_zsreg(channel, R10, regs[R10]); |
| write_zsreg(channel, R3, regs[R3] & ~RxENABLE); |
| write_zsreg(channel, R5, regs[R5] & ~TxENAB); |
| write_zsreg(channel, R1, regs[R1]); |
| write_zsreg(channel, R9, regs[R9]); |
| write_zsreg(channel, R11, regs[R11]); |
| write_zsreg(channel, R12, regs[R12]); |
| write_zsreg(channel, R13, regs[R13]); |
| write_zsreg(channel, R14, regs[R14]); |
| write_zsreg(channel, R15, regs[R15]); |
| write_zsreg(channel, R3, regs[R3]); |
| write_zsreg(channel, R5, regs[R5]); |
| return; |
| } |
| |
| /* Sets or clears DTR/RTS on the requested line */ |
| static inline void zs_rtsdtr(struct mac_serial *ss, int set) |
| { |
| if (set) |
| ss->curregs[5] |= (RTS | DTR); |
| else |
| ss->curregs[5] &= ~(RTS | DTR); |
| write_zsreg(ss->zs_channel, 5, ss->curregs[5]); |
| return; |
| } |
| |
| /* Utility routines for the Zilog */ |
| static inline int get_zsbaud(struct mac_serial *ss) |
| { |
| struct mac_zschannel *channel = ss->zs_channel; |
| int brg; |
| |
| if ((ss->curregs[R11] & TCBR) == 0) { |
| /* higher rates don't use the baud rate generator */ |
| return (ss->curregs[R4] & X32CLK)? ZS_CLOCK/32: ZS_CLOCK/16; |
| } |
| /* The baud rate is split up between two 8-bit registers in |
| * what is termed 'BRG time constant' format in my docs for |
| * the chip, it is a function of the clk rate the chip is |
| * receiving which happens to be constant. |
| */ |
| brg = (read_zsreg(channel, 13) << 8); |
| brg |= read_zsreg(channel, 12); |
| return BRG_TO_BPS(brg, (ZS_CLOCK/(ss->clk_divisor))); |
| } |
| |
| /* On receive, this clears errors and the receiver interrupts */ |
| static inline void rs_recv_clear(struct mac_zschannel *zsc) |
| { |
| write_zsreg(zsc, 0, ERR_RES); |
| write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */ |
| } |
| |
| /* |
| * Reset a Descriptor-Based DMA channel. |
| */ |
| static void dbdma_reset(volatile struct dbdma_regs *dma) |
| { |
| int i; |
| |
| out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16); |
| |
| /* |
| * Yes this looks peculiar, but apparently it needs to be this |
| * way on some machines. (We need to make sure the DBDMA |
| * engine has actually got the write above and responded |
| * to it. - paulus) |
| */ |
| for (i = 200; i > 0; --i) |
| if (ld_le32(&dma->status) & RUN) |
| udelay(1); |
| } |
| |
| /* |
| * Tells a DBDMA channel to stop and write any buffered data |
| * it might have to memory. |
| */ |
| static _INLINE_ void dbdma_flush(volatile struct dbdma_regs *dma) |
| { |
| int i = 0; |
| |
| out_le32(&dma->control, (FLUSH << 16) | FLUSH); |
| while (((in_le32(&dma->status) & FLUSH) != 0) && (i++ < 100)) |
| udelay(1); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------- |
| * |
| * Here starts the interrupt handling routines. All of the following |
| * subroutines are declared as inline and are folded into |
| * rs_interrupt(). They were separated out for readability's sake. |
| * |
| * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 |
| * ----------------------------------------------------------------------- |
| */ |
| |
| /* |
| * This routine is used by the interrupt handler to schedule |
| * processing in the software interrupt portion of the driver. |
| */ |
| static _INLINE_ void rs_sched_event(struct mac_serial *info, |
| int event) |
| { |
| info->event |= 1 << event; |
| schedule_work(&info->tqueue); |
| } |
| |
| /* Work out the flag value for a z8530 status value. */ |
| static _INLINE_ int stat_to_flag(int stat) |
| { |
| int flag; |
| |
| if (stat & Rx_OVR) { |
| flag = TTY_OVERRUN; |
| } else if (stat & FRM_ERR) { |
| flag = TTY_FRAME; |
| } else if (stat & PAR_ERR) { |
| flag = TTY_PARITY; |
| } else |
| flag = 0; |
| return flag; |
| } |
| |
| static _INLINE_ void receive_chars(struct mac_serial *info, |
| struct pt_regs *regs) |
| { |
| struct tty_struct *tty = info->tty; |
| unsigned char ch, stat, flag; |
| |
| while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) != 0) { |
| |
| stat = read_zsreg(info->zs_channel, R1); |
| ch = read_zsdata(info->zs_channel); |
| |
| #ifdef CONFIG_KGDB |
| if (info->kgdb_channel) { |
| if (ch == 0x03 || ch == '$') |
| breakpoint(); |
| if (stat & (Rx_OVR|FRM_ERR|PAR_ERR)) |
| write_zsreg(info->zs_channel, 0, ERR_RES); |
| return; |
| } |
| #endif |
| if (!tty) |
| continue; |
| if (tty->flip.count >= TTY_FLIPBUF_SIZE) |
| tty_flip_buffer_push(tty); |
| |
| if (tty->flip.count >= TTY_FLIPBUF_SIZE) { |
| static int flip_buf_ovf; |
| if (++flip_buf_ovf <= 1) |
| printk(KERN_WARNING "FB. overflow: %d\n", |
| flip_buf_ovf); |
| break; |
| } |
| tty->flip.count++; |
| { |
| static int flip_max_cnt; |
| if (flip_max_cnt < tty->flip.count) |
| flip_max_cnt = tty->flip.count; |
| } |
| flag = stat_to_flag(stat); |
| if (flag) |
| /* reset the error indication */ |
| write_zsreg(info->zs_channel, 0, ERR_RES); |
| *tty->flip.flag_buf_ptr++ = flag; |
| *tty->flip.char_buf_ptr++ = ch; |
| } |
| if (tty) |
| tty_flip_buffer_push(tty); |
| } |
| |
| static void transmit_chars(struct mac_serial *info) |
| { |
| if ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) |
| return; |
| info->tx_active = 0; |
| |
| if (info->x_char && !info->power_wait) { |
| /* Send next char */ |
| write_zsdata(info->zs_channel, info->x_char); |
| info->x_char = 0; |
| info->tx_active = 1; |
| return; |
| } |
| |
| if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tx_stopped |
| || info->power_wait) { |
| write_zsreg(info->zs_channel, 0, RES_Tx_P); |
| return; |
| } |
| |
| /* Send char */ |
| write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]); |
| info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); |
| info->xmit_cnt--; |
| info->tx_active = 1; |
| |
| if (info->xmit_cnt < WAKEUP_CHARS) |
| rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); |
| } |
| |
| static void powerup_done(unsigned long data) |
| { |
| struct mac_serial *info = (struct mac_serial *) data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| info->power_wait = 0; |
| transmit_chars(info); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| static _INLINE_ void status_handle(struct mac_serial *info) |
| { |
| unsigned char status; |
| |
| /* Get status from Read Register 0 */ |
| status = read_zsreg(info->zs_channel, 0); |
| |
| /* Check for DCD transitions */ |
| if (((status ^ info->read_reg_zero) & DCD) != 0 |
| && info->tty && !C_CLOCAL(info->tty)) { |
| if (status & DCD) { |
| wake_up_interruptible(&info->open_wait); |
| } else { |
| if (info->tty) |
| tty_hangup(info->tty); |
| } |
| } |
| |
| /* Check for CTS transitions */ |
| if (info->tty && C_CRTSCTS(info->tty)) { |
| /* |
| * For some reason, on the Power Macintosh, |
| * it seems that the CTS bit is 1 when CTS is |
| * *negated* and 0 when it is asserted. |
| * The DCD bit doesn't seem to be inverted |
| * like this. |
| */ |
| if ((status & CTS) == 0) { |
| if (info->tx_stopped) { |
| #ifdef SERIAL_DEBUG_FLOW |
| printk(KERN_DEBUG "CTS up\n"); |
| #endif |
| info->tx_stopped = 0; |
| if (!info->tx_active) |
| transmit_chars(info); |
| } |
| } else { |
| #ifdef SERIAL_DEBUG_FLOW |
| printk(KERN_DEBUG "CTS down\n"); |
| #endif |
| info->tx_stopped = 1; |
| } |
| } |
| |
| /* Clear status condition... */ |
| write_zsreg(info->zs_channel, 0, RES_EXT_INT); |
| info->read_reg_zero = status; |
| } |
| |
| static _INLINE_ void receive_special_dma(struct mac_serial *info) |
| { |
| unsigned char stat, flag; |
| volatile struct dbdma_regs *rd = &info->rx->dma; |
| int where = RX_BUF_SIZE; |
| |
| spin_lock(&info->rx_dma_lock); |
| if ((ld_le32(&rd->status) & ACTIVE) != 0) |
| dbdma_flush(rd); |
| if (in_le32(&rd->cmdptr) |
| == virt_to_bus(info->rx_cmds[info->rx_cbuf] + 1)) |
| where -= in_le16(&info->rx->res_count); |
| where--; |
| |
| stat = read_zsreg(info->zs_channel, R1); |
| |
| flag = stat_to_flag(stat); |
| if (flag) { |
| info->rx_flag_buf[info->rx_cbuf][where] = flag; |
| /* reset the error indication */ |
| write_zsreg(info->zs_channel, 0, ERR_RES); |
| } |
| |
| spin_unlock(&info->rx_dma_lock); |
| } |
| |
| /* |
| * This is the serial driver's generic interrupt routine |
| */ |
| static irqreturn_t rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) |
| { |
| struct mac_serial *info = (struct mac_serial *) dev_id; |
| unsigned char zs_intreg; |
| int shift; |
| unsigned long flags; |
| int handled = 0; |
| |
| if (!(info->flags & ZILOG_INITIALIZED)) { |
| printk(KERN_WARNING "rs_interrupt: irq %d, port not " |
| "initialized\n", irq); |
| disable_irq(irq); |
| return IRQ_NONE; |
| } |
| |
| /* NOTE: The read register 3, which holds the irq status, |
| * does so for both channels on each chip. Although |
| * the status value itself must be read from the A |
| * channel and is only valid when read from channel A. |
| * Yes... broken hardware... |
| */ |
| #define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) |
| |
| if (info->zs_chan_a == info->zs_channel) |
| shift = 3; /* Channel A */ |
| else |
| shift = 0; /* Channel B */ |
| |
| spin_lock_irqsave(&info->lock, flags); |
| for (;;) { |
| zs_intreg = read_zsreg(info->zs_chan_a, 3) >> shift; |
| #ifdef SERIAL_DEBUG_INTR |
| printk(KERN_DEBUG "rs_interrupt: irq %d, zs_intreg 0x%x\n", |
| irq, (int)zs_intreg); |
| #endif |
| |
| if ((zs_intreg & CHAN_IRQMASK) == 0) |
| break; |
| handled = 1; |
| |
| if (zs_intreg & CHBRxIP) { |
| /* If we are doing DMA, we only ask for interrupts |
| on characters with errors or special conditions. */ |
| if (info->dma_initted) |
| receive_special_dma(info); |
| else |
| receive_chars(info, regs); |
| } |
| if (zs_intreg & CHBTxIP) |
| transmit_chars(info); |
| if (zs_intreg & CHBEXT) |
| status_handle(info); |
| } |
| spin_unlock_irqrestore(&info->lock, flags); |
| return IRQ_RETVAL(handled); |
| } |
| |
| /* Transmit DMA interrupt - not used at present */ |
| static irqreturn_t rs_txdma_irq(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Receive DMA interrupt. |
| */ |
| static irqreturn_t rs_rxdma_irq(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct mac_serial *info = (struct mac_serial *) dev_id; |
| volatile struct dbdma_cmd *cd; |
| |
| if (!info->dma_initted) |
| return IRQ_NONE; |
| spin_lock(&info->rx_dma_lock); |
| /* First, confirm that this interrupt is, indeed, coming */ |
| /* from Rx DMA */ |
| cd = info->rx_cmds[info->rx_cbuf] + 2; |
| if ((in_le16(&cd->xfer_status) & (RUN | ACTIVE)) != (RUN | ACTIVE)) { |
| spin_unlock(&info->rx_dma_lock); |
| return IRQ_NONE; |
| } |
| if (info->rx_fbuf != RX_NO_FBUF) { |
| info->rx_cbuf = info->rx_fbuf; |
| if (++info->rx_fbuf == info->rx_nbuf) |
| info->rx_fbuf = 0; |
| if (info->rx_fbuf == info->rx_ubuf) |
| info->rx_fbuf = RX_NO_FBUF; |
| } |
| spin_unlock(&info->rx_dma_lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * ------------------------------------------------------------------- |
| * Here ends the serial interrupt routines. |
| * ------------------------------------------------------------------- |
| */ |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_stop() and rs_start() |
| * |
| * This routines are called before setting or resetting tty->stopped. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_stop(struct tty_struct *tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| |
| #ifdef SERIAL_DEBUG_STOP |
| printk(KERN_DEBUG "rs_stop %ld....\n", |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_stop")) |
| return; |
| |
| #if 0 |
| spin_lock_irqsave(&info->lock, flags); |
| if (info->curregs[5] & TxENAB) { |
| info->curregs[5] &= ~TxENAB; |
| info->pendregs[5] &= ~TxENAB; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| } |
| spin_unlock_irqrestore(&info->lock, flags); |
| #endif |
| } |
| |
| static void rs_start(struct tty_struct *tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| #ifdef SERIAL_DEBUG_STOP |
| printk(KERN_DEBUG "rs_start %ld....\n", |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_start")) |
| return; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| #if 0 |
| if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) { |
| info->curregs[5] |= TxENAB; |
| info->pendregs[5] = info->curregs[5]; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| } |
| #else |
| if (info->xmit_cnt && info->xmit_buf && !info->tx_active) { |
| transmit_chars(info); |
| } |
| #endif |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| static void do_softint(void *private_) |
| { |
| struct mac_serial *info = (struct mac_serial *) private_; |
| struct tty_struct *tty; |
| |
| tty = info->tty; |
| if (!tty) |
| return; |
| |
| if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) |
| tty_wakeup(tty); |
| } |
| |
| static int startup(struct mac_serial * info) |
| { |
| int delay; |
| |
| OPNDBG("startup() (ttyS%d, irq %d)\n", info->line, info->irq); |
| |
| if (info->flags & ZILOG_INITIALIZED) { |
| OPNDBG(" -> already inited\n"); |
| return 0; |
| } |
| |
| if (!info->xmit_buf) { |
| info->xmit_buf = (unsigned char *) get_zeroed_page(GFP_KERNEL); |
| if (!info->xmit_buf) |
| return -ENOMEM; |
| } |
| |
| OPNDBG("starting up ttyS%d (irq %d)...\n", info->line, info->irq); |
| |
| delay = set_scc_power(info, 1); |
| |
| setup_scc(info); |
| |
| if (delay) { |
| unsigned long flags; |
| |
| /* delay is in ms */ |
| spin_lock_irqsave(&info->lock, flags); |
| info->power_wait = 1; |
| mod_timer(&info->powerup_timer, |
| jiffies + (delay * HZ + 999) / 1000); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| OPNDBG("enabling IRQ on ttyS%d (irq %d)...\n", info->line, info->irq); |
| |
| info->flags |= ZILOG_INITIALIZED; |
| enable_irq(info->irq); |
| if (info->dma_initted) { |
| enable_irq(info->rx_dma_irq); |
| } |
| |
| return 0; |
| } |
| |
| static _INLINE_ void rxdma_start(struct mac_serial * info, int curr) |
| { |
| volatile struct dbdma_regs *rd = &info->rx->dma; |
| volatile struct dbdma_cmd *cd = info->rx_cmds[curr]; |
| |
| //printk(KERN_DEBUG "SCC: rxdma_start\n"); |
| |
| st_le32(&rd->cmdptr, virt_to_bus(cd)); |
| out_le32(&rd->control, (RUN << 16) | RUN); |
| } |
| |
| static void rxdma_to_tty(struct mac_serial *info) |
| { |
| struct tty_struct *tty = info->tty; |
| volatile struct dbdma_regs *rd = &info->rx->dma; |
| unsigned long flags; |
| int residue, available, space, do_queue; |
| |
| if (!tty) |
| return; |
| |
| do_queue = 0; |
| spin_lock_irqsave(&info->rx_dma_lock, flags); |
| more: |
| space = TTY_FLIPBUF_SIZE - tty->flip.count; |
| if (!space) { |
| do_queue++; |
| goto out; |
| } |
| residue = 0; |
| if (info->rx_ubuf == info->rx_cbuf) { |
| if ((ld_le32(&rd->status) & ACTIVE) != 0) { |
| dbdma_flush(rd); |
| if (in_le32(&rd->cmdptr) |
| == virt_to_bus(info->rx_cmds[info->rx_cbuf]+1)) |
| residue = in_le16(&info->rx->res_count); |
| } |
| } |
| available = RX_BUF_SIZE - residue - info->rx_done_bytes; |
| if (available > space) |
| available = space; |
| if (available) { |
| memcpy(tty->flip.char_buf_ptr, |
| info->rx_char_buf[info->rx_ubuf] + info->rx_done_bytes, |
| available); |
| memcpy(tty->flip.flag_buf_ptr, |
| info->rx_flag_buf[info->rx_ubuf] + info->rx_done_bytes, |
| available); |
| tty->flip.char_buf_ptr += available; |
| tty->flip.count += available; |
| tty->flip.flag_buf_ptr += available; |
| memset(info->rx_flag_buf[info->rx_ubuf] + info->rx_done_bytes, |
| 0, available); |
| info->rx_done_bytes += available; |
| do_queue++; |
| } |
| if (info->rx_done_bytes == RX_BUF_SIZE) { |
| volatile struct dbdma_cmd *cd = info->rx_cmds[info->rx_ubuf]; |
| |
| if (info->rx_ubuf == info->rx_cbuf) |
| goto out; |
| /* mark rx_char_buf[rx_ubuf] free */ |
| st_le16(&cd->command, DBDMA_NOP); |
| cd++; |
| st_le32(&cd->cmd_dep, 0); |
| st_le32((unsigned int *)&cd->res_count, 0); |
| cd++; |
| st_le16(&cd->xfer_status, 0); |
| |
| if (info->rx_fbuf == RX_NO_FBUF) { |
| info->rx_fbuf = info->rx_ubuf; |
| if (!(ld_le32(&rd->status) & ACTIVE)) { |
| dbdma_reset(&info->rx->dma); |
| rxdma_start(info, info->rx_ubuf); |
| info->rx_cbuf = info->rx_ubuf; |
| } |
| } |
| info->rx_done_bytes = 0; |
| if (++info->rx_ubuf == info->rx_nbuf) |
| info->rx_ubuf = 0; |
| if (info->rx_fbuf == info->rx_ubuf) |
| info->rx_fbuf = RX_NO_FBUF; |
| goto more; |
| } |
| out: |
| spin_unlock_irqrestore(&info->rx_dma_lock, flags); |
| if (do_queue) |
| tty_flip_buffer_push(tty); |
| } |
| |
| static void poll_rxdma(unsigned long private_) |
| { |
| struct mac_serial *info = (struct mac_serial *) private_; |
| unsigned long flags; |
| |
| rxdma_to_tty(info); |
| spin_lock_irqsave(&info->rx_dma_lock, flags); |
| mod_timer(&info->poll_dma_timer, RX_DMA_TIMER); |
| spin_unlock_irqrestore(&info->rx_dma_lock, flags); |
| } |
| |
| static void dma_init(struct mac_serial * info) |
| { |
| int i, size; |
| volatile struct dbdma_cmd *cd; |
| unsigned char *p; |
| |
| info->rx_nbuf = 8; |
| |
| /* various mem set up */ |
| size = sizeof(struct dbdma_cmd) * (3 * info->rx_nbuf + 2) |
| + (RX_BUF_SIZE * 2 + sizeof(*info->rx_cmds) |
| + sizeof(*info->rx_char_buf) + sizeof(*info->rx_flag_buf)) |
| * info->rx_nbuf; |
| info->dma_priv = kmalloc(size, GFP_KERNEL | GFP_DMA); |
| if (info->dma_priv == NULL) |
| return; |
| memset(info->dma_priv, 0, size); |
| |
| info->rx_cmds = (volatile struct dbdma_cmd **)info->dma_priv; |
| info->rx_char_buf = (unsigned char **) (info->rx_cmds + info->rx_nbuf); |
| info->rx_flag_buf = info->rx_char_buf + info->rx_nbuf; |
| p = (unsigned char *) (info->rx_flag_buf + info->rx_nbuf); |
| for (i = 0; i < info->rx_nbuf; i++, p += RX_BUF_SIZE) |
| info->rx_char_buf[i] = p; |
| for (i = 0; i < info->rx_nbuf; i++, p += RX_BUF_SIZE) |
| info->rx_flag_buf[i] = p; |
| |
| /* a bit of DMA programming */ |
| cd = info->rx_cmds[0] = (volatile struct dbdma_cmd *) DBDMA_ALIGN(p); |
| st_le16(&cd->command, DBDMA_NOP); |
| cd++; |
| st_le16(&cd->req_count, RX_BUF_SIZE); |
| st_le16(&cd->command, INPUT_MORE); |
| st_le32(&cd->phy_addr, virt_to_bus(info->rx_char_buf[0])); |
| cd++; |
| st_le16(&cd->req_count, 4); |
| st_le16(&cd->command, STORE_WORD | INTR_ALWAYS); |
| st_le32(&cd->phy_addr, virt_to_bus(cd-2)); |
| st_le32(&cd->cmd_dep, DBDMA_STOP); |
| for (i = 1; i < info->rx_nbuf; i++) { |
| info->rx_cmds[i] = ++cd; |
| st_le16(&cd->command, DBDMA_NOP); |
| cd++; |
| st_le16(&cd->req_count, RX_BUF_SIZE); |
| st_le16(&cd->command, INPUT_MORE); |
| st_le32(&cd->phy_addr, virt_to_bus(info->rx_char_buf[i])); |
| cd++; |
| st_le16(&cd->req_count, 4); |
| st_le16(&cd->command, STORE_WORD | INTR_ALWAYS); |
| st_le32(&cd->phy_addr, virt_to_bus(cd-2)); |
| st_le32(&cd->cmd_dep, DBDMA_STOP); |
| } |
| cd++; |
| st_le16(&cd->command, DBDMA_NOP | BR_ALWAYS); |
| st_le32(&cd->cmd_dep, virt_to_bus(info->rx_cmds[0])); |
| |
| /* setup DMA to our liking */ |
| dbdma_reset(&info->rx->dma); |
| st_le32(&info->rx->dma.intr_sel, 0x10001); |
| st_le32(&info->rx->dma.br_sel, 0x10001); |
| out_le32(&info->rx->dma.wait_sel, 0x10001); |
| |
| /* set various flags */ |
| info->rx_ubuf = 0; |
| info->rx_cbuf = 0; |
| info->rx_fbuf = info->rx_ubuf + 1; |
| if (info->rx_fbuf == info->rx_nbuf) |
| info->rx_fbuf = RX_NO_FBUF; |
| info->rx_done_bytes = 0; |
| |
| /* setup polling */ |
| init_timer(&info->poll_dma_timer); |
| info->poll_dma_timer.function = (void *)&poll_rxdma; |
| info->poll_dma_timer.data = (unsigned long)info; |
| |
| info->dma_initted = 1; |
| } |
| |
| /* |
| * FixZeroBug....Works around a bug in the SCC receving channel. |
| * Taken from Darwin code, 15 Sept. 2000 -DanM |
| * |
| * The following sequence prevents a problem that is seen with O'Hare ASICs |
| * (most versions -- also with some Heathrow and Hydra ASICs) where a zero |
| * at the input to the receiver becomes 'stuck' and locks up the receiver. |
| * This problem can occur as a result of a zero bit at the receiver input |
| * coincident with any of the following events: |
| * |
| * The SCC is initialized (hardware or software). |
| * A framing error is detected. |
| * The clocking option changes from synchronous or X1 asynchronous |
| * clocking to X16, X32, or X64 asynchronous clocking. |
| * The decoding mode is changed among NRZ, NRZI, FM0, or FM1. |
| * |
| * This workaround attempts to recover from the lockup condition by placing |
| * the SCC in synchronous loopback mode with a fast clock before programming |
| * any of the asynchronous modes. |
| */ |
| static void fix_zero_bug_scc(struct mac_serial * info) |
| { |
| write_zsreg(info->zs_channel, 9, |
| (info->zs_channel == info->zs_chan_a? CHRA: CHRB)); |
| udelay(10); |
| write_zsreg(info->zs_channel, 9, |
| ((info->zs_channel == info->zs_chan_a? CHRA: CHRB) | NV)); |
| |
| write_zsreg(info->zs_channel, 4, (X1CLK | EXTSYNC)); |
| |
| /* I think this is wrong....but, I just copying code.... |
| */ |
| write_zsreg(info->zs_channel, 3, (8 & ~RxENABLE)); |
| |
| write_zsreg(info->zs_channel, 5, (8 & ~TxENAB)); |
| write_zsreg(info->zs_channel, 9, NV); /* Didn't we already do this? */ |
| write_zsreg(info->zs_channel, 11, (RCBR | TCBR)); |
| write_zsreg(info->zs_channel, 12, 0); |
| write_zsreg(info->zs_channel, 13, 0); |
| write_zsreg(info->zs_channel, 14, (LOOPBAK | SSBR)); |
| write_zsreg(info->zs_channel, 14, (LOOPBAK | SSBR | BRENABL)); |
| write_zsreg(info->zs_channel, 3, (8 | RxENABLE)); |
| write_zsreg(info->zs_channel, 0, RES_EXT_INT); |
| write_zsreg(info->zs_channel, 0, RES_EXT_INT); /* to kill some time */ |
| |
| /* The channel should be OK now, but it is probably receiving |
| * loopback garbage. |
| * Switch to asynchronous mode, disable the receiver, |
| * and discard everything in the receive buffer. |
| */ |
| write_zsreg(info->zs_channel, 9, NV); |
| write_zsreg(info->zs_channel, 4, PAR_ENA); |
| write_zsreg(info->zs_channel, 3, (8 & ~RxENABLE)); |
| |
| while (read_zsreg(info->zs_channel, 0) & Rx_CH_AV) { |
| (void)read_zsreg(info->zs_channel, 8); |
| write_zsreg(info->zs_channel, 0, RES_EXT_INT); |
| write_zsreg(info->zs_channel, 0, ERR_RES); |
| } |
| } |
| |
| static int setup_scc(struct mac_serial * info) |
| { |
| unsigned long flags; |
| |
| OPNDBG("setting up ttyS%d SCC...\n", info->line); |
| |
| spin_lock_irqsave(&info->lock, flags); |
| |
| /* Nice buggy HW ... */ |
| fix_zero_bug_scc(info); |
| |
| /* |
| * Reset the chip. |
| */ |
| write_zsreg(info->zs_channel, 9, |
| (info->zs_channel == info->zs_chan_a? CHRA: CHRB)); |
| udelay(10); |
| write_zsreg(info->zs_channel, 9, 0); |
| |
| /* |
| * Clear the receive FIFO. |
| */ |
| ZS_CLEARFIFO(info->zs_channel); |
| info->xmit_fifo_size = 1; |
| |
| /* |
| * Reset DMAs |
| */ |
| if (info->has_dma) |
| dma_init(info); |
| |
| /* |
| * Clear the interrupt registers. |
| */ |
| write_zsreg(info->zs_channel, 0, ERR_RES); |
| write_zsreg(info->zs_channel, 0, RES_H_IUS); |
| |
| /* |
| * Turn on RTS and DTR. |
| */ |
| if (!info->is_irda) |
| zs_rtsdtr(info, 1); |
| |
| /* |
| * Finally, enable sequencing and interrupts |
| */ |
| if (!info->dma_initted) { |
| /* interrupt on ext/status changes, all received chars, |
| transmit ready */ |
| info->curregs[1] = (info->curregs[1] & ~0x18) |
| | (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB); |
| } else { |
| /* interrupt on ext/status changes, W/Req pin is |
| receive DMA request */ |
| info->curregs[1] = (info->curregs[1] & ~(0x18 | TxINT_ENAB)) |
| | (EXT_INT_ENAB | WT_RDY_RT | WT_FN_RDYFN); |
| write_zsreg(info->zs_channel, 1, info->curregs[1]); |
| /* enable W/Req pin */ |
| info->curregs[1] |= WT_RDY_ENAB; |
| write_zsreg(info->zs_channel, 1, info->curregs[1]); |
| /* enable interrupts on transmit ready and receive errors */ |
| info->curregs[1] |= INT_ERR_Rx | TxINT_ENAB; |
| } |
| info->pendregs[1] = info->curregs[1]; |
| info->curregs[3] |= (RxENABLE | Rx8); |
| info->pendregs[3] = info->curregs[3]; |
| info->curregs[5] |= (TxENAB | Tx8); |
| info->pendregs[5] = info->curregs[5]; |
| info->curregs[9] |= (NV | MIE); |
| info->pendregs[9] = info->curregs[9]; |
| write_zsreg(info->zs_channel, 3, info->curregs[3]); |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| write_zsreg(info->zs_channel, 9, info->curregs[9]); |
| |
| if (info->tty) |
| clear_bit(TTY_IO_ERROR, &info->tty->flags); |
| info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; |
| |
| spin_unlock_irqrestore(&info->lock, flags); |
| |
| /* |
| * Set the speed of the serial port |
| */ |
| change_speed(info, 0); |
| |
| /* Save the current value of RR0 */ |
| info->read_reg_zero = read_zsreg(info->zs_channel, 0); |
| |
| if (info->dma_initted) { |
| spin_lock_irqsave(&info->rx_dma_lock, flags); |
| rxdma_start(info, 0); |
| info->poll_dma_timer.expires = RX_DMA_TIMER; |
| add_timer(&info->poll_dma_timer); |
| spin_unlock_irqrestore(&info->rx_dma_lock, flags); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This routine will shutdown a serial port; interrupts are disabled, and |
| * DTR is dropped if the hangup on close termio flag is on. |
| */ |
| static void shutdown(struct mac_serial * info) |
| { |
| OPNDBG("Shutting down serial port %d (irq %d)....\n", info->line, |
| info->irq); |
| |
| if (!(info->flags & ZILOG_INITIALIZED)) { |
| OPNDBG("(already shutdown)\n"); |
| return; |
| } |
| |
| if (info->has_dma) { |
| del_timer(&info->poll_dma_timer); |
| dbdma_reset(info->tx_dma); |
| dbdma_reset(&info->rx->dma); |
| disable_irq(info->tx_dma_irq); |
| disable_irq(info->rx_dma_irq); |
| } |
| disable_irq(info->irq); |
| |
| info->pendregs[1] = info->curregs[1] = 0; |
| write_zsreg(info->zs_channel, 1, 0); /* no interrupts */ |
| |
| info->curregs[3] &= ~RxENABLE; |
| info->pendregs[3] = info->curregs[3]; |
| write_zsreg(info->zs_channel, 3, info->curregs[3]); |
| |
| info->curregs[5] &= ~TxENAB; |
| if (!info->tty || C_HUPCL(info->tty)) |
| info->curregs[5] &= ~DTR; |
| info->pendregs[5] = info->curregs[5]; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| |
| if (info->tty) |
| set_bit(TTY_IO_ERROR, &info->tty->flags); |
| |
| set_scc_power(info, 0); |
| |
| if (info->xmit_buf) { |
| free_page((unsigned long) info->xmit_buf); |
| info->xmit_buf = 0; |
| } |
| |
| if (info->has_dma && info->dma_priv) { |
| kfree(info->dma_priv); |
| info->dma_priv = NULL; |
| info->dma_initted = 0; |
| } |
| |
| memset(info->curregs, 0, sizeof(info->curregs)); |
| memset(info->pendregs, 0, sizeof(info->pendregs)); |
| |
| info->flags &= ~ZILOG_INITIALIZED; |
| } |
| |
| /* |
| * Turn power on or off to the SCC and associated stuff |
| * (port drivers, modem, IR port, etc.) |
| * Returns the number of milliseconds we should wait before |
| * trying to use the port. |
| */ |
| static int set_scc_power(struct mac_serial * info, int state) |
| { |
| int delay = 0; |
| |
| if (state) { |
| PWRDBG("ttyS%d: powering up hardware\n", info->line); |
| pmac_call_feature( |
| PMAC_FTR_SCC_ENABLE, |
| info->dev_node, info->port_type, 1); |
| if (info->is_internal_modem) { |
| pmac_call_feature( |
| PMAC_FTR_MODEM_ENABLE, |
| info->dev_node, 0, 1); |
| delay = 2500; /* wait for 2.5s before using */ |
| } else if (info->is_irda) |
| mdelay(50); /* Do better here once the problems |
| * with blocking have been ironed out |
| */ |
| } else { |
| /* TODO: Make that depend on a timer, don't power down |
| * immediately |
| */ |
| PWRDBG("ttyS%d: shutting down hardware\n", info->line); |
| if (info->is_internal_modem) { |
| PWRDBG("ttyS%d: shutting down modem\n", info->line); |
| pmac_call_feature( |
| PMAC_FTR_MODEM_ENABLE, |
| info->dev_node, 0, 0); |
| } |
| pmac_call_feature( |
| PMAC_FTR_SCC_ENABLE, |
| info->dev_node, info->port_type, 0); |
| } |
| return delay; |
| } |
| |
| static void irda_rts_pulses(struct mac_serial *info, int w) |
| { |
| udelay(w); |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB); |
| udelay(2); |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS); |
| udelay(8); |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB); |
| udelay(4); |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS); |
| } |
| |
| /* |
| * Set the irda codec on the imac to the specified baud rate. |
| */ |
| static void irda_setup(struct mac_serial *info) |
| { |
| int code, speed, t; |
| |
| speed = info->tty->termios->c_cflag & CBAUD; |
| if (speed < B2400 || speed > B115200) |
| return; |
| code = 0x4d + B115200 - speed; |
| |
| /* disable serial interrupts and receive DMA */ |
| write_zsreg(info->zs_channel, 1, info->curregs[1] & ~0x9f); |
| |
| /* wait for transmitter to drain */ |
| t = 10000; |
| while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0 |
| || (read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) { |
| if (--t <= 0) { |
| printk(KERN_ERR "transmitter didn't drain\n"); |
| return; |
| } |
| udelay(10); |
| } |
| udelay(100); |
| |
| /* set to 8 bits, no parity, 19200 baud, RTS on, DTR off */ |
| write_zsreg(info->zs_channel, 4, X16CLK | SB1); |
| write_zsreg(info->zs_channel, 11, TCBR | RCBR); |
| t = BPS_TO_BRG(19200, ZS_CLOCK/16); |
| write_zsreg(info->zs_channel, 12, t); |
| write_zsreg(info->zs_channel, 13, t >> 8); |
| write_zsreg(info->zs_channel, 14, BRENABL); |
| write_zsreg(info->zs_channel, 3, Rx8 | RxENABLE); |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS); |
| |
| /* set TxD low for ~104us and pulse RTS */ |
| udelay(1000); |
| write_zsdata(info->zs_channel, 0xfe); |
| irda_rts_pulses(info, 150); |
| irda_rts_pulses(info, 180); |
| irda_rts_pulses(info, 50); |
| udelay(100); |
| |
| /* assert DTR, wait 30ms, talk to the chip */ |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS | DTR); |
| mdelay(30); |
| while (read_zsreg(info->zs_channel, 0) & Rx_CH_AV) |
| read_zsdata(info->zs_channel); |
| |
| write_zsdata(info->zs_channel, 1); |
| t = 1000; |
| while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) { |
| if (--t <= 0) { |
| printk(KERN_ERR "irda_setup timed out on 1st byte\n"); |
| goto out; |
| } |
| udelay(10); |
| } |
| t = read_zsdata(info->zs_channel); |
| if (t != 4) |
| printk(KERN_ERR "irda_setup 1st byte = %x\n", t); |
| |
| write_zsdata(info->zs_channel, code); |
| t = 1000; |
| while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) { |
| if (--t <= 0) { |
| printk(KERN_ERR "irda_setup timed out on 2nd byte\n"); |
| goto out; |
| } |
| udelay(10); |
| } |
| t = read_zsdata(info->zs_channel); |
| if (t != code) |
| printk(KERN_ERR "irda_setup 2nd byte = %x (%x)\n", t, code); |
| |
| /* Drop DTR again and do some more RTS pulses */ |
| out: |
| udelay(100); |
| write_zsreg(info->zs_channel, 5, Tx8 | TxENAB | RTS); |
| irda_rts_pulses(info, 80); |
| |
| /* We should be right to go now. We assume that load_zsregs |
| will get called soon to load up the correct baud rate etc. */ |
| info->curregs[5] = (info->curregs[5] | RTS) & ~DTR; |
| info->pendregs[5] = info->curregs[5]; |
| } |
| |
| /* |
| * This routine is called to set the UART divisor registers to match |
| * the specified baud rate for a serial port. |
| */ |
| static void change_speed(struct mac_serial *info, struct termios *old_termios) |
| { |
| unsigned cflag; |
| int bits; |
| int brg, baud; |
| unsigned long flags; |
| |
| if (!info->tty || !info->tty->termios) |
| return; |
| |
| cflag = info->tty->termios->c_cflag; |
| baud = tty_get_baud_rate(info->tty); |
| if (baud == 0) { |
| if (old_termios) { |
| info->tty->termios->c_cflag &= ~CBAUD; |
| info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD); |
| cflag = info->tty->termios->c_cflag; |
| baud = tty_get_baud_rate(info->tty); |
| } |
| else |
| baud = info->zs_baud; |
| } |
| if (baud > 230400) |
| baud = 230400; |
| else if (baud == 0) |
| baud = 38400; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| info->zs_baud = baud; |
| info->clk_divisor = 16; |
| |
| BAUDBG(KERN_DEBUG "set speed to %d bds, ", baud); |
| |
| switch (baud) { |
| case ZS_CLOCK/16: /* 230400 */ |
| info->curregs[4] = X16CLK; |
| info->curregs[11] = 0; |
| break; |
| case ZS_CLOCK/32: /* 115200 */ |
| info->curregs[4] = X32CLK; |
| info->curregs[11] = 0; |
| break; |
| default: |
| info->curregs[4] = X16CLK; |
| info->curregs[11] = TCBR | RCBR; |
| brg = BPS_TO_BRG(baud, ZS_CLOCK/info->clk_divisor); |
| info->curregs[12] = (brg & 255); |
| info->curregs[13] = ((brg >> 8) & 255); |
| info->curregs[14] = BRENABL; |
| } |
| |
| /* byte size and parity */ |
| info->curregs[3] &= ~RxNBITS_MASK; |
| info->curregs[5] &= ~TxNBITS_MASK; |
| switch (cflag & CSIZE) { |
| case CS5: |
| info->curregs[3] |= Rx5; |
| info->curregs[5] |= Tx5; |
| BAUDBG("5 bits, "); |
| bits = 7; |
| break; |
| case CS6: |
| info->curregs[3] |= Rx6; |
| info->curregs[5] |= Tx6; |
| BAUDBG("6 bits, "); |
| bits = 8; |
| break; |
| case CS7: |
| info->curregs[3] |= Rx7; |
| info->curregs[5] |= Tx7; |
| BAUDBG("7 bits, "); |
| bits = 9; |
| break; |
| case CS8: |
| default: /* defaults to 8 bits */ |
| info->curregs[3] |= Rx8; |
| info->curregs[5] |= Tx8; |
| BAUDBG("8 bits, "); |
| bits = 10; |
| break; |
| } |
| info->pendregs[3] = info->curregs[3]; |
| info->pendregs[5] = info->curregs[5]; |
| |
| info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); |
| if (cflag & CSTOPB) { |
| info->curregs[4] |= SB2; |
| bits++; |
| BAUDBG("2 stop, "); |
| } else { |
| info->curregs[4] |= SB1; |
| BAUDBG("1 stop, "); |
| } |
| if (cflag & PARENB) { |
| bits++; |
| info->curregs[4] |= PAR_ENA; |
| BAUDBG("parity, "); |
| } |
| if (!(cflag & PARODD)) { |
| info->curregs[4] |= PAR_EVEN; |
| } |
| info->pendregs[4] = info->curregs[4]; |
| |
| if (!(cflag & CLOCAL)) { |
| if (!(info->curregs[15] & DCDIE)) |
| info->read_reg_zero = read_zsreg(info->zs_channel, 0); |
| info->curregs[15] |= DCDIE; |
| } else |
| info->curregs[15] &= ~DCDIE; |
| if (cflag & CRTSCTS) { |
| info->curregs[15] |= CTSIE; |
| if ((read_zsreg(info->zs_channel, 0) & CTS) != 0) |
| info->tx_stopped = 1; |
| } else { |
| info->curregs[15] &= ~CTSIE; |
| info->tx_stopped = 0; |
| } |
| info->pendregs[15] = info->curregs[15]; |
| |
| /* Calc timeout value. This is pretty broken with high baud rates with HZ=100. |
| This code would love a larger HZ and a >1 fifo size, but this is not |
| a priority. The resulting value must be >HZ/2 |
| */ |
| info->timeout = ((info->xmit_fifo_size*HZ*bits) / baud); |
| info->timeout += HZ/50+1; /* Add .02 seconds of slop */ |
| |
| BAUDBG("timeout=%d/%ds, base:%d\n", (int)info->timeout, (int)HZ, |
| (int)info->baud_base); |
| |
| /* set the irda codec to the right rate */ |
| if (info->is_irda) |
| irda_setup(info); |
| |
| /* Load up the new values */ |
| load_zsregs(info->zs_channel, info->curregs); |
| |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| static void rs_flush_chars(struct tty_struct *tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_flush_chars")) |
| return; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| if (!(info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped || |
| !info->xmit_buf)) |
| /* Enable transmitter */ |
| transmit_chars(info); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| static int rs_write(struct tty_struct * tty, |
| const unsigned char *buf, int count) |
| { |
| int c, ret = 0; |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_write")) |
| return 0; |
| |
| if (!tty || !info->xmit_buf || !tmp_buf) |
| return 0; |
| |
| while (1) { |
| spin_lock_irqsave(&info->lock, flags); |
| c = min_t(int, count, min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, |
| SERIAL_XMIT_SIZE - info->xmit_head)); |
| if (c <= 0) { |
| spin_unlock_irqrestore(&info->lock, flags); |
| break; |
| } |
| memcpy(info->xmit_buf + info->xmit_head, buf, c); |
| info->xmit_head = ((info->xmit_head + c) & |
| (SERIAL_XMIT_SIZE-1)); |
| info->xmit_cnt += c; |
| spin_unlock_irqrestore(&info->lock, flags); |
| buf += c; |
| count -= c; |
| ret += c; |
| } |
| spin_lock_irqsave(&info->lock, flags); |
| if (info->xmit_cnt && !tty->stopped && !info->tx_stopped |
| && !info->tx_active) |
| transmit_chars(info); |
| spin_unlock_irqrestore(&info->lock, flags); |
| return ret; |
| } |
| |
| static int rs_write_room(struct tty_struct *tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| int ret; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_write_room")) |
| return 0; |
| ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; |
| if (ret < 0) |
| ret = 0; |
| return ret; |
| } |
| |
| static int rs_chars_in_buffer(struct tty_struct *tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer")) |
| return 0; |
| return info->xmit_cnt; |
| } |
| |
| static void rs_flush_buffer(struct tty_struct *tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_flush_buffer")) |
| return; |
| spin_lock_irqsave(&info->lock, flags); |
| info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; |
| spin_unlock_irqrestore(&info->lock, flags); |
| tty_wakeup(tty); |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_throttle() |
| * |
| * This routine is called by the upper-layer tty layer to signal that |
| * incoming characters should be throttled. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_throttle(struct tty_struct * tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| #ifdef SERIAL_DEBUG_THROTTLE |
| printk(KERN_DEBUG "throttle %ld....\n",tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_throttle")) |
| return; |
| |
| if (I_IXOFF(tty)) { |
| spin_lock_irqsave(&info->lock, flags); |
| info->x_char = STOP_CHAR(tty); |
| if (!info->tx_active) |
| transmit_chars(info); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| if (C_CRTSCTS(tty)) { |
| /* |
| * Here we want to turn off the RTS line. On Macintoshes, |
| * the external serial ports using a DIN-8 or DIN-9 |
| * connector only have the DTR line (which is usually |
| * wired to both RTS and DTR on an external modem in |
| * the cable). RTS doesn't go out to the serial port |
| * socket, it acts as an output enable for the transmit |
| * data line. So in this case we don't drop RTS. |
| * |
| * Macs with internal modems generally do have both RTS |
| * and DTR wired to the modem, so in that case we do |
| * drop RTS. |
| */ |
| if (info->is_internal_modem) { |
| spin_lock_irqsave(&info->lock, flags); |
| info->curregs[5] &= ~RTS; |
| info->pendregs[5] &= ~RTS; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| } |
| |
| #ifdef CDTRCTS |
| if (tty->termios->c_cflag & CDTRCTS) { |
| spin_lock_irqsave(&info->lock, flags); |
| info->curregs[5] &= ~DTR; |
| info->pendregs[5] &= ~DTR; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| #endif /* CDTRCTS */ |
| } |
| |
| static void rs_unthrottle(struct tty_struct * tty) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| #ifdef SERIAL_DEBUG_THROTTLE |
| printk(KERN_DEBUG "unthrottle %s: %d....\n", |
| tty->ldisc.chars_in_buffer(tty)); |
| #endif |
| |
| if (serial_paranoia_check(info, tty->name, "rs_unthrottle")) |
| return; |
| |
| if (I_IXOFF(tty)) { |
| spin_lock_irqsave(&info->lock, flags); |
| if (info->x_char) |
| info->x_char = 0; |
| else { |
| info->x_char = START_CHAR(tty); |
| if (!info->tx_active) |
| transmit_chars(info); |
| } |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| if (C_CRTSCTS(tty) && info->is_internal_modem) { |
| /* Assert RTS line */ |
| spin_lock_irqsave(&info->lock, flags); |
| info->curregs[5] |= RTS; |
| info->pendregs[5] |= RTS; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| #ifdef CDTRCTS |
| if (tty->termios->c_cflag & CDTRCTS) { |
| /* Assert DTR line */ |
| spin_lock_irqsave(&info->lock, flags); |
| info->curregs[5] |= DTR; |
| info->pendregs[5] |= DTR; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| #endif |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_ioctl() and friends |
| * ------------------------------------------------------------ |
| */ |
| |
| static int get_serial_info(struct mac_serial * info, |
| struct serial_struct __user * retinfo) |
| { |
| struct serial_struct tmp; |
| |
| if (!retinfo) |
| return -EFAULT; |
| memset(&tmp, 0, sizeof(tmp)); |
| tmp.type = info->type; |
| tmp.line = info->line; |
| tmp.port = info->port; |
| tmp.irq = info->irq; |
| tmp.flags = info->flags; |
| tmp.baud_base = info->baud_base; |
| tmp.close_delay = info->close_delay; |
| tmp.closing_wait = info->closing_wait; |
| tmp.custom_divisor = info->custom_divisor; |
| if (copy_to_user(retinfo,&tmp,sizeof(*retinfo))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int set_serial_info(struct mac_serial * info, |
| struct serial_struct __user * new_info) |
| { |
| struct serial_struct new_serial; |
| struct mac_serial old_info; |
| int retval = 0; |
| |
| if (copy_from_user(&new_serial,new_info,sizeof(new_serial))) |
| return -EFAULT; |
| old_info = *info; |
| |
| if (!capable(CAP_SYS_ADMIN)) { |
| if ((new_serial.baud_base != info->baud_base) || |
| (new_serial.type != info->type) || |
| (new_serial.close_delay != info->close_delay) || |
| ((new_serial.flags & ~ZILOG_USR_MASK) != |
| (info->flags & ~ZILOG_USR_MASK))) |
| return -EPERM; |
| info->flags = ((info->flags & ~ZILOG_USR_MASK) | |
| (new_serial.flags & ZILOG_USR_MASK)); |
| info->custom_divisor = new_serial.custom_divisor; |
| goto check_and_exit; |
| } |
| |
| if (info->count > 1) |
| return -EBUSY; |
| |
| /* |
| * OK, past this point, all the error checking has been done. |
| * At this point, we start making changes..... |
| */ |
| |
| info->baud_base = new_serial.baud_base; |
| info->flags = ((info->flags & ~ZILOG_FLAGS) | |
| (new_serial.flags & ZILOG_FLAGS)); |
| info->type = new_serial.type; |
| info->close_delay = new_serial.close_delay; |
| info->closing_wait = new_serial.closing_wait; |
| |
| check_and_exit: |
| if (info->flags & ZILOG_INITIALIZED) |
| retval = setup_scc(info); |
| return retval; |
| } |
| |
| /* |
| * get_lsr_info - get line status register info |
| * |
| * Purpose: Let user call ioctl() to get info when the UART physically |
| * is emptied. On bus types like RS485, the transmitter must |
| * release the bus after transmitting. This must be done when |
| * the transmit shift register is empty, not be done when the |
| * transmit holding register is empty. This functionality |
| * allows an RS485 driver to be written in user space. |
| */ |
| static int get_lsr_info(struct mac_serial * info, unsigned int *value) |
| { |
| unsigned char status; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| status = read_zsreg(info->zs_channel, 0); |
| spin_unlock_irqrestore(&info->lock, flags); |
| status = (status & Tx_BUF_EMP)? TIOCSER_TEMT: 0; |
| return put_user(status,value); |
| } |
| |
| static int rs_tiocmget(struct tty_struct *tty, struct file *file) |
| { |
| struct mac_serial * info = (struct mac_serial *)tty->driver_data; |
| unsigned char control, status; |
| unsigned long flags; |
| |
| #ifdef CONFIG_KGDB |
| if (info->kgdb_channel) |
| return -ENODEV; |
| #endif |
| if (serial_paranoia_check(info, tty->name, __FUNCTION__)) |
| return -ENODEV; |
| |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| control = info->curregs[5]; |
| status = read_zsreg(info->zs_channel, 0); |
| spin_unlock_irqrestore(&info->lock, flags); |
| return ((control & RTS) ? TIOCM_RTS: 0) |
| | ((control & DTR) ? TIOCM_DTR: 0) |
| | ((status & DCD) ? TIOCM_CAR: 0) |
| | ((status & CTS) ? 0: TIOCM_CTS); |
| } |
| |
| static int rs_tiocmset(struct tty_struct *tty, struct file *file, |
| unsigned int set, unsigned int clear) |
| { |
| struct mac_serial * info = (struct mac_serial *)tty->driver_data; |
| unsigned int arg, bits; |
| unsigned long flags; |
| |
| #ifdef CONFIG_KGDB |
| if (info->kgdb_channel) |
| return -ENODEV; |
| #endif |
| if (serial_paranoia_check(info, tty->name, __FUNCTION__)) |
| return -ENODEV; |
| |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| if (set & TIOCM_RTS) |
| info->curregs[5] |= RTS; |
| if (set & TIOCM_DTR) |
| info->curregs[5] |= DTR; |
| if (clear & TIOCM_RTS) |
| info->curregs[5] &= ~RTS; |
| if (clear & TIOCM_DTR) |
| info->curregs[5] &= ~DTR; |
| |
| info->pendregs[5] = info->curregs[5]; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| spin_unlock_irqrestore(&info->lock, flags); |
| return 0; |
| } |
| |
| /* |
| * rs_break - turn transmit break condition on/off |
| */ |
| static void rs_break(struct tty_struct *tty, int break_state) |
| { |
| struct mac_serial *info = (struct mac_serial *) tty->driver_data; |
| unsigned long flags; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_break")) |
| return; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| if (break_state == -1) |
| info->curregs[5] |= SND_BRK; |
| else |
| info->curregs[5] &= ~SND_BRK; |
| write_zsreg(info->zs_channel, 5, info->curregs[5]); |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| static int rs_ioctl(struct tty_struct *tty, struct file * file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct mac_serial * info = (struct mac_serial *)tty->driver_data; |
| |
| #ifdef CONFIG_KGDB |
| if (info->kgdb_channel) |
| return -ENODEV; |
| #endif |
| if (serial_paranoia_check(info, tty->name, "rs_ioctl")) |
| return -ENODEV; |
| |
| if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && |
| (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT)) { |
| if (tty->flags & (1 << TTY_IO_ERROR)) |
| return -EIO; |
| } |
| |
| switch (cmd) { |
| case TIOCGSERIAL: |
| return get_serial_info(info, |
| (struct serial_struct __user *) arg); |
| case TIOCSSERIAL: |
| return set_serial_info(info, |
| (struct serial_struct __user *) arg); |
| case TIOCSERGETLSR: /* Get line status register */ |
| return get_lsr_info(info, (unsigned int *) arg); |
| |
| case TIOCSERGSTRUCT: |
| if (copy_to_user((struct mac_serial __user *) arg, |
| info, sizeof(struct mac_serial))) |
| return -EFAULT; |
| return 0; |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| return 0; |
| } |
| |
| static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) |
| { |
| struct mac_serial *info = (struct mac_serial *)tty->driver_data; |
| int was_stopped; |
| |
| if (tty->termios->c_cflag == old_termios->c_cflag) |
| return; |
| was_stopped = info->tx_stopped; |
| |
| change_speed(info, old_termios); |
| |
| if (was_stopped && !info->tx_stopped) { |
| tty->hw_stopped = 0; |
| rs_start(tty); |
| } |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_close() |
| * |
| * This routine is called when the serial port gets closed. |
| * Wait for the last remaining data to be sent. |
| * ------------------------------------------------------------ |
| */ |
| static void rs_close(struct tty_struct *tty, struct file * filp) |
| { |
| struct mac_serial * info = (struct mac_serial *)tty->driver_data; |
| unsigned long flags; |
| |
| if (!info || serial_paranoia_check(info, tty->name, "rs_close")) |
| return; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| |
| if (tty_hung_up_p(filp)) { |
| spin_unlock_irqrestore(&info->lock, flags); |
| return; |
| } |
| |
| OPNDBG("rs_close ttyS%d, count = %d\n", info->line, info->count); |
| if ((tty->count == 1) && (info->count != 1)) { |
| /* |
| * Uh, oh. tty->count is 1, which means that the tty |
| * structure will be freed. Info->count should always |
| * be one in these conditions. If it's greater than |
| * one, we've got real problems, since it means the |
| * serial port won't be shutdown. |
| */ |
| printk(KERN_ERR "rs_close: bad serial port count; tty->count " |
| "is 1, info->count is %d\n", info->count); |
| info->count = 1; |
| } |
| if (--info->count < 0) { |
| printk(KERN_ERR "rs_close: bad serial port count for " |
| "ttyS%d: %d\n", info->line, info->count); |
| info->count = 0; |
| } |
| if (info->count) { |
| spin_unlock_irqrestore(&info->lock, flags); |
| return; |
| } |
| info->flags |= ZILOG_CLOSING; |
| /* |
| * Now we wait for the transmit buffer to clear; and we notify |
| * the line discipline to only process XON/XOFF characters. |
| */ |
| OPNDBG("waiting end of Tx... (timeout:%d)\n", info->closing_wait); |
| tty->closing = 1; |
| if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) { |
| spin_unlock_irqrestore(&info->lock, flags); |
| tty_wait_until_sent(tty, info->closing_wait); |
| spin_lock_irqsave(&info->lock, flags); |
| } |
| |
| /* |
| * At this point we stop accepting input. To do this, we |
| * disable the receiver and receive interrupts. |
| */ |
| info->curregs[3] &= ~RxENABLE; |
| info->pendregs[3] = info->curregs[3]; |
| write_zsreg(info->zs_channel, 3, info->curregs[3]); |
| info->curregs[1] &= ~(0x18); /* disable any rx ints */ |
| info->pendregs[1] = info->curregs[1]; |
| write_zsreg(info->zs_channel, 1, info->curregs[1]); |
| ZS_CLEARFIFO(info->zs_channel); |
| if (info->flags & ZILOG_INITIALIZED) { |
| /* |
| * Before we drop DTR, make sure the SCC transmitter |
| * has completely drained. |
| */ |
| OPNDBG("waiting end of Rx...\n"); |
| spin_unlock_irqrestore(&info->lock, flags); |
| rs_wait_until_sent(tty, info->timeout); |
| spin_lock_irqsave(&info->lock, flags); |
| } |
| |
| shutdown(info); |
| /* restore flags now since shutdown() will have disabled this port's |
| specific irqs */ |
| spin_unlock_irqrestore(&info->lock, flags); |
| |
| if (tty->driver->flush_buffer) |
| tty->driver->flush_buffer(tty); |
| tty_ldisc_flush(tty); |
| tty->closing = 0; |
| info->event = 0; |
| info->tty = 0; |
| |
| if (info->blocked_open) { |
| if (info->close_delay) { |
| msleep_interruptible(jiffies_to_msecs(info->close_delay)); |
| } |
| wake_up_interruptible(&info->open_wait); |
| } |
| info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CLOSING); |
| wake_up_interruptible(&info->close_wait); |
| } |
| |
| /* |
| * rs_wait_until_sent() --- wait until the transmitter is empty |
| */ |
| static void rs_wait_until_sent(struct tty_struct *tty, int timeout) |
| { |
| struct mac_serial *info = (struct mac_serial *) tty->driver_data; |
| unsigned long orig_jiffies, char_time; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent")) |
| return; |
| |
| /* printk("rs_wait_until_sent, timeout:%d, tty_stopped:%d, tx_stopped:%d\n", |
| timeout, tty->stopped, info->tx_stopped); |
| */ |
| orig_jiffies = jiffies; |
| /* |
| * Set the check interval to be 1/5 of the estimated time to |
| * send a single character, and make it at least 1. The check |
| * interval should also be less than the timeout. |
| */ |
| if (info->timeout <= HZ/50) { |
| printk(KERN_INFO "macserial: invalid info->timeout=%d\n", |
| info->timeout); |
| info->timeout = HZ/50+1; |
| } |
| |
| char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; |
| char_time = char_time / 5; |
| if (char_time > HZ) { |
| printk(KERN_WARNING "macserial: char_time %ld >HZ !!!\n", |
| char_time); |
| char_time = 1; |
| } else if (char_time == 0) |
| char_time = 1; |
| if (timeout) |
| char_time = min_t(unsigned long, char_time, timeout); |
| while ((read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) { |
| msleep_interruptible(jiffies_to_msecs(char_time)); |
| if (signal_pending(current)) |
| break; |
| if (timeout && time_after(jiffies, orig_jiffies + timeout)) |
| break; |
| } |
| current->state = TASK_RUNNING; |
| } |
| |
| /* |
| * rs_hangup() --- called by tty_hangup() when a hangup is signaled. |
| */ |
| static void rs_hangup(struct tty_struct *tty) |
| { |
| struct mac_serial * info = (struct mac_serial *)tty->driver_data; |
| |
| if (serial_paranoia_check(info, tty->name, "rs_hangup")) |
| return; |
| |
| rs_flush_buffer(tty); |
| shutdown(info); |
| info->event = 0; |
| info->count = 0; |
| info->flags &= ~ZILOG_NORMAL_ACTIVE; |
| info->tty = 0; |
| wake_up_interruptible(&info->open_wait); |
| } |
| |
| /* |
| * ------------------------------------------------------------ |
| * rs_open() and friends |
| * ------------------------------------------------------------ |
| */ |
| static int block_til_ready(struct tty_struct *tty, struct file * filp, |
| struct mac_serial *info) |
| { |
| DECLARE_WAITQUEUE(wait,current); |
| int retval; |
| int do_clocal = 0; |
| |
| /* |
| * If the device is in the middle of being closed, then block |
| * until it's done, and then try again. |
| */ |
| if (info->flags & ZILOG_CLOSING) { |
| interruptible_sleep_on(&info->close_wait); |
| return -EAGAIN; |
| } |
| |
| /* |
| * If non-blocking mode is set, or the port is not enabled, |
| * then make the check up front and then exit. |
| */ |
| if ((filp->f_flags & O_NONBLOCK) || |
| (tty->flags & (1 << TTY_IO_ERROR))) { |
| info->flags |= ZILOG_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| if (tty->termios->c_cflag & CLOCAL) |
| do_clocal = 1; |
| |
| /* |
| * Block waiting for the carrier detect and the line to become |
| * free (i.e., not in use by the callout). While we are in |
| * this loop, info->count is dropped by one, so that |
| * rs_close() knows when to free things. We restore it upon |
| * exit, either normal or abnormal. |
| */ |
| retval = 0; |
| add_wait_queue(&info->open_wait, &wait); |
| OPNDBG("block_til_ready before block: ttyS%d, count = %d\n", |
| info->line, info->count); |
| spin_lock_irq(&info->lock); |
| if (!tty_hung_up_p(filp)) |
| info->count--; |
| spin_unlock_irq(&info->lock); |
| info->blocked_open++; |
| while (1) { |
| spin_lock_irq(&info->lock); |
| if ((tty->termios->c_cflag & CBAUD) && |
| !info->is_irda) |
| zs_rtsdtr(info, 1); |
| spin_unlock_irq(&info->lock); |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (tty_hung_up_p(filp) || |
| !(info->flags & ZILOG_INITIALIZED)) { |
| retval = -EAGAIN; |
| break; |
| } |
| if (!(info->flags & ZILOG_CLOSING) && |
| (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD))) |
| break; |
| if (signal_pending(current)) { |
| retval = -ERESTARTSYS; |
| break; |
| } |
| OPNDBG("block_til_ready blocking: ttyS%d, count = %d\n", |
| info->line, info->count); |
| schedule(); |
| } |
| current->state = TASK_RUNNING; |
| remove_wait_queue(&info->open_wait, &wait); |
| if (!tty_hung_up_p(filp)) |
| info->count++; |
| info->blocked_open--; |
| OPNDBG("block_til_ready after blocking: ttyS%d, count = %d\n", |
| info->line, info->count); |
| if (retval) |
| return retval; |
| info->flags |= ZILOG_NORMAL_ACTIVE; |
| return 0; |
| } |
| |
| /* |
| * This routine is called whenever a serial port is opened. It |
| * enables interrupts for a serial port, linking in its ZILOG structure into |
| * the IRQ chain. It also performs the serial-specific |
| * initialization for the tty structure. |
| */ |
| static int rs_open(struct tty_struct *tty, struct file * filp) |
| { |
| struct mac_serial *info; |
| int retval, line; |
| unsigned long page; |
| |
| line = tty->index; |
| if ((line < 0) || (line >= zs_channels_found)) { |
| return -ENODEV; |
| } |
| info = zs_soft + line; |
| |
| #ifdef CONFIG_KGDB |
| if (info->kgdb_channel) { |
| return -ENODEV; |
| } |
| #endif |
| if (serial_paranoia_check(info, tty->name, "rs_open")) |
| return -ENODEV; |
| OPNDBG("rs_open %s, count = %d, tty=%p\n", tty->name, |
| info->count, tty); |
| |
| info->count++; |
| tty->driver_data = info; |
| info->tty = tty; |
| |
| if (!tmp_buf) { |
| page = get_zeroed_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| if (tmp_buf) |
| free_page(page); |
| else |
| tmp_buf = (unsigned char *) page; |
| } |
| |
| /* |
| * If the port is the middle of closing, bail out now |
| */ |
| if (tty_hung_up_p(filp) || |
| (info->flags & ZILOG_CLOSING)) { |
| if (info->flags & ZILOG_CLOSING) |
| interruptible_sleep_on(&info->close_wait); |
| return -EAGAIN; |
| } |
| |
| /* |
| * Start up serial port |
| */ |
| |
| retval = startup(info); |
| if (retval) |
| return retval; |
| |
| retval = block_til_ready(tty, filp, info); |
| if (retval) { |
| OPNDBG("rs_open returning after block_til_ready with %d\n", |
| retval); |
| return retval; |
| } |
| |
| #ifdef CONFIG_SERIAL_CONSOLE |
| if (sercons.cflag && sercons.index == line) { |
| tty->termios->c_cflag = sercons.cflag; |
| sercons.cflag = 0; |
| change_speed(info, 0); |
| } |
| #endif |
| |
| OPNDBG("rs_open %s successful...\n", tty->name); |
| return 0; |
| } |
| |
| /* Finally, routines used to initialize the serial driver. */ |
| |
| static void show_serial_version(void) |
| { |
| printk(KERN_INFO "PowerMac Z8530 serial driver version " MACSERIAL_VERSION "\n"); |
| } |
| |
| /* |
| * Initialize one channel, both the mac_serial and mac_zschannel |
| * structs. We use the dev_node field of the mac_serial struct. |
| */ |
| static int |
| chan_init(struct mac_serial *zss, struct mac_zschannel *zs_chan, |
| struct mac_zschannel *zs_chan_a) |
| { |
| struct device_node *ch = zss->dev_node; |
| char *conn; |
| int len; |
| struct slot_names_prop { |
| int count; |
| char name[1]; |
| } *slots; |
| |
| zss->irq = ch->intrs[0].line; |
| zss->has_dma = 0; |
| #if !defined(CONFIG_KGDB) && defined(SUPPORT_SERIAL_DMA) |
| if (ch->n_addrs >= 3 && ch->n_intrs == 3) |
| zss->has_dma = 1; |
| #endif |
| zss->dma_initted = 0; |
| |
| zs_chan->control = (volatile unsigned char *) |
| ioremap(ch->addrs[0].address, 0x1000); |
| zs_chan->data = zs_chan->control + 0x10; |
| spin_lock_init(&zs_chan->lock); |
| zs_chan->parent = zss; |
| zss->zs_channel = zs_chan; |
| zss->zs_chan_a = zs_chan_a; |
| |
| /* setup misc varariables */ |
| zss->kgdb_channel = 0; |
| |
| /* For now, we assume you either have a slot-names property |
| * with "Modem" in it, or your channel is compatible with |
| * "cobalt". Might need additional fixups |
| */ |
| zss->is_internal_modem = device_is_compatible(ch, "cobalt"); |
| conn = get_property(ch, "AAPL,connector", &len); |
| zss->is_irda = conn && (strcmp(conn, "infrared") == 0); |
| zss->port_type = PMAC_SCC_ASYNC; |
| /* 1999 Powerbook G3 has slot-names property instead */ |
| slots = (struct slot_names_prop *)get_property(ch, "slot-names", &len); |
| if (slots && slots->count > 0) { |
| if (strcmp(slots->name, "IrDA") == 0) |
| zss->is_irda = 1; |
| else if (strcmp(slots->name, "Modem") == 0) |
| zss->is_internal_modem = 1; |
| } |
| if (zss->is_irda) |
| zss->port_type = PMAC_SCC_IRDA; |
| if (zss->is_internal_modem) { |
| struct device_node* i2c_modem = find_devices("i2c-modem"); |
| if (i2c_modem) { |
| char* mid = get_property(i2c_modem, "modem-id", NULL); |
| if (mid) switch(*mid) { |
| case 0x04 : |
| case 0x05 : |
| case 0x07 : |
| case 0x08 : |
| case 0x0b : |
| case 0x0c : |
| zss->port_type = PMAC_SCC_I2S1; |
| } |
| printk(KERN_INFO "macserial: i2c-modem detected, id: %d\n", |
| mid ? (*mid) : 0); |
| } else { |
| printk(KERN_INFO "macserial: serial modem detected\n"); |
| } |
| } |
| |
| while (zss->has_dma) { |
| zss->dma_priv = NULL; |
| /* it seems that the last two addresses are the |
| DMA controllers */ |
| zss->tx_dma = (volatile struct dbdma_regs *) |
| ioremap(ch->addrs[ch->n_addrs - 2].address, 0x100); |
| zss->rx = (volatile struct mac_dma *) |
| ioremap(ch->addrs[ch->n_addrs - 1].address, 0x100); |
| zss->tx_dma_irq = ch->intrs[1].line; |
| zss->rx_dma_irq = ch->intrs[2].line; |
| spin_lock_init(&zss->rx_dma_lock); |
| break; |
| } |
| |
| init_timer(&zss->powerup_timer); |
| zss->powerup_timer.function = powerup_done; |
| zss->powerup_timer.data = (unsigned long) zss; |
| return 0; |
| } |
| |
| /* |
| * /proc fs routines. TODO: Add status lines & error stats |
| */ |
| static inline int |
| line_info(char *buf, struct mac_serial *info) |
| { |
| int ret=0; |
| unsigned char* connector; |
| int lenp; |
| |
| ret += sprintf(buf, "%d: port:0x%X irq:%d", info->line, info->port, info->irq); |
| |
| connector = get_property(info->dev_node, "AAPL,connector", &lenp); |
| if (connector) |
| ret+=sprintf(buf+ret," con:%s ", connector); |
| if (info->is_internal_modem) { |
| if (!connector) |
| ret+=sprintf(buf+ret," con:"); |
| ret+=sprintf(buf+ret,"%s", " (internal modem)"); |
| } |
| if (info->is_irda) { |
| if (!connector) |
| ret+=sprintf(buf+ret," con:"); |
| ret+=sprintf(buf+ret,"%s", " (IrDA)"); |
| } |
| ret+=sprintf(buf+ret,"\n"); |
| |
| return ret; |
| } |
| |
| int macserial_read_proc(char *page, char **start, off_t off, int count, |
| int *eof, void *data) |
| { |
| int l, len = 0; |
| off_t begin = 0; |
| struct mac_serial *info; |
| |
| len += sprintf(page, "serinfo:1.0 driver:" MACSERIAL_VERSION "\n"); |
| for (info = zs_chain; info && len < 4000; info = info->zs_next) { |
| l = line_info(page + len, info); |
| len += l; |
| if (len+begin > off+count) |
| goto done; |
| if (len+begin < off) { |
| begin += len; |
| len = 0; |
| } |
| } |
| *eof = 1; |
| done: |
| if (off >= len+begin) |
| return 0; |
| *start = page + (off-begin); |
| return ((count < begin+len-off) ? count : begin+len-off); |
| } |
| |
| /* Ask the PROM how many Z8530s we have and initialize their zs_channels */ |
| static void |
| probe_sccs(void) |
| { |
| struct device_node *dev, *ch; |
| struct mac_serial **pp; |
| int n, chip, nchan; |
| struct mac_zschannel *zs_chan; |
| int chan_a_index; |
| |
| n = 0; |
| pp = &zs_chain; |
| zs_chan = zs_channels; |
| for (dev = find_devices("escc"); dev != 0; dev = dev->next) { |
| nchan = 0; |
| chip = n; |
| if (n >= NUM_CHANNELS) { |
| printk(KERN_WARNING "Sorry, can't use %s: no more " |
| "channels\n", dev->full_name); |
| continue; |
| } |
| chan_a_index = 0; |
| for (ch = dev->child; ch != 0; ch = ch->sibling) { |
| if (nchan >= 2) { |
| printk(KERN_WARNING "SCC: Only 2 channels per " |
| "chip are supported\n"); |
| break; |
| } |
| if (ch->n_addrs < 1 || (ch ->n_intrs < 1)) { |
| printk("Can't use %s: %d addrs %d intrs\n", |
| ch->full_name, ch->n_addrs, ch->n_intrs); |
| continue; |
| } |
| |
| /* The channel with the higher address |
| will be the A side. */ |
| if (nchan > 0 && |
| ch->addrs[0].address |
| > zs_soft[n-1].dev_node->addrs[0].address) |
| chan_a_index = 1; |
| |
| /* minimal initialization for now */ |
| zs_soft[n].dev_node = ch; |
| *pp = &zs_soft[n]; |
| pp = &zs_soft[n].zs_next; |
| ++nchan; |
| ++n; |
| } |
| if (nchan == 0) |
| continue; |
| |
| /* set up A side */ |
| if (chan_init(&zs_soft[chip + chan_a_index], zs_chan, zs_chan)) |
| continue; |
| ++zs_chan; |
| |
| /* set up B side, if it exists */ |
| if (nchan > 1) |
| if (chan_init(&zs_soft[chip + 1 - chan_a_index], |
| zs_chan, zs_chan - 1)) |
| continue; |
| ++zs_chan; |
| } |
| *pp = 0; |
| |
| zs_channels_found = n; |
| #ifdef CONFIG_PMAC_PBOOK |
| if (n) |
| pmu_register_sleep_notifier(&serial_sleep_notifier); |
| #endif /* CONFIG_PMAC_PBOOK */ |
| } |
| |
| static struct tty_operations serial_ops = { |
| .open = rs_open, |
| .close = rs_close, |
| .write = rs_write, |
| .flush_chars = rs_flush_chars, |
| .write_room = rs_write_room, |
| .chars_in_buffer = rs_chars_in_buffer, |
| .flush_buffer = rs_flush_buffer, |
| .ioctl = rs_ioctl, |
| .throttle = rs_throttle, |
| .unthrottle = rs_unthrottle, |
| .set_termios = rs_set_termios, |
| .stop = rs_stop, |
| .start = rs_start, |
| .hangup = rs_hangup, |
| .break_ctl = rs_break, |
| .wait_until_sent = rs_wait_until_sent, |
| .read_proc = macserial_read_proc, |
| .tiocmget = rs_tiocmget, |
| .tiocmset = rs_tiocmset, |
| }; |
| |
| static int macserial_init(void) |
| { |
| int channel, i; |
| struct mac_serial *info; |
| |
| /* Find out how many Z8530 SCCs we have */ |
| if (zs_chain == 0) |
| probe_sccs(); |
| |
| serial_driver = alloc_tty_driver(zs_channels_found); |
| if (!serial_driver) |
| return -ENOMEM; |
| |
| /* XXX assume it's a powerbook if we have a via-pmu |
| * |
| * This is OK for core99 machines as well. |
| */ |
| is_powerbook = find_devices("via-pmu") != 0; |
| |
| /* Register the interrupt handler for each one |
| * We also request the OF resources here as probe_sccs() |
| * might be called too early for that |
| */ |
| for (i = 0; i < zs_channels_found; ++i) { |
| struct device_node* ch = zs_soft[i].dev_node; |
| if (!request_OF_resource(ch, 0, NULL)) { |
| printk(KERN_ERR "macserial: can't request IO resource !\n"); |
| put_tty_driver(serial_driver); |
| return -ENODEV; |
| } |
| if (zs_soft[i].has_dma) { |
| if (!request_OF_resource(ch, ch->n_addrs - 2, " (tx dma)")) { |
| printk(KERN_ERR "macserial: can't request TX DMA resource !\n"); |
| zs_soft[i].has_dma = 0; |
| goto no_dma; |
| } |
| if (!request_OF_resource(ch, ch->n_addrs - 1, " (rx dma)")) { |
| release_OF_resource(ch, ch->n_addrs - 2); |
| printk(KERN_ERR "macserial: can't request RX DMA resource !\n"); |
| zs_soft[i].has_dma = 0; |
| goto no_dma; |
| } |
| if (request_irq(zs_soft[i].tx_dma_irq, rs_txdma_irq, 0, |
| "SCC-txdma", &zs_soft[i])) |
| printk(KERN_ERR "macserial: can't get irq %d\n", |
| zs_soft[i].tx_dma_irq); |
| disable_irq(zs_soft[i].tx_dma_irq); |
| if (request_irq(zs_soft[i].rx_dma_irq, rs_rxdma_irq, 0, |
| "SCC-rxdma", &zs_soft[i])) |
| printk(KERN_ERR "macserial: can't get irq %d\n", |
| zs_soft[i].rx_dma_irq); |
| disable_irq(zs_soft[i].rx_dma_irq); |
| } |
| no_dma: |
| if (request_irq(zs_soft[i].irq, rs_interrupt, 0, |
| "SCC", &zs_soft[i])) |
| printk(KERN_ERR "macserial: can't get irq %d\n", |
| zs_soft[i].irq); |
| disable_irq(zs_soft[i].irq); |
| } |
| |
| show_serial_version(); |
| |
| /* Initialize the tty_driver structure */ |
| /* Not all of this is exactly right for us. */ |
| |
| serial_driver->owner = THIS_MODULE; |
| serial_driver->driver_name = "macserial"; |
| serial_driver->devfs_name = "tts/"; |
| serial_driver->name = "ttyS"; |
| serial_driver->major = TTY_MAJOR; |
| serial_driver->minor_start = 64; |
| serial_driver->type = TTY_DRIVER_TYPE_SERIAL; |
| serial_driver->subtype = SERIAL_TYPE_NORMAL; |
| serial_driver->init_termios = tty_std_termios; |
| serial_driver->init_termios.c_cflag = |
| B38400 | CS8 | CREAD | HUPCL | CLOCAL; |
| serial_driver->flags = TTY_DRIVER_REAL_RAW; |
| tty_set_operations(serial_driver, &serial_ops); |
| |
| if (tty_register_driver(serial_driver)) |
| printk(KERN_ERR "Error: couldn't register serial driver\n"); |
| |
| for (channel = 0; channel < zs_channels_found; ++channel) { |
| #ifdef CONFIG_KGDB |
| if (zs_soft[channel].kgdb_channel) { |
| kgdb_interruptible(1); |
| continue; |
| } |
| #endif |
| zs_soft[channel].clk_divisor = 16; |
| /* -- we are not sure the SCC is powered ON at this point |
| zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); |
| */ |
| zs_soft[channel].zs_baud = 38400; |
| |
| /* If console serial line, then enable interrupts. */ |
| if (zs_soft[channel].is_cons) { |
| printk(KERN_INFO "macserial: console line, enabling " |
| "interrupt %d\n", zs_soft[channel].irq); |
| panic("macserial: console not supported yet !"); |
| write_zsreg(zs_soft[channel].zs_channel, R1, |
| (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB)); |
| write_zsreg(zs_soft[channel].zs_channel, R9, |
| (NV | MIE)); |
| } |
| } |
| |
| for (info = zs_chain, i = 0; info; info = info->zs_next, i++) |
| { |
| unsigned char* connector; |
| int lenp; |
| |
| #ifdef CONFIG_KGDB |
| if (info->kgdb_channel) { |
| continue; |
| } |
| #endif |
| info->magic = SERIAL_MAGIC; |
| info->port = (int) info->zs_channel->control; |
| info->line = i; |
| info->tty = 0; |
| info->custom_divisor = 16; |
| info->timeout = 0; |
| info->close_delay = 50; |
| info->closing_wait = 3000; |
| info->x_char = 0; |
| info->event = 0; |
| info->count = 0; |
| info->blocked_open = 0; |
| INIT_WORK(&info->tqueue, do_softint, info); |
| spin_lock_init(&info->lock); |
| init_waitqueue_head(&info->open_wait); |
| init_waitqueue_head(&info->close_wait); |
| info->timeout = HZ; |
| printk(KERN_INFO "tty%02d at 0x%08x (irq = %d)", info->line, |
| info->port, info->irq); |
| printk(" is a Z8530 ESCC"); |
| connector = get_property(info->dev_node, "AAPL,connector", &lenp); |
| if (connector) |
| printk(", port = %s", connector); |
| if (info->is_internal_modem) |
| printk(" (internal modem)"); |
| if (info->is_irda) |
| printk(" (IrDA)"); |
| printk("\n"); |
| } |
| tmp_buf = 0; |
| |
| return 0; |
| } |
| |
| void macserial_cleanup(void) |
| { |
| int i; |
| unsigned long flags; |
| struct mac_serial *info; |
| |
| for (info = zs_chain, i = 0; info; info = info->zs_next, i++) |
| set_scc_power(info, 0); |
| spin_lock_irqsave(&info->lock, flags); |
| for (i = 0; i < zs_channels_found; ++i) { |
| free_irq(zs_soft[i].irq, &zs_soft[i]); |
| if (zs_soft[i].has_dma) { |
| free_irq(zs_soft[i].tx_dma_irq, &zs_soft[i]); |
| free_irq(zs_soft[i].rx_dma_irq, &zs_soft[i]); |
| } |
| release_OF_resource(zs_soft[i].dev_node, 0); |
| if (zs_soft[i].has_dma) { |
| struct device_node* ch = zs_soft[i].dev_node; |
| release_OF_resource(ch, ch->n_addrs - 2); |
| release_OF_resource(ch, ch->n_addrs - 1); |
| } |
| } |
| spin_unlock_irqrestore(&info->lock, flags); |
| tty_unregister_driver(serial_driver); |
| put_tty_driver(serial_driver); |
| |
| if (tmp_buf) { |
| free_page((unsigned long) tmp_buf); |
| tmp_buf = 0; |
| } |
| |
| #ifdef CONFIG_PMAC_PBOOK |
| if (zs_channels_found) |
| pmu_unregister_sleep_notifier(&serial_sleep_notifier); |
| #endif /* CONFIG_PMAC_PBOOK */ |
| } |
| |
| module_init(macserial_init); |
| module_exit(macserial_cleanup); |
| MODULE_LICENSE("GPL"); |
| |
| #if 0 |
| /* |
| * register_serial and unregister_serial allows for serial ports to be |
| * configured at run-time, to support PCMCIA modems. |
| */ |
| /* PowerMac: Unused at this time, just here to make things link. */ |
| int register_serial(struct serial_struct *req) |
| { |
| return -1; |
| } |
| |
| void unregister_serial(int line) |
| { |
| return; |
| } |
| #endif |
| |
| /* |
| * ------------------------------------------------------------ |
| * Serial console driver |
| * ------------------------------------------------------------ |
| */ |
| #ifdef CONFIG_SERIAL_CONSOLE |
| |
| /* |
| * Print a string to the serial port trying not to disturb |
| * any possible real use of the port... |
| */ |
| static void serial_console_write(struct console *co, const char *s, |
| unsigned count) |
| { |
| struct mac_serial *info = zs_soft + co->index; |
| int i; |
| |
| /* Turn of interrupts and enable the transmitter. */ |
| write_zsreg(info->zs_channel, R1, info->curregs[1] & ~TxINT_ENAB); |
| write_zsreg(info->zs_channel, R5, info->curregs[5] | TxENAB | RTS | DTR); |
| |
| for (i=0; i<count; i++) { |
| /* Wait for the transmit buffer to empty. */ |
| while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) { |
| eieio(); |
| } |
| |
| write_zsdata(info->zs_channel, s[i]); |
| if (s[i] == 10) { |
| while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) |
| == 0) |
| eieio(); |
| |
| write_zsdata(info->zs_channel, 13); |
| } |
| } |
| |
| /* Restore the values in the registers. */ |
| write_zsreg(info->zs_channel, R1, info->curregs[1]); |
| /* Don't disable the transmitter. */ |
| } |
| |
| static struct tty_driver *serial_driver; |
| |
| static struct tty_driver *serial_console_device(struct console *c, int *index) |
| { |
| *index = c->index; |
| return serial_driver; |
| } |
| |
| /* |
| * Setup initial baud/bits/parity. We do two things here: |
| * - construct a cflag setting for the first rs_open() |
| * - initialize the serial port |
| * Return non-zero if we didn't find a serial port. |
| */ |
| static int __init serial_console_setup(struct console *co, char *options) |
| { |
| struct mac_serial *info; |
| int baud = 38400; |
| int bits = 8; |
| int parity = 'n'; |
| int cflag = CREAD | HUPCL | CLOCAL; |
| int brg; |
| char *s; |
| long flags; |
| |
| /* Find out how many Z8530 SCCs we have */ |
| if (zs_chain == 0) |
| probe_sccs(); |
| |
| if (zs_chain == 0) |
| return -1; |
| |
| /* Do we have the device asked for? */ |
| if (co->index >= zs_channels_found) |
| return -1; |
| info = zs_soft + co->index; |
| |
| set_scc_power(info, 1); |
| |
| /* Reset the channel */ |
| write_zsreg(info->zs_channel, R9, CHRA); |
| |
| if (options) { |
| baud = simple_strtoul(options, NULL, 10); |
| s = options; |
| while(*s >= '0' && *s <= '9') |
| s++; |
| if (*s) |
| parity = *s++; |
| if (*s) |
| bits = *s - '0'; |
| } |
| |
| /* |
| * Now construct a cflag setting. |
| */ |
| switch(baud) { |
| case 1200: |
| cflag |= B1200; |
| break; |
| case 2400: |
| cflag |= B2400; |
| break; |
| case 4800: |
| cflag |= B4800; |
| break; |
| case 9600: |
| cflag |= B9600; |
| break; |
| case 19200: |
| cflag |= B19200; |
| break; |
| case 57600: |
| cflag |= B57600; |
| break; |
| case 115200: |
| cflag |= B115200; |
| break; |
| case 38400: |
| default: |
| cflag |= B38400; |
| break; |
| } |
| switch(bits) { |
| case 7: |
| cflag |= CS7; |
| break; |
| default: |
| case 8: |
| cflag |= CS8; |
| break; |
| } |
| switch(parity) { |
| case 'o': case 'O': |
| cflag |= PARENB | PARODD; |
| break; |
| case 'e': case 'E': |
| cflag |= PARENB; |
| break; |
| } |
| co->cflag = cflag; |
| |
| spin_lock_irqsave(&info->lock, flags); |
| memset(info->curregs, 0, sizeof(info->curregs)); |
| |
| info->zs_baud = baud; |
| info->clk_divisor = 16; |
| switch (info->zs_baud) { |
| case ZS_CLOCK/16: /* 230400 */ |
| info->curregs[4] = X16CLK; |
| info->curregs[11] = 0; |
| break; |
| case ZS_CLOCK/32: /* 115200 */ |
| info->curregs[4] = X32CLK; |
| info->curregs[11] = 0; |
| break; |
| default: |
| info->curregs[4] = X16CLK; |
| info->curregs[11] = TCBR | RCBR; |
| brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor); |
| info->curregs[12] = (brg & 255); |
| info->curregs[13] = ((brg >> 8) & 255); |
| info->curregs[14] = BRENABL; |
| } |
| |
| /* byte size and parity */ |
| info->curregs[3] &= ~RxNBITS_MASK; |
| info->curregs[5] &= ~TxNBITS_MASK; |
| switch (cflag & CSIZE) { |
| case CS5: |
| info->curregs[3] |= Rx5; |
| info->curregs[5] |= Tx5; |
| break; |
| case CS6: |
| info->curregs[3] |= Rx6; |
| info->curregs[5] |= Tx6; |
| break; |
| case CS7: |
| info->curregs[3] |= Rx7; |
| info->curregs[5] |= Tx7; |
| break; |
| case CS8: |
| default: /* defaults to 8 bits */ |
| info->curregs[3] |= Rx8; |
| info->curregs[5] |= Tx8; |
| break; |
| } |
| info->curregs[5] |= TxENAB | RTS | DTR; |
| info->pendregs[3] = info->curregs[3]; |
| info->pendregs[5] = info->curregs[5]; |
| |
| info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); |
| if (cflag & CSTOPB) { |
| info->curregs[4] |= SB2; |
| } else { |
| info->curregs[4] |= SB1; |
| } |
| if (cflag & PARENB) { |
| info->curregs[4] |= PAR_ENA; |
| if (!(cflag & PARODD)) { |
| info->curregs[4] |= PAR_EVEN; |
| } |
| } |
| info->pendregs[4] = info->curregs[4]; |
| |
| if (!(cflag & CLOCAL)) { |
| if (!(info->curregs[15] & DCDIE)) |
| info->read_reg_zero = read_zsreg(info->zs_channel, 0); |
| info->curregs[15] |= DCDIE; |
| } else |
| info->curregs[15] &= ~DCDIE; |
| if (cflag & CRTSCTS) { |
| info->curregs[15] |= CTSIE; |
| if ((read_zsreg(info->zs_channel, 0) & CTS) != 0) |
| info->tx_stopped = 1; |
| } else { |
| info->curregs[15] &= ~CTSIE; |
| info->tx_stopped = 0; |
| } |
| info->pendregs[15] = info->curregs[15]; |
| |
| /* Load up the new values */ |
| load_zsregs(info->zs_channel, info->curregs); |
| |
| spin_unlock_irqrestore(&info->lock, flags); |
| |
| return 0; |
| } |
| |
| static struct console sercons = { |
| .name = "ttyS", |
| .write = serial_console_write, |
| .device = serial_console_device, |
| .setup = serial_console_setup, |
| .flags = CON_PRINTBUFFER, |
| .index = -1, |
| }; |
| |
| /* |
| * Register console. |
| */ |
| static void __init mac_scc_console_init(void) |
| { |
| register_console(&sercons); |
| } |
| console_initcall(mac_scc_console_init); |
| |
| #endif /* ifdef CONFIG_SERIAL_CONSOLE */ |
| |
| #ifdef CONFIG_KGDB |
| /* These are for receiving and sending characters under the kgdb |
| * source level kernel debugger. |
| */ |
| void putDebugChar(char kgdb_char) |
| { |
| struct mac_zschannel *chan = zs_kgdbchan; |
| while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0) |
| udelay(5); |
| write_zsdata(chan, kgdb_char); |
| } |
| |
| char getDebugChar(void) |
| { |
| struct mac_zschannel *chan = zs_kgdbchan; |
| while((read_zsreg(chan, 0) & Rx_CH_AV) == 0) |
| eieio(); /*barrier();*/ |
| return read_zsdata(chan); |
| } |
| |
| void kgdb_interruptible(int yes) |
| { |
| struct mac_zschannel *chan = zs_kgdbchan; |
| int one, nine; |
| nine = read_zsreg(chan, 9); |
| if (yes == 1) { |
| one = EXT_INT_ENAB|INT_ALL_Rx; |
| nine |= MIE; |
| printk("turning serial ints on\n"); |
| } else { |
| one = RxINT_DISAB; |
| nine &= ~MIE; |
| printk("turning serial ints off\n"); |
| } |
| write_zsreg(chan, 1, one); |
| write_zsreg(chan, 9, nine); |
| } |
| |
| /* This sets up the serial port we're using, and turns on |
| * interrupts for that channel, so kgdb is usable once we're done. |
| */ |
| static inline void kgdb_chaninit(struct mac_zschannel *ms, int intson, int bps) |
| { |
| int brg; |
| int i, x; |
| volatile char *sccc = ms->control; |
| brg = BPS_TO_BRG(bps, ZS_CLOCK/16); |
| printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg); |
| for (i = 20000; i != 0; --i) { |
| x = *sccc; eieio(); |
| } |
| for (i = 0; i < sizeof(scc_inittab); ++i) { |
| write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]); |
| i++; |
| } |
| } |
| |
| /* This is called at boot time to prime the kgdb serial debugging |
| * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1 |
| * for /dev/ttyb which is determined in setup_arch() from the |
| * boot command line flags. |
| * XXX at the moment probably only channel A will work |
| */ |
| void __init zs_kgdb_hook(int tty_num) |
| { |
| /* Find out how many Z8530 SCCs we have */ |
| if (zs_chain == 0) |
| probe_sccs(); |
| |
| set_scc_power(&zs_soft[tty_num], 1); |
| |
| zs_kgdbchan = zs_soft[tty_num].zs_channel; |
| zs_soft[tty_num].change_needed = 0; |
| zs_soft[tty_num].clk_divisor = 16; |
| zs_soft[tty_num].zs_baud = 38400; |
| zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */ |
| |
| /* Turn on transmitter/receiver at 8-bits/char */ |
| kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400); |
| printk("KGDB: on channel %d initialized\n", tty_num); |
| set_debug_traps(); /* init stub */ |
| } |
| #endif /* ifdef CONFIG_KGDB */ |
| |
| #ifdef CONFIG_PMAC_PBOOK |
| /* |
| * notify clients before sleep and reset bus afterwards |
| */ |
| int |
| serial_notify_sleep(struct pmu_sleep_notifier *self, int when) |
| { |
| int i; |
| |
| switch (when) { |
| case PBOOK_SLEEP_REQUEST: |
| case PBOOK_SLEEP_REJECT: |
| break; |
| |
| case PBOOK_SLEEP_NOW: |
| for (i=0; i<zs_channels_found; i++) { |
| struct mac_serial *info = &zs_soft[i]; |
| if (info->flags & ZILOG_INITIALIZED) { |
| shutdown(info); |
| info->flags |= ZILOG_SLEEPING; |
| } |
| } |
| break; |
| case PBOOK_WAKE: |
| for (i=0; i<zs_channels_found; i++) { |
| struct mac_serial *info = &zs_soft[i]; |
| if (info->flags & ZILOG_SLEEPING) { |
| info->flags &= ~ZILOG_SLEEPING; |
| startup(info); |
| } |
| } |
| break; |
| } |
| return PBOOK_SLEEP_OK; |
| } |
| #endif /* CONFIG_PMAC_PBOOK */ |