blob: d2d8cbaf6ab076d0bd9207719bec87a2d4dfbd21 [file] [log] [blame]
/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/msm_adc.h>
#include <linux/pmic8058-xoadc.h>
#include <linux/mfd/pmic8058.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/delay.h>
#include <mach/mpp.h>
#include <mach/msm_xo.h>
#define ADC_DRIVER_NAME "pm8058-xoadc"
#define MAX_QUEUE_LENGTH 0X15
#define MAX_CHANNEL_PROPERTIES_QUEUE 0X7
#define MAX_QUEUE_SLOT 0x1
/* User Processor */
#define ADC_ARB_USRP_CNTRL 0x197
#define ADC_ARB_USRP_CNTRL_EN_ARB BIT(0)
#define ADC_ARB_USRP_CNTRL_RSV1 BIT(1)
#define ADC_ARB_USRP_CNTRL_RSV2 BIT(2)
#define ADC_ARB_USRP_CNTRL_RSV3 BIT(3)
#define ADC_ARB_USRP_CNTRL_RSV4 BIT(4)
#define ADC_ARB_USRP_CNTRL_RSV5 BIT(5)
#define ADC_ARB_USRP_CNTRL_EOC BIT(6)
#define ADC_ARB_USRP_CNTRL_REQ BIT(7)
#define ADC_ARB_USRP_AMUX_CNTRL 0x198
#define ADC_ARB_USRP_ANA_PARAM 0x199
#define ADC_ARB_USRP_DIG_PARAM 0x19A
#define ADC_ARB_USRP_RSV 0x19B
#define ADC_ARB_USRP_DATA0 0x19D
#define ADC_ARB_USRP_DATA1 0x19C
struct pmic8058_adc {
struct xoadc_platform_data *pdata;
struct pm8058_chip *pm_chip;
struct adc_properties *adc_prop;
struct xoadc_conv_state conv[2];
int xoadc_queue_count;
int adc_irq;
struct linear_graph *adc_graph;
struct xoadc_conv_state *conv_slot_request;
struct xoadc_conv_state *conv_queue_list;
struct adc_conv_slot conv_queue_elements[MAX_QUEUE_LENGTH];
int xoadc_num;
struct msm_xo_voter *adc_voter;
};
static struct pmic8058_adc *pmic_adc[XOADC_PMIC_0 + 1];
static bool xoadc_initialized, xoadc_calib_first_adc;
DEFINE_RATELIMIT_STATE(pm8058_xoadc_msg_ratelimit,
DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
static inline int pm8058_xoadc_can_print(void)
{
return __ratelimit(&pm8058_xoadc_msg_ratelimit);
}
int32_t pm8058_xoadc_registered(void)
{
return xoadc_initialized;
}
EXPORT_SYMBOL(pm8058_xoadc_registered);
void pm8058_xoadc_restore_slot(uint32_t adc_instance,
struct adc_conv_slot *slot)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
struct xoadc_conv_state *slot_state = adc_pmic->conv_slot_request;
mutex_lock(&slot_state->list_lock);
list_add(&slot->list, &slot_state->slots);
mutex_unlock(&slot_state->list_lock);
}
EXPORT_SYMBOL(pm8058_xoadc_restore_slot);
void pm8058_xoadc_slot_request(uint32_t adc_instance,
struct adc_conv_slot **slot)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
struct xoadc_conv_state *slot_state = adc_pmic->conv_slot_request;
mutex_lock(&slot_state->list_lock);
if (!list_empty(&slot_state->slots)) {
*slot = list_first_entry(&slot_state->slots,
struct adc_conv_slot, list);
list_del(&(*slot)->list);
} else
*slot = NULL;
mutex_unlock(&slot_state->list_lock);
}
EXPORT_SYMBOL(pm8058_xoadc_slot_request);
static int32_t pm8058_xoadc_arb_cntrl(uint32_t arb_cntrl,
uint32_t adc_instance)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
int i, rc;
u8 data_arb_cntrl;
data_arb_cntrl = ADC_ARB_USRP_CNTRL_EOC |
ADC_ARB_USRP_CNTRL_RSV5 |
ADC_ARB_USRP_CNTRL_RSV4;
if (arb_cntrl) {
data_arb_cntrl |= ADC_ARB_USRP_CNTRL_EN_ARB;
msm_xo_mode_vote(adc_pmic->adc_voter, MSM_XO_MODE_ON);
adc_pmic->pdata->xoadc_mpp_config();
}
/* Write twice to the CNTRL register for the arbiter settings
to take into effect */
for (i = 0; i < 2; i++) {
rc = pm8058_write(adc_pmic->pm_chip, ADC_ARB_USRP_CNTRL,
&data_arb_cntrl, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
}
if (!arb_cntrl)
msm_xo_mode_vote(adc_pmic->adc_voter, MSM_XO_MODE_OFF);
return 0;
}
static int32_t pm8058_xoadc_configure(uint32_t adc_instance,
struct adc_conv_slot *slot)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
u8 data_arb_cntrl, data_amux_chan, data_arb_rsv, data_ana_param;
u8 data_dig_param, data_ana_param2;
int rc;
rc = pm8058_xoadc_arb_cntrl(1, adc_instance);
if (rc < 0) {
pr_debug("%s: Configuring ADC Arbiter"
"enable failed\n", __func__);
return rc;
}
switch (slot->chan_path) {
case CHAN_PATH_TYPE1:
data_amux_chan = CHANNEL_VCOIN << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 2;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE2:
data_amux_chan = CHANNEL_VBAT << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 3;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE3:
data_amux_chan = CHANNEL_VCHG << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 10;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE4:
data_amux_chan = CHANNEL_CHG_MONITOR << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE5:
data_amux_chan = CHANNEL_VPH_PWR << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 3;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE6:
data_amux_chan = CHANNEL_MPP5 << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE7:
data_amux_chan = CHANNEL_MPP6 << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE8:
data_amux_chan = CHANNEL_MPP7 << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 2;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE9:
data_amux_chan = CHANNEL_MPP8 << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 2;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE10:
data_amux_chan = CHANNEL_MPP9 << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 3;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE11:
data_amux_chan = CHANNEL_USB_VBUS << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 3;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE12:
data_amux_chan = CHANNEL_DIE_TEMP << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE13:
data_amux_chan = CHANNEL_125V << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE14:
data_amux_chan = CHANNEL_INTERNAL_2 << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
case CHAN_PATH_TYPE_NONE:
data_amux_chan = CHANNEL_MUXOFF << 4;
data_arb_rsv = 0x10;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[1];
break;
case CHAN_PATH_TYPE15:
data_amux_chan = CHANNEL_INTERNAL << 4;
data_arb_rsv = 0x20;
slot->chan_properties.gain_numerator = 1;
slot->chan_properties.gain_denominator = 1;
slot->chan_properties.adc_graph = &adc_pmic->adc_graph[0];
break;
}
rc = pm8058_write(adc_pmic->pm_chip,
ADC_ARB_USRP_AMUX_CNTRL, &data_amux_chan, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
rc = pm8058_write(adc_pmic->pm_chip,
ADC_ARB_USRP_RSV, &data_arb_rsv, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
/* Set default clock rate to 2.4 MHz XO ADC clock digital */
switch (slot->chan_adc_config) {
case ADC_CONFIG_TYPE1:
data_ana_param = 0xFE;
data_dig_param = 0x23;
data_ana_param2 = 0xFF;
/* AMUX register data to start the ADC conversion */
data_arb_cntrl = 0xF1;
break;
case ADC_CONFIG_TYPE2:
data_ana_param = 0xFE;
data_dig_param = 0x03;
data_ana_param2 = 0xFF;
/* AMUX register data to start the ADC conversion */
data_arb_cntrl = 0xF1;
break;
}
rc = pm8058_write(adc_pmic->pm_chip,
ADC_ARB_USRP_ANA_PARAM, &data_ana_param, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
rc = pm8058_write(adc_pmic->pm_chip,
ADC_ARB_USRP_DIG_PARAM, &data_dig_param, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
rc = pm8058_write(adc_pmic->pm_chip,
ADC_ARB_USRP_ANA_PARAM, &data_ana_param2, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
enable_irq(adc_pmic->adc_irq);
rc = pm8058_write(adc_pmic->pm_chip,
ADC_ARB_USRP_CNTRL, &data_arb_cntrl, 1);
if (rc < 0) {
pr_debug("%s: PM8058 write failed\n", __func__);
return rc;
}
return 0;
}
int32_t pm8058_xoadc_select_chan_and_start_conv(uint32_t adc_instance,
struct adc_conv_slot *slot)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
struct xoadc_conv_state *slot_state = adc_pmic->conv_queue_list;
if (!xoadc_initialized)
return -ENODEV;
mutex_lock(&slot_state->list_lock);
list_add_tail(&slot->list, &slot_state->slots);
if (adc_pmic->xoadc_queue_count == 0) {
if (adc_pmic->pdata->xoadc_vreg_set != NULL)
adc_pmic->pdata->xoadc_vreg_set(1);
pm8058_xoadc_configure(adc_instance, slot);
}
adc_pmic->xoadc_queue_count++;
mutex_unlock(&slot_state->list_lock);
return 0;
}
EXPORT_SYMBOL(pm8058_xoadc_select_chan_and_start_conv);
static int32_t pm8058_xoadc_dequeue_slot_request(uint32_t adc_instance,
struct adc_conv_slot **slot)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
struct xoadc_conv_state *slot_state = adc_pmic->conv_queue_list;
int rc = 0;
mutex_lock(&slot_state->list_lock);
if (adc_pmic->xoadc_queue_count > 0 &&
!list_empty(&slot_state->slots)) {
*slot = list_first_entry(&slot_state->slots,
struct adc_conv_slot, list);
list_del(&(*slot)->list);
} else
rc = -EINVAL;
mutex_unlock(&slot_state->list_lock);
if (rc < 0) {
if (pm8058_xoadc_can_print())
pr_err("Pmic 8058 xoadc spurious interrupt detected\n");
return rc;
}
return 0;
}
int32_t pm8058_xoadc_read_adc_code(uint32_t adc_instance, int32_t *data)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
struct xoadc_conv_state *slot_state = adc_pmic->conv_queue_list;
uint8_t rslt_lsb, rslt_msb;
struct adc_conv_slot *slot;
int32_t rc, max_ideal_adc_code = 1 << adc_pmic->adc_prop->bitresolution;
if (!xoadc_initialized)
return -ENODEV;
rc = pm8058_read(adc_pmic->pm_chip, ADC_ARB_USRP_DATA0, &rslt_lsb, 1);
if (rc < 0) {
pr_debug("%s: PM8058 read failed\n", __func__);
return rc;
}
rc = pm8058_read(adc_pmic->pm_chip, ADC_ARB_USRP_DATA1, &rslt_msb, 1);
if (rc < 0) {
pr_debug("%s: PM8058 read failed\n", __func__);
return rc;
}
*data = (rslt_msb << 8) | rslt_lsb;
/* Use the midpoint to determine underflow or overflow */
if (*data > max_ideal_adc_code + (max_ideal_adc_code >> 1))
*data |= ((1 << (8 * sizeof(*data) -
adc_pmic->adc_prop->bitresolution)) - 1) <<
adc_pmic->adc_prop->bitresolution;
/* Return if this is a calibration run since there
* is no need to check requests in the waiting queue */
if (xoadc_calib_first_adc)
return 0;
mutex_lock(&slot_state->list_lock);
adc_pmic->xoadc_queue_count--;
if (adc_pmic->xoadc_queue_count > 0) {
slot = list_first_entry(&slot_state->slots,
struct adc_conv_slot, list);
pm8058_xoadc_configure(adc_instance, slot);
}
mutex_unlock(&slot_state->list_lock);
mutex_lock(&slot_state->list_lock);
/* Default value for switching off the arbiter after reading
the ADC value. Bit 0 set to 0. */
if (adc_pmic->xoadc_queue_count == 0) {
rc = pm8058_xoadc_arb_cntrl(0, adc_instance);
if (rc < 0) {
pr_debug("%s: Configuring ADC Arbiter disable"
"failed\n", __func__);
return rc;
}
if (adc_pmic->pdata->xoadc_vreg_set != NULL)
adc_pmic->pdata->xoadc_vreg_set(0);
}
mutex_unlock(&slot_state->list_lock);
return 0;
}
EXPORT_SYMBOL(pm8058_xoadc_read_adc_code);
static irqreturn_t pm8058_xoadc(int irq, void *dev_id)
{
struct pmic8058_adc *xoadc_8058 = dev_id;
struct adc_conv_slot *slot = NULL;
int rc;
disable_irq_nosync(xoadc_8058->adc_irq);
if (xoadc_calib_first_adc)
return IRQ_HANDLED;
rc = pm8058_xoadc_dequeue_slot_request(xoadc_8058->xoadc_num, &slot);
if (rc < 0)
return IRQ_NONE;
if (rc == 0)
msm_adc_conv_cb(slot, 0, NULL, 0);
return IRQ_HANDLED;
}
struct adc_properties *pm8058_xoadc_get_properties(uint32_t dev_instance)
{
struct pmic8058_adc *xoadc_8058 = pmic_adc[dev_instance];
return xoadc_8058->adc_prop;
}
EXPORT_SYMBOL(pm8058_xoadc_get_properties);
int32_t pm8058_xoadc_calib_device(uint32_t adc_instance)
{
struct pmic8058_adc *adc_pmic = pmic_adc[adc_instance];
struct adc_conv_slot *slot;
int rc, offset_xoadc, slope_xoadc, calib_read_1, calib_read_2;
if (adc_pmic->pdata->xoadc_vreg_set != NULL)
adc_pmic->pdata->xoadc_vreg_set(1);
pm8058_xoadc_slot_request(adc_instance, &slot);
if (slot) {
slot->chan_path = CHAN_PATH_TYPE13;
slot->chan_adc_config = ADC_CONFIG_TYPE2;
slot->chan_adc_calib = ADC_CONFIG_TYPE2;
xoadc_calib_first_adc = true;
rc = pm8058_xoadc_configure(adc_instance, slot);
if (rc) {
pr_err("pm8058_xoadc configure failed\n");
goto fail;
}
} else {
rc = -EINVAL;
goto fail;
}
msleep(3);
rc = pm8058_xoadc_read_adc_code(adc_instance, &calib_read_1);
if (rc) {
pr_err("pm8058_xoadc read adc failed\n");
xoadc_calib_first_adc = false;
goto fail;
}
xoadc_calib_first_adc = false;
pm8058_xoadc_slot_request(adc_instance, &slot);
if (slot) {
slot->chan_path = CHAN_PATH_TYPE15;
slot->chan_adc_config = ADC_CONFIG_TYPE2;
slot->chan_adc_calib = ADC_CONFIG_TYPE2;
xoadc_calib_first_adc = true;
rc = pm8058_xoadc_configure(adc_instance, slot);
if (rc) {
pr_err("pm8058_xoadc configure failed\n");
goto fail;
}
} else {
rc = -EINVAL;
goto fail;
}
msleep(3);
rc = pm8058_xoadc_read_adc_code(adc_instance, &calib_read_2);
if (rc) {
pr_err("pm8058_xoadc read adc failed\n");
xoadc_calib_first_adc = false;
goto fail;
}
xoadc_calib_first_adc = false;
pm8058_xoadc_restore_slot(adc_instance, slot);
slope_xoadc = (((calib_read_1 - calib_read_2) << 10)/
CHANNEL_ADC_625_MV);
offset_xoadc = calib_read_2 -
((slope_xoadc * CHANNEL_ADC_625_MV) >> 10);
printk(KERN_INFO"pmic8058_xoadc:The offset for AMUX calibration"
"was %d\n", offset_xoadc);
adc_pmic->adc_graph[0].offset = offset_xoadc;
adc_pmic->adc_graph[0].dy = (calib_read_1 - calib_read_2);
adc_pmic->adc_graph[0].dx = CHANNEL_ADC_625_MV;
/* Retain ideal calibration settings for therm readings */
adc_pmic->adc_graph[1].offset = 0 ;
adc_pmic->adc_graph[1].dy = (1 << 15) - 1;
adc_pmic->adc_graph[1].dx = 2200;
if (adc_pmic->pdata->xoadc_vreg_set != NULL)
adc_pmic->pdata->xoadc_vreg_set(0);
return 0;
fail:
if (adc_pmic->pdata->xoadc_vreg_set != NULL)
adc_pmic->pdata->xoadc_vreg_set(0);
return rc;
}
EXPORT_SYMBOL(pm8058_xoadc_calib_device);
int32_t pm8058_xoadc_calibrate(uint32_t dev_instance,
struct adc_conv_slot *slot, int *calib_status)
{
*calib_status = CALIB_NOT_REQUIRED;
return 0;
}
EXPORT_SYMBOL(pm8058_xoadc_calibrate);
static int __devexit pm8058_xoadc_teardown(struct platform_device *pdev)
{
struct pmic8058_adc *adc_pmic = platform_get_drvdata(pdev);
if (adc_pmic->pdata->xoadc_vreg_shutdown != NULL)
adc_pmic->pdata->xoadc_vreg_shutdown();
msm_xo_put(adc_pmic->adc_voter);
platform_set_drvdata(pdev, adc_pmic->pm_chip);
device_init_wakeup(&pdev->dev, 0);
kfree(adc_pmic);
xoadc_initialized = false;
return 0;
}
static int __devinit pm8058_xoadc_probe(struct platform_device *pdev)
{
struct xoadc_platform_data *pdata = pdev->dev.platform_data;
struct pm8058_chip *pm_chip;
struct pmic8058_adc *adc_pmic;
int i, rc = 0;
pm_chip = dev_get_drvdata(pdev->dev.parent);
if (pm_chip == NULL) {
dev_err(&pdev->dev, "no parent data passed in\n");
return -EFAULT;
}
if (!pdata) {
dev_err(&pdev->dev, "no platform data?\n");
return -EINVAL;
}
adc_pmic = kzalloc(sizeof(struct pmic8058_adc), GFP_KERNEL);
if (!adc_pmic) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
adc_pmic->pm_chip = pm_chip;
adc_pmic->adc_prop = pdata->xoadc_prop;
adc_pmic->xoadc_num = pdata->xoadc_num;
adc_pmic->xoadc_queue_count = 0;
platform_set_drvdata(pdev, adc_pmic);
if (adc_pmic->xoadc_num > XOADC_PMIC_0) {
dev_err(&pdev->dev, "ADC device not supported\n");
rc = -EINVAL;
goto err_cleanup;
}
adc_pmic->pdata = pdata;
adc_pmic->adc_graph = kzalloc(sizeof(struct linear_graph)
* MAX_CHANNEL_PROPERTIES_QUEUE, GFP_KERNEL);
if (!adc_pmic->adc_graph) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
rc = -ENOMEM;
goto err_cleanup;
}
/* Will be replaced by individual channel calibration */
for (i = 0; i < MAX_CHANNEL_PROPERTIES_QUEUE; i++) {
adc_pmic->adc_graph[i].offset = 0 ;
adc_pmic->adc_graph[i].dy = (1 << 15) - 1;
adc_pmic->adc_graph[i].dx = 2200;
}
if (pdata->xoadc_mpp_config != NULL)
pdata->xoadc_mpp_config();
adc_pmic->conv_slot_request = &adc_pmic->conv[0];
adc_pmic->conv_slot_request->context =
&adc_pmic->conv_queue_elements[0];
mutex_init(&adc_pmic->conv_slot_request->list_lock);
INIT_LIST_HEAD(&adc_pmic->conv_slot_request->slots);
/* tie each slot and initwork them */
for (i = 0; i < MAX_QUEUE_LENGTH; i++) {
list_add(&adc_pmic->conv_slot_request->context[i].list,
&adc_pmic->conv_slot_request->slots);
INIT_WORK(&adc_pmic->conv_slot_request->context[i].work,
msm_adc_wq_work);
init_completion(&adc_pmic->conv_slot_request->context[i].comp);
adc_pmic->conv_slot_request->context[i].idx = i;
}
adc_pmic->conv_queue_list = &adc_pmic->conv[1];
mutex_init(&adc_pmic->conv_queue_list->list_lock);
INIT_LIST_HEAD(&adc_pmic->conv_queue_list->slots);
adc_pmic->adc_irq = platform_get_irq(pdev, 0);
if (adc_pmic->adc_irq < 0) {
rc = -ENXIO;
goto err_cleanup;
}
rc = request_threaded_irq(adc_pmic->adc_irq,
NULL, pm8058_xoadc,
IRQF_TRIGGER_RISING, "pm8058_adc_interrupt", adc_pmic);
if (rc) {
dev_err(&pdev->dev, "failed to request adc irq\n");
goto err_cleanup;
}
disable_irq(adc_pmic->adc_irq);
device_init_wakeup(&pdev->dev, pdata->xoadc_wakeup);
if (adc_pmic->adc_voter == NULL) {
adc_pmic->adc_voter = msm_xo_get(MSM_XO_TCXO_D1,
"pmic8058_xoadc");
if (IS_ERR(adc_pmic->adc_voter)) {
dev_err(&pdev->dev, "Failed to get XO vote\n");
goto err_cleanup;
}
}
pmic_adc[adc_pmic->xoadc_num] = adc_pmic;
if (pdata->xoadc_vreg_setup != NULL)
pdata->xoadc_vreg_setup();
xoadc_initialized = true;
xoadc_calib_first_adc = false;
return 0;
err_cleanup:
pm8058_xoadc_teardown(pdev);
return rc;
}
static struct platform_driver pm8058_xoadc_driver = {
.probe = pm8058_xoadc_probe,
.remove = __devexit_p(pm8058_xoadc_teardown),
.driver = {
.name = "pm8058-xoadc",
.owner = THIS_MODULE,
},
};
static int __init pm8058_xoadc_init(void)
{
return platform_driver_register(&pm8058_xoadc_driver);
}
module_init(pm8058_xoadc_init);
static void __exit pm8058_xoadc_exit(void)
{
platform_driver_unregister(&pm8058_xoadc_driver);
}
module_exit(pm8058_xoadc_exit);
MODULE_ALIAS("platform:pmic8058_xoadc");
MODULE_DESCRIPTION("PMIC8058 XOADC driver");
MODULE_LICENSE("GPL v2");